xref: /linux/arch/s390/kernel/kprobes.c (revision 4d7696f1b05f4aeb586c74868fe3da2731daca4b)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corp. 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/sections.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 
35 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
36 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
37 
38 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
39 
40 static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn)
41 {
42 	switch (insn[0] >> 8) {
43 	case 0x0c:	/* bassm */
44 	case 0x0b:	/* bsm	 */
45 	case 0x83:	/* diag  */
46 	case 0x44:	/* ex	 */
47 	case 0xac:	/* stnsm */
48 	case 0xad:	/* stosm */
49 		return -EINVAL;
50 	}
51 	switch (insn[0]) {
52 	case 0x0101:	/* pr	 */
53 	case 0xb25a:	/* bsa	 */
54 	case 0xb240:	/* bakr  */
55 	case 0xb258:	/* bsg	 */
56 	case 0xb218:	/* pc	 */
57 	case 0xb228:	/* pt	 */
58 	case 0xb98d:	/* epsw	 */
59 		return -EINVAL;
60 	}
61 	return 0;
62 }
63 
64 static int __kprobes get_fixup_type(kprobe_opcode_t *insn)
65 {
66 	/* default fixup method */
67 	int fixup = FIXUP_PSW_NORMAL;
68 
69 	switch (insn[0] >> 8) {
70 	case 0x05:	/* balr	*/
71 	case 0x0d:	/* basr */
72 		fixup = FIXUP_RETURN_REGISTER;
73 		/* if r2 = 0, no branch will be taken */
74 		if ((insn[0] & 0x0f) == 0)
75 			fixup |= FIXUP_BRANCH_NOT_TAKEN;
76 		break;
77 	case 0x06:	/* bctr	*/
78 	case 0x07:	/* bcr	*/
79 		fixup = FIXUP_BRANCH_NOT_TAKEN;
80 		break;
81 	case 0x45:	/* bal	*/
82 	case 0x4d:	/* bas	*/
83 		fixup = FIXUP_RETURN_REGISTER;
84 		break;
85 	case 0x47:	/* bc	*/
86 	case 0x46:	/* bct	*/
87 	case 0x86:	/* bxh	*/
88 	case 0x87:	/* bxle	*/
89 		fixup = FIXUP_BRANCH_NOT_TAKEN;
90 		break;
91 	case 0x82:	/* lpsw	*/
92 		fixup = FIXUP_NOT_REQUIRED;
93 		break;
94 	case 0xb2:	/* lpswe */
95 		if ((insn[0] & 0xff) == 0xb2)
96 			fixup = FIXUP_NOT_REQUIRED;
97 		break;
98 	case 0xa7:	/* bras	*/
99 		if ((insn[0] & 0x0f) == 0x05)
100 			fixup |= FIXUP_RETURN_REGISTER;
101 		break;
102 	case 0xc0:
103 		if ((insn[0] & 0x0f) == 0x00 ||	/* larl  */
104 		    (insn[0] & 0x0f) == 0x05)	/* brasl */
105 		fixup |= FIXUP_RETURN_REGISTER;
106 		break;
107 	case 0xeb:
108 		switch (insn[2] & 0xff) {
109 		case 0x44: /* bxhg  */
110 		case 0x45: /* bxleg */
111 			fixup = FIXUP_BRANCH_NOT_TAKEN;
112 			break;
113 		}
114 		break;
115 	case 0xe3:	/* bctg	*/
116 		if ((insn[2] & 0xff) == 0x46)
117 			fixup = FIXUP_BRANCH_NOT_TAKEN;
118 		break;
119 	case 0xec:
120 		switch (insn[2] & 0xff) {
121 		case 0xe5: /* clgrb */
122 		case 0xe6: /* cgrb  */
123 		case 0xf6: /* crb   */
124 		case 0xf7: /* clrb  */
125 		case 0xfc: /* cgib  */
126 		case 0xfd: /* cglib */
127 		case 0xfe: /* cib   */
128 		case 0xff: /* clib  */
129 			fixup = FIXUP_BRANCH_NOT_TAKEN;
130 			break;
131 		}
132 		break;
133 	}
134 	return fixup;
135 }
136 
137 int __kprobes arch_prepare_kprobe(struct kprobe *p)
138 {
139 	if ((unsigned long) p->addr & 0x01)
140 		return -EINVAL;
141 
142 	/* Make sure the probe isn't going on a difficult instruction */
143 	if (is_prohibited_opcode(p->addr))
144 		return -EINVAL;
145 
146 	p->opcode = *p->addr;
147 	memcpy(p->ainsn.insn, p->addr, ((p->opcode >> 14) + 3) & -2);
148 
149 	return 0;
150 }
151 
152 struct ins_replace_args {
153 	kprobe_opcode_t *ptr;
154 	kprobe_opcode_t opcode;
155 };
156 
157 static int __kprobes swap_instruction(void *aref)
158 {
159 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
160 	unsigned long status = kcb->kprobe_status;
161 	struct ins_replace_args *args = aref;
162 
163 	kcb->kprobe_status = KPROBE_SWAP_INST;
164 	probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode));
165 	kcb->kprobe_status = status;
166 	return 0;
167 }
168 
169 void __kprobes arch_arm_kprobe(struct kprobe *p)
170 {
171 	struct ins_replace_args args;
172 
173 	args.ptr = p->addr;
174 	args.opcode = BREAKPOINT_INSTRUCTION;
175 	stop_machine(swap_instruction, &args, NULL);
176 }
177 
178 void __kprobes arch_disarm_kprobe(struct kprobe *p)
179 {
180 	struct ins_replace_args args;
181 
182 	args.ptr = p->addr;
183 	args.opcode = p->opcode;
184 	stop_machine(swap_instruction, &args, NULL);
185 }
186 
187 void __kprobes arch_remove_kprobe(struct kprobe *p)
188 {
189 }
190 
191 static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb,
192 					struct pt_regs *regs,
193 					unsigned long ip)
194 {
195 	struct per_regs per_kprobe;
196 
197 	/* Set up the PER control registers %cr9-%cr11 */
198 	per_kprobe.control = PER_EVENT_IFETCH;
199 	per_kprobe.start = ip;
200 	per_kprobe.end = ip;
201 
202 	/* Save control regs and psw mask */
203 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
204 	kcb->kprobe_saved_imask = regs->psw.mask &
205 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
206 
207 	/* Set PER control regs, turns on single step for the given address */
208 	__ctl_load(per_kprobe, 9, 11);
209 	regs->psw.mask |= PSW_MASK_PER;
210 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
211 	regs->psw.addr = ip | PSW_ADDR_AMODE;
212 }
213 
214 static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb,
215 					 struct pt_regs *regs,
216 					 unsigned long ip)
217 {
218 	/* Restore control regs and psw mask, set new psw address */
219 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
220 	regs->psw.mask &= ~PSW_MASK_PER;
221 	regs->psw.mask |= kcb->kprobe_saved_imask;
222 	regs->psw.addr = ip | PSW_ADDR_AMODE;
223 }
224 
225 /*
226  * Activate a kprobe by storing its pointer to current_kprobe. The
227  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
228  * two kprobes can be active, see KPROBE_REENTER.
229  */
230 static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
231 {
232 	kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe);
233 	kcb->prev_kprobe.status = kcb->kprobe_status;
234 	__get_cpu_var(current_kprobe) = p;
235 }
236 
237 /*
238  * Deactivate a kprobe by backing up to the previous state. If the
239  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
240  * for any other state prev_kprobe.kp will be NULL.
241  */
242 static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb)
243 {
244 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
245 	kcb->kprobe_status = kcb->prev_kprobe.status;
246 }
247 
248 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
249 					struct pt_regs *regs)
250 {
251 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
252 
253 	/* Replace the return addr with trampoline addr */
254 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
255 }
256 
257 static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb,
258 					   struct kprobe *p)
259 {
260 	switch (kcb->kprobe_status) {
261 	case KPROBE_HIT_SSDONE:
262 	case KPROBE_HIT_ACTIVE:
263 		kprobes_inc_nmissed_count(p);
264 		break;
265 	case KPROBE_HIT_SS:
266 	case KPROBE_REENTER:
267 	default:
268 		/*
269 		 * A kprobe on the code path to single step an instruction
270 		 * is a BUG. The code path resides in the .kprobes.text
271 		 * section and is executed with interrupts disabled.
272 		 */
273 		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
274 		dump_kprobe(p);
275 		BUG();
276 	}
277 }
278 
279 static int __kprobes kprobe_handler(struct pt_regs *regs)
280 {
281 	struct kprobe_ctlblk *kcb;
282 	struct kprobe *p;
283 
284 	/*
285 	 * We want to disable preemption for the entire duration of kprobe
286 	 * processing. That includes the calls to the pre/post handlers
287 	 * and single stepping the kprobe instruction.
288 	 */
289 	preempt_disable();
290 	kcb = get_kprobe_ctlblk();
291 	p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
292 
293 	if (p) {
294 		if (kprobe_running()) {
295 			/*
296 			 * We have hit a kprobe while another is still
297 			 * active. This can happen in the pre and post
298 			 * handler. Single step the instruction of the
299 			 * new probe but do not call any handler function
300 			 * of this secondary kprobe.
301 			 * push_kprobe and pop_kprobe saves and restores
302 			 * the currently active kprobe.
303 			 */
304 			kprobe_reenter_check(kcb, p);
305 			push_kprobe(kcb, p);
306 			kcb->kprobe_status = KPROBE_REENTER;
307 		} else {
308 			/*
309 			 * If we have no pre-handler or it returned 0, we
310 			 * continue with single stepping. If we have a
311 			 * pre-handler and it returned non-zero, it prepped
312 			 * for calling the break_handler below on re-entry
313 			 * for jprobe processing, so get out doing nothing
314 			 * more here.
315 			 */
316 			push_kprobe(kcb, p);
317 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
318 			if (p->pre_handler && p->pre_handler(p, regs))
319 				return 1;
320 			kcb->kprobe_status = KPROBE_HIT_SS;
321 		}
322 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
323 		return 1;
324 	} else if (kprobe_running()) {
325 		p = __get_cpu_var(current_kprobe);
326 		if (p->break_handler && p->break_handler(p, regs)) {
327 			/*
328 			 * Continuation after the jprobe completed and
329 			 * caused the jprobe_return trap. The jprobe
330 			 * break_handler "returns" to the original
331 			 * function that still has the kprobe breakpoint
332 			 * installed. We continue with single stepping.
333 			 */
334 			kcb->kprobe_status = KPROBE_HIT_SS;
335 			enable_singlestep(kcb, regs,
336 					  (unsigned long) p->ainsn.insn);
337 			return 1;
338 		} /* else:
339 		   * No kprobe at this address and the current kprobe
340 		   * has no break handler (no jprobe!). The kernel just
341 		   * exploded, let the standard trap handler pick up the
342 		   * pieces.
343 		   */
344 	} /* else:
345 	   * No kprobe at this address and no active kprobe. The trap has
346 	   * not been caused by a kprobe breakpoint. The race of breakpoint
347 	   * vs. kprobe remove does not exist because on s390 as we use
348 	   * stop_machine to arm/disarm the breakpoints.
349 	   */
350 	preempt_enable_no_resched();
351 	return 0;
352 }
353 
354 /*
355  * Function return probe trampoline:
356  *	- init_kprobes() establishes a probepoint here
357  *	- When the probed function returns, this probe
358  *		causes the handlers to fire
359  */
360 static void __used kretprobe_trampoline_holder(void)
361 {
362 	asm volatile(".global kretprobe_trampoline\n"
363 		     "kretprobe_trampoline: bcr 0,0\n");
364 }
365 
366 /*
367  * Called when the probe at kretprobe trampoline is hit
368  */
369 static int __kprobes trampoline_probe_handler(struct kprobe *p,
370 					      struct pt_regs *regs)
371 {
372 	struct kretprobe_instance *ri;
373 	struct hlist_head *head, empty_rp;
374 	struct hlist_node *tmp;
375 	unsigned long flags, orig_ret_address;
376 	unsigned long trampoline_address;
377 	kprobe_opcode_t *correct_ret_addr;
378 
379 	INIT_HLIST_HEAD(&empty_rp);
380 	kretprobe_hash_lock(current, &head, &flags);
381 
382 	/*
383 	 * It is possible to have multiple instances associated with a given
384 	 * task either because an multiple functions in the call path
385 	 * have a return probe installed on them, and/or more than one return
386 	 * return probe was registered for a target function.
387 	 *
388 	 * We can handle this because:
389 	 *     - instances are always inserted at the head of the list
390 	 *     - when multiple return probes are registered for the same
391 	 *	 function, the first instance's ret_addr will point to the
392 	 *	 real return address, and all the rest will point to
393 	 *	 kretprobe_trampoline
394 	 */
395 	ri = NULL;
396 	orig_ret_address = 0;
397 	correct_ret_addr = NULL;
398 	trampoline_address = (unsigned long) &kretprobe_trampoline;
399 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
400 		if (ri->task != current)
401 			/* another task is sharing our hash bucket */
402 			continue;
403 
404 		orig_ret_address = (unsigned long) ri->ret_addr;
405 
406 		if (orig_ret_address != trampoline_address)
407 			/*
408 			 * This is the real return address. Any other
409 			 * instances associated with this task are for
410 			 * other calls deeper on the call stack
411 			 */
412 			break;
413 	}
414 
415 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
416 
417 	correct_ret_addr = ri->ret_addr;
418 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
419 		if (ri->task != current)
420 			/* another task is sharing our hash bucket */
421 			continue;
422 
423 		orig_ret_address = (unsigned long) ri->ret_addr;
424 
425 		if (ri->rp && ri->rp->handler) {
426 			ri->ret_addr = correct_ret_addr;
427 			ri->rp->handler(ri, regs);
428 		}
429 
430 		recycle_rp_inst(ri, &empty_rp);
431 
432 		if (orig_ret_address != trampoline_address)
433 			/*
434 			 * This is the real return address. Any other
435 			 * instances associated with this task are for
436 			 * other calls deeper on the call stack
437 			 */
438 			break;
439 	}
440 
441 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
442 
443 	pop_kprobe(get_kprobe_ctlblk());
444 	kretprobe_hash_unlock(current, &flags);
445 	preempt_enable_no_resched();
446 
447 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
448 		hlist_del(&ri->hlist);
449 		kfree(ri);
450 	}
451 	/*
452 	 * By returning a non-zero value, we are telling
453 	 * kprobe_handler() that we don't want the post_handler
454 	 * to run (and have re-enabled preemption)
455 	 */
456 	return 1;
457 }
458 
459 /*
460  * Called after single-stepping.  p->addr is the address of the
461  * instruction whose first byte has been replaced by the "breakpoint"
462  * instruction.  To avoid the SMP problems that can occur when we
463  * temporarily put back the original opcode to single-step, we
464  * single-stepped a copy of the instruction.  The address of this
465  * copy is p->ainsn.insn.
466  */
467 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
468 {
469 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
470 	unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
471 	int fixup = get_fixup_type(p->ainsn.insn);
472 
473 	if (fixup & FIXUP_PSW_NORMAL)
474 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
475 
476 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
477 		int ilen = ((p->ainsn.insn[0] >> 14) + 3) & -2;
478 		if (ip - (unsigned long) p->ainsn.insn == ilen)
479 			ip = (unsigned long) p->addr + ilen;
480 	}
481 
482 	if (fixup & FIXUP_RETURN_REGISTER) {
483 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
484 		regs->gprs[reg] += (unsigned long) p->addr -
485 				   (unsigned long) p->ainsn.insn;
486 	}
487 
488 	disable_singlestep(kcb, regs, ip);
489 }
490 
491 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
492 {
493 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
494 	struct kprobe *p = kprobe_running();
495 
496 	if (!p)
497 		return 0;
498 
499 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
500 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
501 		p->post_handler(p, regs, 0);
502 	}
503 
504 	resume_execution(p, regs);
505 	pop_kprobe(kcb);
506 	preempt_enable_no_resched();
507 
508 	/*
509 	 * if somebody else is singlestepping across a probe point, psw mask
510 	 * will have PER set, in which case, continue the remaining processing
511 	 * of do_single_step, as if this is not a probe hit.
512 	 */
513 	if (regs->psw.mask & PSW_MASK_PER)
514 		return 0;
515 
516 	return 1;
517 }
518 
519 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr)
520 {
521 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
522 	struct kprobe *p = kprobe_running();
523 	const struct exception_table_entry *entry;
524 
525 	switch(kcb->kprobe_status) {
526 	case KPROBE_SWAP_INST:
527 		/* We are here because the instruction replacement failed */
528 		return 0;
529 	case KPROBE_HIT_SS:
530 	case KPROBE_REENTER:
531 		/*
532 		 * We are here because the instruction being single
533 		 * stepped caused a page fault. We reset the current
534 		 * kprobe and the nip points back to the probe address
535 		 * and allow the page fault handler to continue as a
536 		 * normal page fault.
537 		 */
538 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
539 		pop_kprobe(kcb);
540 		preempt_enable_no_resched();
541 		break;
542 	case KPROBE_HIT_ACTIVE:
543 	case KPROBE_HIT_SSDONE:
544 		/*
545 		 * We increment the nmissed count for accounting,
546 		 * we can also use npre/npostfault count for accouting
547 		 * these specific fault cases.
548 		 */
549 		kprobes_inc_nmissed_count(p);
550 
551 		/*
552 		 * We come here because instructions in the pre/post
553 		 * handler caused the page_fault, this could happen
554 		 * if handler tries to access user space by
555 		 * copy_from_user(), get_user() etc. Let the
556 		 * user-specified handler try to fix it first.
557 		 */
558 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
559 			return 1;
560 
561 		/*
562 		 * In case the user-specified fault handler returned
563 		 * zero, try to fix up.
564 		 */
565 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
566 		if (entry) {
567 			regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE;
568 			return 1;
569 		}
570 
571 		/*
572 		 * fixup_exception() could not handle it,
573 		 * Let do_page_fault() fix it.
574 		 */
575 		break;
576 	default:
577 		break;
578 	}
579 	return 0;
580 }
581 
582 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
583 {
584 	int ret;
585 
586 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
587 		local_irq_disable();
588 	ret = kprobe_trap_handler(regs, trapnr);
589 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
590 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
591 	return ret;
592 }
593 
594 /*
595  * Wrapper routine to for handling exceptions.
596  */
597 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
598 				       unsigned long val, void *data)
599 {
600 	struct die_args *args = (struct die_args *) data;
601 	struct pt_regs *regs = args->regs;
602 	int ret = NOTIFY_DONE;
603 
604 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
605 		local_irq_disable();
606 
607 	switch (val) {
608 	case DIE_BPT:
609 		if (kprobe_handler(regs))
610 			ret = NOTIFY_STOP;
611 		break;
612 	case DIE_SSTEP:
613 		if (post_kprobe_handler(regs))
614 			ret = NOTIFY_STOP;
615 		break;
616 	case DIE_TRAP:
617 		if (!preemptible() && kprobe_running() &&
618 		    kprobe_trap_handler(regs, args->trapnr))
619 			ret = NOTIFY_STOP;
620 		break;
621 	default:
622 		break;
623 	}
624 
625 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
626 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
627 
628 	return ret;
629 }
630 
631 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
632 {
633 	struct jprobe *jp = container_of(p, struct jprobe, kp);
634 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
635 	unsigned long stack;
636 
637 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
638 
639 	/* setup return addr to the jprobe handler routine */
640 	regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
641 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
642 
643 	/* r15 is the stack pointer */
644 	stack = (unsigned long) regs->gprs[15];
645 
646 	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
647 	return 1;
648 }
649 
650 void __kprobes jprobe_return(void)
651 {
652 	asm volatile(".word 0x0002");
653 }
654 
655 static void __used __kprobes jprobe_return_end(void)
656 {
657 	asm volatile("bcr 0,0");
658 }
659 
660 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
661 {
662 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
663 	unsigned long stack;
664 
665 	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
666 
667 	/* Put the regs back */
668 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
669 	/* put the stack back */
670 	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
671 	preempt_enable_no_resched();
672 	return 1;
673 }
674 
675 static struct kprobe trampoline = {
676 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
677 	.pre_handler = trampoline_probe_handler
678 };
679 
680 int __init arch_init_kprobes(void)
681 {
682 	return register_kprobe(&trampoline);
683 }
684 
685 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
686 {
687 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
688 }
689