xref: /linux/arch/s390/kernel/kprobes.c (revision 314f14abdeca78de6b16f97d796a9966ce4b90ae)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9 
10 #define pr_fmt(fmt) "kprobes: " fmt
11 
12 #include <linux/moduleloader.h>
13 #include <linux/kprobes.h>
14 #include <linux/ptrace.h>
15 #include <linux/preempt.h>
16 #include <linux/stop_machine.h>
17 #include <linux/kdebug.h>
18 #include <linux/uaccess.h>
19 #include <linux/extable.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/hardirq.h>
23 #include <linux/ftrace.h>
24 #include <asm/set_memory.h>
25 #include <asm/sections.h>
26 #include <asm/dis.h>
27 #include "entry.h"
28 
29 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
30 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
31 
32 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
33 
34 DEFINE_INSN_CACHE_OPS(s390_insn);
35 
36 static int insn_page_in_use;
37 
38 void *alloc_insn_page(void)
39 {
40 	void *page;
41 
42 	page = module_alloc(PAGE_SIZE);
43 	if (!page)
44 		return NULL;
45 	__set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X);
46 	return page;
47 }
48 
49 static void *alloc_s390_insn_page(void)
50 {
51 	if (xchg(&insn_page_in_use, 1) == 1)
52 		return NULL;
53 	return &kprobes_insn_page;
54 }
55 
56 static void free_s390_insn_page(void *page)
57 {
58 	xchg(&insn_page_in_use, 0);
59 }
60 
61 struct kprobe_insn_cache kprobe_s390_insn_slots = {
62 	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
63 	.alloc = alloc_s390_insn_page,
64 	.free = free_s390_insn_page,
65 	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
66 	.insn_size = MAX_INSN_SIZE,
67 };
68 
69 static void copy_instruction(struct kprobe *p)
70 {
71 	kprobe_opcode_t insn[MAX_INSN_SIZE];
72 	s64 disp, new_disp;
73 	u64 addr, new_addr;
74 	unsigned int len;
75 
76 	len = insn_length(*p->addr >> 8);
77 	memcpy(&insn, p->addr, len);
78 	p->opcode = insn[0];
79 	if (probe_is_insn_relative_long(&insn[0])) {
80 		/*
81 		 * For pc-relative instructions in RIL-b or RIL-c format patch
82 		 * the RI2 displacement field. We have already made sure that
83 		 * the insn slot for the patched instruction is within the same
84 		 * 2GB area as the original instruction (either kernel image or
85 		 * module area). Therefore the new displacement will always fit.
86 		 */
87 		disp = *(s32 *)&insn[1];
88 		addr = (u64)(unsigned long)p->addr;
89 		new_addr = (u64)(unsigned long)p->ainsn.insn;
90 		new_disp = ((addr + (disp * 2)) - new_addr) / 2;
91 		*(s32 *)&insn[1] = new_disp;
92 	}
93 	s390_kernel_write(p->ainsn.insn, &insn, len);
94 }
95 NOKPROBE_SYMBOL(copy_instruction);
96 
97 static int s390_get_insn_slot(struct kprobe *p)
98 {
99 	/*
100 	 * Get an insn slot that is within the same 2GB area like the original
101 	 * instruction. That way instructions with a 32bit signed displacement
102 	 * field can be patched and executed within the insn slot.
103 	 */
104 	p->ainsn.insn = NULL;
105 	if (is_kernel((unsigned long)p->addr))
106 		p->ainsn.insn = get_s390_insn_slot();
107 	else if (is_module_addr(p->addr))
108 		p->ainsn.insn = get_insn_slot();
109 	return p->ainsn.insn ? 0 : -ENOMEM;
110 }
111 NOKPROBE_SYMBOL(s390_get_insn_slot);
112 
113 static void s390_free_insn_slot(struct kprobe *p)
114 {
115 	if (!p->ainsn.insn)
116 		return;
117 	if (is_kernel((unsigned long)p->addr))
118 		free_s390_insn_slot(p->ainsn.insn, 0);
119 	else
120 		free_insn_slot(p->ainsn.insn, 0);
121 	p->ainsn.insn = NULL;
122 }
123 NOKPROBE_SYMBOL(s390_free_insn_slot);
124 
125 int arch_prepare_kprobe(struct kprobe *p)
126 {
127 	if ((unsigned long) p->addr & 0x01)
128 		return -EINVAL;
129 	/* Make sure the probe isn't going on a difficult instruction */
130 	if (probe_is_prohibited_opcode(p->addr))
131 		return -EINVAL;
132 	if (s390_get_insn_slot(p))
133 		return -ENOMEM;
134 	copy_instruction(p);
135 	return 0;
136 }
137 NOKPROBE_SYMBOL(arch_prepare_kprobe);
138 
139 struct swap_insn_args {
140 	struct kprobe *p;
141 	unsigned int arm_kprobe : 1;
142 };
143 
144 static int swap_instruction(void *data)
145 {
146 	struct swap_insn_args *args = data;
147 	struct kprobe *p = args->p;
148 	u16 opc;
149 
150 	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
151 	s390_kernel_write(p->addr, &opc, sizeof(opc));
152 	return 0;
153 }
154 NOKPROBE_SYMBOL(swap_instruction);
155 
156 void arch_arm_kprobe(struct kprobe *p)
157 {
158 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
159 
160 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
161 }
162 NOKPROBE_SYMBOL(arch_arm_kprobe);
163 
164 void arch_disarm_kprobe(struct kprobe *p)
165 {
166 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
167 
168 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
169 }
170 NOKPROBE_SYMBOL(arch_disarm_kprobe);
171 
172 void arch_remove_kprobe(struct kprobe *p)
173 {
174 	s390_free_insn_slot(p);
175 }
176 NOKPROBE_SYMBOL(arch_remove_kprobe);
177 
178 static void enable_singlestep(struct kprobe_ctlblk *kcb,
179 			      struct pt_regs *regs,
180 			      unsigned long ip)
181 {
182 	struct per_regs per_kprobe;
183 
184 	/* Set up the PER control registers %cr9-%cr11 */
185 	per_kprobe.control = PER_EVENT_IFETCH;
186 	per_kprobe.start = ip;
187 	per_kprobe.end = ip;
188 
189 	/* Save control regs and psw mask */
190 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
191 	kcb->kprobe_saved_imask = regs->psw.mask &
192 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
193 
194 	/* Set PER control regs, turns on single step for the given address */
195 	__ctl_load(per_kprobe, 9, 11);
196 	regs->psw.mask |= PSW_MASK_PER;
197 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
198 	regs->psw.addr = ip;
199 }
200 NOKPROBE_SYMBOL(enable_singlestep);
201 
202 static void disable_singlestep(struct kprobe_ctlblk *kcb,
203 			       struct pt_regs *regs,
204 			       unsigned long ip)
205 {
206 	/* Restore control regs and psw mask, set new psw address */
207 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
208 	regs->psw.mask &= ~PSW_MASK_PER;
209 	regs->psw.mask |= kcb->kprobe_saved_imask;
210 	regs->psw.addr = ip;
211 }
212 NOKPROBE_SYMBOL(disable_singlestep);
213 
214 /*
215  * Activate a kprobe by storing its pointer to current_kprobe. The
216  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
217  * two kprobes can be active, see KPROBE_REENTER.
218  */
219 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
220 {
221 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
222 	kcb->prev_kprobe.status = kcb->kprobe_status;
223 	__this_cpu_write(current_kprobe, p);
224 }
225 NOKPROBE_SYMBOL(push_kprobe);
226 
227 /*
228  * Deactivate a kprobe by backing up to the previous state. If the
229  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
230  * for any other state prev_kprobe.kp will be NULL.
231  */
232 static void pop_kprobe(struct kprobe_ctlblk *kcb)
233 {
234 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
235 	kcb->kprobe_status = kcb->prev_kprobe.status;
236 }
237 NOKPROBE_SYMBOL(pop_kprobe);
238 
239 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
240 {
241 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
242 	ri->fp = NULL;
243 
244 	/* Replace the return addr with trampoline addr */
245 	regs->gprs[14] = (unsigned long) &__kretprobe_trampoline;
246 }
247 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
248 
249 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
250 {
251 	switch (kcb->kprobe_status) {
252 	case KPROBE_HIT_SSDONE:
253 	case KPROBE_HIT_ACTIVE:
254 		kprobes_inc_nmissed_count(p);
255 		break;
256 	case KPROBE_HIT_SS:
257 	case KPROBE_REENTER:
258 	default:
259 		/*
260 		 * A kprobe on the code path to single step an instruction
261 		 * is a BUG. The code path resides in the .kprobes.text
262 		 * section and is executed with interrupts disabled.
263 		 */
264 		pr_err("Failed to recover from reentered kprobes.\n");
265 		dump_kprobe(p);
266 		BUG();
267 	}
268 }
269 NOKPROBE_SYMBOL(kprobe_reenter_check);
270 
271 static int kprobe_handler(struct pt_regs *regs)
272 {
273 	struct kprobe_ctlblk *kcb;
274 	struct kprobe *p;
275 
276 	/*
277 	 * We want to disable preemption for the entire duration of kprobe
278 	 * processing. That includes the calls to the pre/post handlers
279 	 * and single stepping the kprobe instruction.
280 	 */
281 	preempt_disable();
282 	kcb = get_kprobe_ctlblk();
283 	p = get_kprobe((void *)(regs->psw.addr - 2));
284 
285 	if (p) {
286 		if (kprobe_running()) {
287 			/*
288 			 * We have hit a kprobe while another is still
289 			 * active. This can happen in the pre and post
290 			 * handler. Single step the instruction of the
291 			 * new probe but do not call any handler function
292 			 * of this secondary kprobe.
293 			 * push_kprobe and pop_kprobe saves and restores
294 			 * the currently active kprobe.
295 			 */
296 			kprobe_reenter_check(kcb, p);
297 			push_kprobe(kcb, p);
298 			kcb->kprobe_status = KPROBE_REENTER;
299 		} else {
300 			/*
301 			 * If we have no pre-handler or it returned 0, we
302 			 * continue with single stepping. If we have a
303 			 * pre-handler and it returned non-zero, it prepped
304 			 * for changing execution path, so get out doing
305 			 * nothing more here.
306 			 */
307 			push_kprobe(kcb, p);
308 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
309 			if (p->pre_handler && p->pre_handler(p, regs)) {
310 				pop_kprobe(kcb);
311 				preempt_enable_no_resched();
312 				return 1;
313 			}
314 			kcb->kprobe_status = KPROBE_HIT_SS;
315 		}
316 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
317 		return 1;
318 	} /* else:
319 	   * No kprobe at this address and no active kprobe. The trap has
320 	   * not been caused by a kprobe breakpoint. The race of breakpoint
321 	   * vs. kprobe remove does not exist because on s390 as we use
322 	   * stop_machine to arm/disarm the breakpoints.
323 	   */
324 	preempt_enable_no_resched();
325 	return 0;
326 }
327 NOKPROBE_SYMBOL(kprobe_handler);
328 
329 /*
330  * Function return probe trampoline:
331  *	- init_kprobes() establishes a probepoint here
332  *	- When the probed function returns, this probe
333  *		causes the handlers to fire
334  */
335 static void __used kretprobe_trampoline_holder(void)
336 {
337 	asm volatile(".global __kretprobe_trampoline\n"
338 		     "__kretprobe_trampoline: bcr 0,0\n");
339 }
340 
341 /*
342  * Called when the probe at kretprobe trampoline is hit
343  */
344 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
345 {
346 	regs->psw.addr = __kretprobe_trampoline_handler(regs, NULL);
347 	/*
348 	 * By returning a non-zero value, we are telling
349 	 * kprobe_handler() that we don't want the post_handler
350 	 * to run (and have re-enabled preemption)
351 	 */
352 	return 1;
353 }
354 NOKPROBE_SYMBOL(trampoline_probe_handler);
355 
356 /*
357  * Called after single-stepping.  p->addr is the address of the
358  * instruction whose first byte has been replaced by the "breakpoint"
359  * instruction.  To avoid the SMP problems that can occur when we
360  * temporarily put back the original opcode to single-step, we
361  * single-stepped a copy of the instruction.  The address of this
362  * copy is p->ainsn.insn.
363  */
364 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
365 {
366 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
367 	unsigned long ip = regs->psw.addr;
368 	int fixup = probe_get_fixup_type(p->ainsn.insn);
369 
370 	if (fixup & FIXUP_PSW_NORMAL)
371 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
372 
373 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
374 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
375 		if (ip - (unsigned long) p->ainsn.insn == ilen)
376 			ip = (unsigned long) p->addr + ilen;
377 	}
378 
379 	if (fixup & FIXUP_RETURN_REGISTER) {
380 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
381 		regs->gprs[reg] += (unsigned long) p->addr -
382 				   (unsigned long) p->ainsn.insn;
383 	}
384 
385 	disable_singlestep(kcb, regs, ip);
386 }
387 NOKPROBE_SYMBOL(resume_execution);
388 
389 static int post_kprobe_handler(struct pt_regs *regs)
390 {
391 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
392 	struct kprobe *p = kprobe_running();
393 
394 	if (!p)
395 		return 0;
396 
397 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
398 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
399 		p->post_handler(p, regs, 0);
400 	}
401 
402 	resume_execution(p, regs);
403 	pop_kprobe(kcb);
404 	preempt_enable_no_resched();
405 
406 	/*
407 	 * if somebody else is singlestepping across a probe point, psw mask
408 	 * will have PER set, in which case, continue the remaining processing
409 	 * of do_single_step, as if this is not a probe hit.
410 	 */
411 	if (regs->psw.mask & PSW_MASK_PER)
412 		return 0;
413 
414 	return 1;
415 }
416 NOKPROBE_SYMBOL(post_kprobe_handler);
417 
418 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
419 {
420 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
421 	struct kprobe *p = kprobe_running();
422 	const struct exception_table_entry *entry;
423 
424 	switch(kcb->kprobe_status) {
425 	case KPROBE_HIT_SS:
426 	case KPROBE_REENTER:
427 		/*
428 		 * We are here because the instruction being single
429 		 * stepped caused a page fault. We reset the current
430 		 * kprobe and the nip points back to the probe address
431 		 * and allow the page fault handler to continue as a
432 		 * normal page fault.
433 		 */
434 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
435 		pop_kprobe(kcb);
436 		preempt_enable_no_resched();
437 		break;
438 	case KPROBE_HIT_ACTIVE:
439 	case KPROBE_HIT_SSDONE:
440 		/*
441 		 * In case the user-specified fault handler returned
442 		 * zero, try to fix up.
443 		 */
444 		entry = s390_search_extables(regs->psw.addr);
445 		if (entry && ex_handle(entry, regs))
446 			return 1;
447 
448 		/*
449 		 * fixup_exception() could not handle it,
450 		 * Let do_page_fault() fix it.
451 		 */
452 		break;
453 	default:
454 		break;
455 	}
456 	return 0;
457 }
458 NOKPROBE_SYMBOL(kprobe_trap_handler);
459 
460 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
461 {
462 	int ret;
463 
464 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
465 		local_irq_disable();
466 	ret = kprobe_trap_handler(regs, trapnr);
467 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
468 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
469 	return ret;
470 }
471 NOKPROBE_SYMBOL(kprobe_fault_handler);
472 
473 /*
474  * Wrapper routine to for handling exceptions.
475  */
476 int kprobe_exceptions_notify(struct notifier_block *self,
477 			     unsigned long val, void *data)
478 {
479 	struct die_args *args = (struct die_args *) data;
480 	struct pt_regs *regs = args->regs;
481 	int ret = NOTIFY_DONE;
482 
483 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
484 		local_irq_disable();
485 
486 	switch (val) {
487 	case DIE_BPT:
488 		if (kprobe_handler(regs))
489 			ret = NOTIFY_STOP;
490 		break;
491 	case DIE_SSTEP:
492 		if (post_kprobe_handler(regs))
493 			ret = NOTIFY_STOP;
494 		break;
495 	case DIE_TRAP:
496 		if (!preemptible() && kprobe_running() &&
497 		    kprobe_trap_handler(regs, args->trapnr))
498 			ret = NOTIFY_STOP;
499 		break;
500 	default:
501 		break;
502 	}
503 
504 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
505 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
506 
507 	return ret;
508 }
509 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
510 
511 static struct kprobe trampoline = {
512 	.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
513 	.pre_handler = trampoline_probe_handler
514 };
515 
516 int __init arch_init_kprobes(void)
517 {
518 	return register_kprobe(&trampoline);
519 }
520 
521 int arch_trampoline_kprobe(struct kprobe *p)
522 {
523 	return p->addr == (kprobe_opcode_t *) &__kretprobe_trampoline;
524 }
525 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
526