xref: /linux/arch/s390/kernel/kprobes.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9 
10 #include <linux/kprobes.h>
11 #include <linux/ptrace.h>
12 #include <linux/preempt.h>
13 #include <linux/stop_machine.h>
14 #include <linux/kdebug.h>
15 #include <linux/uaccess.h>
16 #include <linux/extable.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/hardirq.h>
20 #include <linux/ftrace.h>
21 #include <asm/set_memory.h>
22 #include <asm/sections.h>
23 #include <asm/dis.h>
24 
25 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27 
28 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
29 
30 DEFINE_INSN_CACHE_OPS(s390_insn);
31 
32 static int insn_page_in_use;
33 static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
34 
35 static void *alloc_s390_insn_page(void)
36 {
37 	if (xchg(&insn_page_in_use, 1) == 1)
38 		return NULL;
39 	set_memory_x((unsigned long) &insn_page, 1);
40 	return &insn_page;
41 }
42 
43 static void free_s390_insn_page(void *page)
44 {
45 	set_memory_nx((unsigned long) page, 1);
46 	xchg(&insn_page_in_use, 0);
47 }
48 
49 struct kprobe_insn_cache kprobe_s390_insn_slots = {
50 	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
51 	.alloc = alloc_s390_insn_page,
52 	.free = free_s390_insn_page,
53 	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
54 	.insn_size = MAX_INSN_SIZE,
55 };
56 
57 static void copy_instruction(struct kprobe *p)
58 {
59 	unsigned long ip = (unsigned long) p->addr;
60 	s64 disp, new_disp;
61 	u64 addr, new_addr;
62 
63 	if (ftrace_location(ip) == ip) {
64 		/*
65 		 * If kprobes patches the instruction that is morphed by
66 		 * ftrace make sure that kprobes always sees the branch
67 		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
68 		 * in case of hotpatch.
69 		 */
70 		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
71 		p->ainsn.is_ftrace_insn = 1;
72 	} else
73 		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
74 	p->opcode = p->ainsn.insn[0];
75 	if (!probe_is_insn_relative_long(p->ainsn.insn))
76 		return;
77 	/*
78 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
79 	 * RI2 displacement field. We have already made sure that the insn
80 	 * slot for the patched instruction is within the same 2GB area
81 	 * as the original instruction (either kernel image or module area).
82 	 * Therefore the new displacement will always fit.
83 	 */
84 	disp = *(s32 *)&p->ainsn.insn[1];
85 	addr = (u64)(unsigned long)p->addr;
86 	new_addr = (u64)(unsigned long)p->ainsn.insn;
87 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
88 	*(s32 *)&p->ainsn.insn[1] = new_disp;
89 }
90 NOKPROBE_SYMBOL(copy_instruction);
91 
92 static inline int is_kernel_addr(void *addr)
93 {
94 	return addr < (void *)_end;
95 }
96 
97 static int s390_get_insn_slot(struct kprobe *p)
98 {
99 	/*
100 	 * Get an insn slot that is within the same 2GB area like the original
101 	 * instruction. That way instructions with a 32bit signed displacement
102 	 * field can be patched and executed within the insn slot.
103 	 */
104 	p->ainsn.insn = NULL;
105 	if (is_kernel_addr(p->addr))
106 		p->ainsn.insn = get_s390_insn_slot();
107 	else if (is_module_addr(p->addr))
108 		p->ainsn.insn = get_insn_slot();
109 	return p->ainsn.insn ? 0 : -ENOMEM;
110 }
111 NOKPROBE_SYMBOL(s390_get_insn_slot);
112 
113 static void s390_free_insn_slot(struct kprobe *p)
114 {
115 	if (!p->ainsn.insn)
116 		return;
117 	if (is_kernel_addr(p->addr))
118 		free_s390_insn_slot(p->ainsn.insn, 0);
119 	else
120 		free_insn_slot(p->ainsn.insn, 0);
121 	p->ainsn.insn = NULL;
122 }
123 NOKPROBE_SYMBOL(s390_free_insn_slot);
124 
125 int arch_prepare_kprobe(struct kprobe *p)
126 {
127 	if ((unsigned long) p->addr & 0x01)
128 		return -EINVAL;
129 	/* Make sure the probe isn't going on a difficult instruction */
130 	if (probe_is_prohibited_opcode(p->addr))
131 		return -EINVAL;
132 	if (s390_get_insn_slot(p))
133 		return -ENOMEM;
134 	copy_instruction(p);
135 	return 0;
136 }
137 NOKPROBE_SYMBOL(arch_prepare_kprobe);
138 
139 int arch_check_ftrace_location(struct kprobe *p)
140 {
141 	return 0;
142 }
143 
144 struct swap_insn_args {
145 	struct kprobe *p;
146 	unsigned int arm_kprobe : 1;
147 };
148 
149 static int swap_instruction(void *data)
150 {
151 	struct swap_insn_args *args = data;
152 	struct ftrace_insn new_insn, *insn;
153 	struct kprobe *p = args->p;
154 	size_t len;
155 
156 	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
157 	len = sizeof(new_insn.opc);
158 	if (!p->ainsn.is_ftrace_insn)
159 		goto skip_ftrace;
160 	len = sizeof(new_insn);
161 	insn = (struct ftrace_insn *) p->addr;
162 	if (args->arm_kprobe) {
163 		if (is_ftrace_nop(insn))
164 			new_insn.disp = KPROBE_ON_FTRACE_NOP;
165 		else
166 			new_insn.disp = KPROBE_ON_FTRACE_CALL;
167 	} else {
168 		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
169 		if (insn->disp == KPROBE_ON_FTRACE_NOP)
170 			ftrace_generate_nop_insn(&new_insn);
171 	}
172 skip_ftrace:
173 	s390_kernel_write(p->addr, &new_insn, len);
174 	return 0;
175 }
176 NOKPROBE_SYMBOL(swap_instruction);
177 
178 void arch_arm_kprobe(struct kprobe *p)
179 {
180 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
181 
182 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
183 }
184 NOKPROBE_SYMBOL(arch_arm_kprobe);
185 
186 void arch_disarm_kprobe(struct kprobe *p)
187 {
188 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
189 
190 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
191 }
192 NOKPROBE_SYMBOL(arch_disarm_kprobe);
193 
194 void arch_remove_kprobe(struct kprobe *p)
195 {
196 	s390_free_insn_slot(p);
197 }
198 NOKPROBE_SYMBOL(arch_remove_kprobe);
199 
200 static void enable_singlestep(struct kprobe_ctlblk *kcb,
201 			      struct pt_regs *regs,
202 			      unsigned long ip)
203 {
204 	struct per_regs per_kprobe;
205 
206 	/* Set up the PER control registers %cr9-%cr11 */
207 	per_kprobe.control = PER_EVENT_IFETCH;
208 	per_kprobe.start = ip;
209 	per_kprobe.end = ip;
210 
211 	/* Save control regs and psw mask */
212 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
213 	kcb->kprobe_saved_imask = regs->psw.mask &
214 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
215 
216 	/* Set PER control regs, turns on single step for the given address */
217 	__ctl_load(per_kprobe, 9, 11);
218 	regs->psw.mask |= PSW_MASK_PER;
219 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
220 	regs->psw.addr = ip;
221 }
222 NOKPROBE_SYMBOL(enable_singlestep);
223 
224 static void disable_singlestep(struct kprobe_ctlblk *kcb,
225 			       struct pt_regs *regs,
226 			       unsigned long ip)
227 {
228 	/* Restore control regs and psw mask, set new psw address */
229 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
230 	regs->psw.mask &= ~PSW_MASK_PER;
231 	regs->psw.mask |= kcb->kprobe_saved_imask;
232 	regs->psw.addr = ip;
233 }
234 NOKPROBE_SYMBOL(disable_singlestep);
235 
236 /*
237  * Activate a kprobe by storing its pointer to current_kprobe. The
238  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
239  * two kprobes can be active, see KPROBE_REENTER.
240  */
241 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
242 {
243 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
244 	kcb->prev_kprobe.status = kcb->kprobe_status;
245 	__this_cpu_write(current_kprobe, p);
246 }
247 NOKPROBE_SYMBOL(push_kprobe);
248 
249 /*
250  * Deactivate a kprobe by backing up to the previous state. If the
251  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
252  * for any other state prev_kprobe.kp will be NULL.
253  */
254 static void pop_kprobe(struct kprobe_ctlblk *kcb)
255 {
256 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
257 	kcb->kprobe_status = kcb->prev_kprobe.status;
258 }
259 NOKPROBE_SYMBOL(pop_kprobe);
260 
261 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
262 {
263 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
264 
265 	/* Replace the return addr with trampoline addr */
266 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
267 }
268 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
269 
270 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
271 {
272 	switch (kcb->kprobe_status) {
273 	case KPROBE_HIT_SSDONE:
274 	case KPROBE_HIT_ACTIVE:
275 		kprobes_inc_nmissed_count(p);
276 		break;
277 	case KPROBE_HIT_SS:
278 	case KPROBE_REENTER:
279 	default:
280 		/*
281 		 * A kprobe on the code path to single step an instruction
282 		 * is a BUG. The code path resides in the .kprobes.text
283 		 * section and is executed with interrupts disabled.
284 		 */
285 		pr_err("Invalid kprobe detected.\n");
286 		dump_kprobe(p);
287 		BUG();
288 	}
289 }
290 NOKPROBE_SYMBOL(kprobe_reenter_check);
291 
292 static int kprobe_handler(struct pt_regs *regs)
293 {
294 	struct kprobe_ctlblk *kcb;
295 	struct kprobe *p;
296 
297 	/*
298 	 * We want to disable preemption for the entire duration of kprobe
299 	 * processing. That includes the calls to the pre/post handlers
300 	 * and single stepping the kprobe instruction.
301 	 */
302 	preempt_disable();
303 	kcb = get_kprobe_ctlblk();
304 	p = get_kprobe((void *)(regs->psw.addr - 2));
305 
306 	if (p) {
307 		if (kprobe_running()) {
308 			/*
309 			 * We have hit a kprobe while another is still
310 			 * active. This can happen in the pre and post
311 			 * handler. Single step the instruction of the
312 			 * new probe but do not call any handler function
313 			 * of this secondary kprobe.
314 			 * push_kprobe and pop_kprobe saves and restores
315 			 * the currently active kprobe.
316 			 */
317 			kprobe_reenter_check(kcb, p);
318 			push_kprobe(kcb, p);
319 			kcb->kprobe_status = KPROBE_REENTER;
320 		} else {
321 			/*
322 			 * If we have no pre-handler or it returned 0, we
323 			 * continue with single stepping. If we have a
324 			 * pre-handler and it returned non-zero, it prepped
325 			 * for changing execution path, so get out doing
326 			 * nothing more here.
327 			 */
328 			push_kprobe(kcb, p);
329 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
330 			if (p->pre_handler && p->pre_handler(p, regs)) {
331 				pop_kprobe(kcb);
332 				preempt_enable_no_resched();
333 				return 1;
334 			}
335 			kcb->kprobe_status = KPROBE_HIT_SS;
336 		}
337 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
338 		return 1;
339 	} /* else:
340 	   * No kprobe at this address and no active kprobe. The trap has
341 	   * not been caused by a kprobe breakpoint. The race of breakpoint
342 	   * vs. kprobe remove does not exist because on s390 as we use
343 	   * stop_machine to arm/disarm the breakpoints.
344 	   */
345 	preempt_enable_no_resched();
346 	return 0;
347 }
348 NOKPROBE_SYMBOL(kprobe_handler);
349 
350 /*
351  * Function return probe trampoline:
352  *	- init_kprobes() establishes a probepoint here
353  *	- When the probed function returns, this probe
354  *		causes the handlers to fire
355  */
356 static void __used kretprobe_trampoline_holder(void)
357 {
358 	asm volatile(".global kretprobe_trampoline\n"
359 		     "kretprobe_trampoline: bcr 0,0\n");
360 }
361 
362 /*
363  * Called when the probe at kretprobe trampoline is hit
364  */
365 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
366 {
367 	struct kretprobe_instance *ri;
368 	struct hlist_head *head, empty_rp;
369 	struct hlist_node *tmp;
370 	unsigned long flags, orig_ret_address;
371 	unsigned long trampoline_address;
372 	kprobe_opcode_t *correct_ret_addr;
373 
374 	INIT_HLIST_HEAD(&empty_rp);
375 	kretprobe_hash_lock(current, &head, &flags);
376 
377 	/*
378 	 * It is possible to have multiple instances associated with a given
379 	 * task either because an multiple functions in the call path
380 	 * have a return probe installed on them, and/or more than one return
381 	 * return probe was registered for a target function.
382 	 *
383 	 * We can handle this because:
384 	 *     - instances are always inserted at the head of the list
385 	 *     - when multiple return probes are registered for the same
386 	 *	 function, the first instance's ret_addr will point to the
387 	 *	 real return address, and all the rest will point to
388 	 *	 kretprobe_trampoline
389 	 */
390 	ri = NULL;
391 	orig_ret_address = 0;
392 	correct_ret_addr = NULL;
393 	trampoline_address = (unsigned long) &kretprobe_trampoline;
394 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
395 		if (ri->task != current)
396 			/* another task is sharing our hash bucket */
397 			continue;
398 
399 		orig_ret_address = (unsigned long) ri->ret_addr;
400 
401 		if (orig_ret_address != trampoline_address)
402 			/*
403 			 * This is the real return address. Any other
404 			 * instances associated with this task are for
405 			 * other calls deeper on the call stack
406 			 */
407 			break;
408 	}
409 
410 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
411 
412 	correct_ret_addr = ri->ret_addr;
413 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
414 		if (ri->task != current)
415 			/* another task is sharing our hash bucket */
416 			continue;
417 
418 		orig_ret_address = (unsigned long) ri->ret_addr;
419 
420 		if (ri->rp && ri->rp->handler) {
421 			ri->ret_addr = correct_ret_addr;
422 			ri->rp->handler(ri, regs);
423 		}
424 
425 		recycle_rp_inst(ri, &empty_rp);
426 
427 		if (orig_ret_address != trampoline_address)
428 			/*
429 			 * This is the real return address. Any other
430 			 * instances associated with this task are for
431 			 * other calls deeper on the call stack
432 			 */
433 			break;
434 	}
435 
436 	regs->psw.addr = orig_ret_address;
437 
438 	kretprobe_hash_unlock(current, &flags);
439 
440 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
441 		hlist_del(&ri->hlist);
442 		kfree(ri);
443 	}
444 	/*
445 	 * By returning a non-zero value, we are telling
446 	 * kprobe_handler() that we don't want the post_handler
447 	 * to run (and have re-enabled preemption)
448 	 */
449 	return 1;
450 }
451 NOKPROBE_SYMBOL(trampoline_probe_handler);
452 
453 /*
454  * Called after single-stepping.  p->addr is the address of the
455  * instruction whose first byte has been replaced by the "breakpoint"
456  * instruction.  To avoid the SMP problems that can occur when we
457  * temporarily put back the original opcode to single-step, we
458  * single-stepped a copy of the instruction.  The address of this
459  * copy is p->ainsn.insn.
460  */
461 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
462 {
463 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
464 	unsigned long ip = regs->psw.addr;
465 	int fixup = probe_get_fixup_type(p->ainsn.insn);
466 
467 	/* Check if the kprobes location is an enabled ftrace caller */
468 	if (p->ainsn.is_ftrace_insn) {
469 		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
470 		struct ftrace_insn call_insn;
471 
472 		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
473 		/*
474 		 * A kprobe on an enabled ftrace call site actually single
475 		 * stepped an unconditional branch (ftrace nop equivalent).
476 		 * Now we need to fixup things and pretend that a brasl r0,...
477 		 * was executed instead.
478 		 */
479 		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
480 			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
481 			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
482 		}
483 	}
484 
485 	if (fixup & FIXUP_PSW_NORMAL)
486 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
487 
488 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
489 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
490 		if (ip - (unsigned long) p->ainsn.insn == ilen)
491 			ip = (unsigned long) p->addr + ilen;
492 	}
493 
494 	if (fixup & FIXUP_RETURN_REGISTER) {
495 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
496 		regs->gprs[reg] += (unsigned long) p->addr -
497 				   (unsigned long) p->ainsn.insn;
498 	}
499 
500 	disable_singlestep(kcb, regs, ip);
501 }
502 NOKPROBE_SYMBOL(resume_execution);
503 
504 static int post_kprobe_handler(struct pt_regs *regs)
505 {
506 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
507 	struct kprobe *p = kprobe_running();
508 
509 	if (!p)
510 		return 0;
511 
512 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
513 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
514 		p->post_handler(p, regs, 0);
515 	}
516 
517 	resume_execution(p, regs);
518 	pop_kprobe(kcb);
519 	preempt_enable_no_resched();
520 
521 	/*
522 	 * if somebody else is singlestepping across a probe point, psw mask
523 	 * will have PER set, in which case, continue the remaining processing
524 	 * of do_single_step, as if this is not a probe hit.
525 	 */
526 	if (regs->psw.mask & PSW_MASK_PER)
527 		return 0;
528 
529 	return 1;
530 }
531 NOKPROBE_SYMBOL(post_kprobe_handler);
532 
533 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
534 {
535 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536 	struct kprobe *p = kprobe_running();
537 	const struct exception_table_entry *entry;
538 
539 	switch(kcb->kprobe_status) {
540 	case KPROBE_HIT_SS:
541 	case KPROBE_REENTER:
542 		/*
543 		 * We are here because the instruction being single
544 		 * stepped caused a page fault. We reset the current
545 		 * kprobe and the nip points back to the probe address
546 		 * and allow the page fault handler to continue as a
547 		 * normal page fault.
548 		 */
549 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
550 		pop_kprobe(kcb);
551 		preempt_enable_no_resched();
552 		break;
553 	case KPROBE_HIT_ACTIVE:
554 	case KPROBE_HIT_SSDONE:
555 		/*
556 		 * We increment the nmissed count for accounting,
557 		 * we can also use npre/npostfault count for accounting
558 		 * these specific fault cases.
559 		 */
560 		kprobes_inc_nmissed_count(p);
561 
562 		/*
563 		 * We come here because instructions in the pre/post
564 		 * handler caused the page_fault, this could happen
565 		 * if handler tries to access user space by
566 		 * copy_from_user(), get_user() etc. Let the
567 		 * user-specified handler try to fix it first.
568 		 */
569 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
570 			return 1;
571 
572 		/*
573 		 * In case the user-specified fault handler returned
574 		 * zero, try to fix up.
575 		 */
576 		entry = s390_search_extables(regs->psw.addr);
577 		if (entry) {
578 			regs->psw.addr = extable_fixup(entry);
579 			return 1;
580 		}
581 
582 		/*
583 		 * fixup_exception() could not handle it,
584 		 * Let do_page_fault() fix it.
585 		 */
586 		break;
587 	default:
588 		break;
589 	}
590 	return 0;
591 }
592 NOKPROBE_SYMBOL(kprobe_trap_handler);
593 
594 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
595 {
596 	int ret;
597 
598 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
599 		local_irq_disable();
600 	ret = kprobe_trap_handler(regs, trapnr);
601 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
602 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
603 	return ret;
604 }
605 NOKPROBE_SYMBOL(kprobe_fault_handler);
606 
607 /*
608  * Wrapper routine to for handling exceptions.
609  */
610 int kprobe_exceptions_notify(struct notifier_block *self,
611 			     unsigned long val, void *data)
612 {
613 	struct die_args *args = (struct die_args *) data;
614 	struct pt_regs *regs = args->regs;
615 	int ret = NOTIFY_DONE;
616 
617 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
618 		local_irq_disable();
619 
620 	switch (val) {
621 	case DIE_BPT:
622 		if (kprobe_handler(regs))
623 			ret = NOTIFY_STOP;
624 		break;
625 	case DIE_SSTEP:
626 		if (post_kprobe_handler(regs))
627 			ret = NOTIFY_STOP;
628 		break;
629 	case DIE_TRAP:
630 		if (!preemptible() && kprobe_running() &&
631 		    kprobe_trap_handler(regs, args->trapnr))
632 			ret = NOTIFY_STOP;
633 		break;
634 	default:
635 		break;
636 	}
637 
638 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
639 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
640 
641 	return ret;
642 }
643 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
644 
645 static struct kprobe trampoline = {
646 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
647 	.pre_handler = trampoline_probe_handler
648 };
649 
650 int __init arch_init_kprobes(void)
651 {
652 	return register_kprobe(&trampoline);
653 }
654 
655 int arch_trampoline_kprobe(struct kprobe *p)
656 {
657 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
658 }
659 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
660