xref: /linux/arch/s390/kernel/kprobes.c (revision 9dbbc3b9d09d6deba9f3b9e1d5b355032ed46a75)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9 
10 #include <linux/moduleloader.h>
11 #include <linux/kprobes.h>
12 #include <linux/ptrace.h>
13 #include <linux/preempt.h>
14 #include <linux/stop_machine.h>
15 #include <linux/kdebug.h>
16 #include <linux/uaccess.h>
17 #include <linux/extable.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/hardirq.h>
21 #include <linux/ftrace.h>
22 #include <asm/set_memory.h>
23 #include <asm/sections.h>
24 #include <asm/dis.h>
25 #include "entry.h"
26 
27 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
28 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
29 
30 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
31 
32 DEFINE_INSN_CACHE_OPS(s390_insn);
33 
34 static int insn_page_in_use;
35 
36 void *alloc_insn_page(void)
37 {
38 	void *page;
39 
40 	page = module_alloc(PAGE_SIZE);
41 	if (!page)
42 		return NULL;
43 	__set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X);
44 	return page;
45 }
46 
47 static void *alloc_s390_insn_page(void)
48 {
49 	if (xchg(&insn_page_in_use, 1) == 1)
50 		return NULL;
51 	return &kprobes_insn_page;
52 }
53 
54 static void free_s390_insn_page(void *page)
55 {
56 	xchg(&insn_page_in_use, 0);
57 }
58 
59 struct kprobe_insn_cache kprobe_s390_insn_slots = {
60 	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
61 	.alloc = alloc_s390_insn_page,
62 	.free = free_s390_insn_page,
63 	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
64 	.insn_size = MAX_INSN_SIZE,
65 };
66 
67 static void copy_instruction(struct kprobe *p)
68 {
69 	kprobe_opcode_t insn[MAX_INSN_SIZE];
70 	s64 disp, new_disp;
71 	u64 addr, new_addr;
72 	unsigned int len;
73 
74 	len = insn_length(*p->addr >> 8);
75 	memcpy(&insn, p->addr, len);
76 	p->opcode = insn[0];
77 	if (probe_is_insn_relative_long(&insn[0])) {
78 		/*
79 		 * For pc-relative instructions in RIL-b or RIL-c format patch
80 		 * the RI2 displacement field. We have already made sure that
81 		 * the insn slot for the patched instruction is within the same
82 		 * 2GB area as the original instruction (either kernel image or
83 		 * module area). Therefore the new displacement will always fit.
84 		 */
85 		disp = *(s32 *)&insn[1];
86 		addr = (u64)(unsigned long)p->addr;
87 		new_addr = (u64)(unsigned long)p->ainsn.insn;
88 		new_disp = ((addr + (disp * 2)) - new_addr) / 2;
89 		*(s32 *)&insn[1] = new_disp;
90 	}
91 	s390_kernel_write(p->ainsn.insn, &insn, len);
92 }
93 NOKPROBE_SYMBOL(copy_instruction);
94 
95 static inline int is_kernel_addr(void *addr)
96 {
97 	return addr < (void *)_end;
98 }
99 
100 static int s390_get_insn_slot(struct kprobe *p)
101 {
102 	/*
103 	 * Get an insn slot that is within the same 2GB area like the original
104 	 * instruction. That way instructions with a 32bit signed displacement
105 	 * field can be patched and executed within the insn slot.
106 	 */
107 	p->ainsn.insn = NULL;
108 	if (is_kernel_addr(p->addr))
109 		p->ainsn.insn = get_s390_insn_slot();
110 	else if (is_module_addr(p->addr))
111 		p->ainsn.insn = get_insn_slot();
112 	return p->ainsn.insn ? 0 : -ENOMEM;
113 }
114 NOKPROBE_SYMBOL(s390_get_insn_slot);
115 
116 static void s390_free_insn_slot(struct kprobe *p)
117 {
118 	if (!p->ainsn.insn)
119 		return;
120 	if (is_kernel_addr(p->addr))
121 		free_s390_insn_slot(p->ainsn.insn, 0);
122 	else
123 		free_insn_slot(p->ainsn.insn, 0);
124 	p->ainsn.insn = NULL;
125 }
126 NOKPROBE_SYMBOL(s390_free_insn_slot);
127 
128 int arch_prepare_kprobe(struct kprobe *p)
129 {
130 	if ((unsigned long) p->addr & 0x01)
131 		return -EINVAL;
132 	/* Make sure the probe isn't going on a difficult instruction */
133 	if (probe_is_prohibited_opcode(p->addr))
134 		return -EINVAL;
135 	if (s390_get_insn_slot(p))
136 		return -ENOMEM;
137 	copy_instruction(p);
138 	return 0;
139 }
140 NOKPROBE_SYMBOL(arch_prepare_kprobe);
141 
142 struct swap_insn_args {
143 	struct kprobe *p;
144 	unsigned int arm_kprobe : 1;
145 };
146 
147 static int swap_instruction(void *data)
148 {
149 	struct swap_insn_args *args = data;
150 	struct kprobe *p = args->p;
151 	u16 opc;
152 
153 	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
154 	s390_kernel_write(p->addr, &opc, sizeof(opc));
155 	return 0;
156 }
157 NOKPROBE_SYMBOL(swap_instruction);
158 
159 void arch_arm_kprobe(struct kprobe *p)
160 {
161 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
162 
163 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
164 }
165 NOKPROBE_SYMBOL(arch_arm_kprobe);
166 
167 void arch_disarm_kprobe(struct kprobe *p)
168 {
169 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
170 
171 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
172 }
173 NOKPROBE_SYMBOL(arch_disarm_kprobe);
174 
175 void arch_remove_kprobe(struct kprobe *p)
176 {
177 	s390_free_insn_slot(p);
178 }
179 NOKPROBE_SYMBOL(arch_remove_kprobe);
180 
181 static void enable_singlestep(struct kprobe_ctlblk *kcb,
182 			      struct pt_regs *regs,
183 			      unsigned long ip)
184 {
185 	struct per_regs per_kprobe;
186 
187 	/* Set up the PER control registers %cr9-%cr11 */
188 	per_kprobe.control = PER_EVENT_IFETCH;
189 	per_kprobe.start = ip;
190 	per_kprobe.end = ip;
191 
192 	/* Save control regs and psw mask */
193 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
194 	kcb->kprobe_saved_imask = regs->psw.mask &
195 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
196 
197 	/* Set PER control regs, turns on single step for the given address */
198 	__ctl_load(per_kprobe, 9, 11);
199 	regs->psw.mask |= PSW_MASK_PER;
200 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
201 	regs->psw.addr = ip;
202 }
203 NOKPROBE_SYMBOL(enable_singlestep);
204 
205 static void disable_singlestep(struct kprobe_ctlblk *kcb,
206 			       struct pt_regs *regs,
207 			       unsigned long ip)
208 {
209 	/* Restore control regs and psw mask, set new psw address */
210 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
211 	regs->psw.mask &= ~PSW_MASK_PER;
212 	regs->psw.mask |= kcb->kprobe_saved_imask;
213 	regs->psw.addr = ip;
214 }
215 NOKPROBE_SYMBOL(disable_singlestep);
216 
217 /*
218  * Activate a kprobe by storing its pointer to current_kprobe. The
219  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
220  * two kprobes can be active, see KPROBE_REENTER.
221  */
222 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
223 {
224 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
225 	kcb->prev_kprobe.status = kcb->kprobe_status;
226 	__this_cpu_write(current_kprobe, p);
227 }
228 NOKPROBE_SYMBOL(push_kprobe);
229 
230 /*
231  * Deactivate a kprobe by backing up to the previous state. If the
232  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
233  * for any other state prev_kprobe.kp will be NULL.
234  */
235 static void pop_kprobe(struct kprobe_ctlblk *kcb)
236 {
237 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
238 	kcb->kprobe_status = kcb->prev_kprobe.status;
239 }
240 NOKPROBE_SYMBOL(pop_kprobe);
241 
242 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
243 {
244 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
245 	ri->fp = NULL;
246 
247 	/* Replace the return addr with trampoline addr */
248 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
249 }
250 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
251 
252 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
253 {
254 	switch (kcb->kprobe_status) {
255 	case KPROBE_HIT_SSDONE:
256 	case KPROBE_HIT_ACTIVE:
257 		kprobes_inc_nmissed_count(p);
258 		break;
259 	case KPROBE_HIT_SS:
260 	case KPROBE_REENTER:
261 	default:
262 		/*
263 		 * A kprobe on the code path to single step an instruction
264 		 * is a BUG. The code path resides in the .kprobes.text
265 		 * section and is executed with interrupts disabled.
266 		 */
267 		pr_err("Invalid kprobe detected.\n");
268 		dump_kprobe(p);
269 		BUG();
270 	}
271 }
272 NOKPROBE_SYMBOL(kprobe_reenter_check);
273 
274 static int kprobe_handler(struct pt_regs *regs)
275 {
276 	struct kprobe_ctlblk *kcb;
277 	struct kprobe *p;
278 
279 	/*
280 	 * We want to disable preemption for the entire duration of kprobe
281 	 * processing. That includes the calls to the pre/post handlers
282 	 * and single stepping the kprobe instruction.
283 	 */
284 	preempt_disable();
285 	kcb = get_kprobe_ctlblk();
286 	p = get_kprobe((void *)(regs->psw.addr - 2));
287 
288 	if (p) {
289 		if (kprobe_running()) {
290 			/*
291 			 * We have hit a kprobe while another is still
292 			 * active. This can happen in the pre and post
293 			 * handler. Single step the instruction of the
294 			 * new probe but do not call any handler function
295 			 * of this secondary kprobe.
296 			 * push_kprobe and pop_kprobe saves and restores
297 			 * the currently active kprobe.
298 			 */
299 			kprobe_reenter_check(kcb, p);
300 			push_kprobe(kcb, p);
301 			kcb->kprobe_status = KPROBE_REENTER;
302 		} else {
303 			/*
304 			 * If we have no pre-handler or it returned 0, we
305 			 * continue with single stepping. If we have a
306 			 * pre-handler and it returned non-zero, it prepped
307 			 * for changing execution path, so get out doing
308 			 * nothing more here.
309 			 */
310 			push_kprobe(kcb, p);
311 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
312 			if (p->pre_handler && p->pre_handler(p, regs)) {
313 				pop_kprobe(kcb);
314 				preempt_enable_no_resched();
315 				return 1;
316 			}
317 			kcb->kprobe_status = KPROBE_HIT_SS;
318 		}
319 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
320 		return 1;
321 	} /* else:
322 	   * No kprobe at this address and no active kprobe. The trap has
323 	   * not been caused by a kprobe breakpoint. The race of breakpoint
324 	   * vs. kprobe remove does not exist because on s390 as we use
325 	   * stop_machine to arm/disarm the breakpoints.
326 	   */
327 	preempt_enable_no_resched();
328 	return 0;
329 }
330 NOKPROBE_SYMBOL(kprobe_handler);
331 
332 /*
333  * Function return probe trampoline:
334  *	- init_kprobes() establishes a probepoint here
335  *	- When the probed function returns, this probe
336  *		causes the handlers to fire
337  */
338 static void __used kretprobe_trampoline_holder(void)
339 {
340 	asm volatile(".global kretprobe_trampoline\n"
341 		     "kretprobe_trampoline: bcr 0,0\n");
342 }
343 
344 /*
345  * Called when the probe at kretprobe trampoline is hit
346  */
347 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
348 {
349 	regs->psw.addr = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
350 	/*
351 	 * By returning a non-zero value, we are telling
352 	 * kprobe_handler() that we don't want the post_handler
353 	 * to run (and have re-enabled preemption)
354 	 */
355 	return 1;
356 }
357 NOKPROBE_SYMBOL(trampoline_probe_handler);
358 
359 /*
360  * Called after single-stepping.  p->addr is the address of the
361  * instruction whose first byte has been replaced by the "breakpoint"
362  * instruction.  To avoid the SMP problems that can occur when we
363  * temporarily put back the original opcode to single-step, we
364  * single-stepped a copy of the instruction.  The address of this
365  * copy is p->ainsn.insn.
366  */
367 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
368 {
369 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
370 	unsigned long ip = regs->psw.addr;
371 	int fixup = probe_get_fixup_type(p->ainsn.insn);
372 
373 	if (fixup & FIXUP_PSW_NORMAL)
374 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
375 
376 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
377 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
378 		if (ip - (unsigned long) p->ainsn.insn == ilen)
379 			ip = (unsigned long) p->addr + ilen;
380 	}
381 
382 	if (fixup & FIXUP_RETURN_REGISTER) {
383 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
384 		regs->gprs[reg] += (unsigned long) p->addr -
385 				   (unsigned long) p->ainsn.insn;
386 	}
387 
388 	disable_singlestep(kcb, regs, ip);
389 }
390 NOKPROBE_SYMBOL(resume_execution);
391 
392 static int post_kprobe_handler(struct pt_regs *regs)
393 {
394 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
395 	struct kprobe *p = kprobe_running();
396 
397 	if (!p)
398 		return 0;
399 
400 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
401 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
402 		p->post_handler(p, regs, 0);
403 	}
404 
405 	resume_execution(p, regs);
406 	pop_kprobe(kcb);
407 	preempt_enable_no_resched();
408 
409 	/*
410 	 * if somebody else is singlestepping across a probe point, psw mask
411 	 * will have PER set, in which case, continue the remaining processing
412 	 * of do_single_step, as if this is not a probe hit.
413 	 */
414 	if (regs->psw.mask & PSW_MASK_PER)
415 		return 0;
416 
417 	return 1;
418 }
419 NOKPROBE_SYMBOL(post_kprobe_handler);
420 
421 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
422 {
423 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
424 	struct kprobe *p = kprobe_running();
425 	const struct exception_table_entry *entry;
426 
427 	switch(kcb->kprobe_status) {
428 	case KPROBE_HIT_SS:
429 	case KPROBE_REENTER:
430 		/*
431 		 * We are here because the instruction being single
432 		 * stepped caused a page fault. We reset the current
433 		 * kprobe and the nip points back to the probe address
434 		 * and allow the page fault handler to continue as a
435 		 * normal page fault.
436 		 */
437 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
438 		pop_kprobe(kcb);
439 		preempt_enable_no_resched();
440 		break;
441 	case KPROBE_HIT_ACTIVE:
442 	case KPROBE_HIT_SSDONE:
443 		/*
444 		 * In case the user-specified fault handler returned
445 		 * zero, try to fix up.
446 		 */
447 		entry = s390_search_extables(regs->psw.addr);
448 		if (entry && ex_handle(entry, regs))
449 			return 1;
450 
451 		/*
452 		 * fixup_exception() could not handle it,
453 		 * Let do_page_fault() fix it.
454 		 */
455 		break;
456 	default:
457 		break;
458 	}
459 	return 0;
460 }
461 NOKPROBE_SYMBOL(kprobe_trap_handler);
462 
463 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
464 {
465 	int ret;
466 
467 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
468 		local_irq_disable();
469 	ret = kprobe_trap_handler(regs, trapnr);
470 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
471 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
472 	return ret;
473 }
474 NOKPROBE_SYMBOL(kprobe_fault_handler);
475 
476 /*
477  * Wrapper routine to for handling exceptions.
478  */
479 int kprobe_exceptions_notify(struct notifier_block *self,
480 			     unsigned long val, void *data)
481 {
482 	struct die_args *args = (struct die_args *) data;
483 	struct pt_regs *regs = args->regs;
484 	int ret = NOTIFY_DONE;
485 
486 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
487 		local_irq_disable();
488 
489 	switch (val) {
490 	case DIE_BPT:
491 		if (kprobe_handler(regs))
492 			ret = NOTIFY_STOP;
493 		break;
494 	case DIE_SSTEP:
495 		if (post_kprobe_handler(regs))
496 			ret = NOTIFY_STOP;
497 		break;
498 	case DIE_TRAP:
499 		if (!preemptible() && kprobe_running() &&
500 		    kprobe_trap_handler(regs, args->trapnr))
501 			ret = NOTIFY_STOP;
502 		break;
503 	default:
504 		break;
505 	}
506 
507 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
508 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
509 
510 	return ret;
511 }
512 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
513 
514 static struct kprobe trampoline = {
515 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
516 	.pre_handler = trampoline_probe_handler
517 };
518 
519 int __init arch_init_kprobes(void)
520 {
521 	return register_kprobe(&trampoline);
522 }
523 
524 int arch_trampoline_kprobe(struct kprobe *p)
525 {
526 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
527 }
528 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
529