1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright IBM Corp. 2002, 2006 6 * 7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 8 */ 9 10 #define pr_fmt(fmt) "kprobes: " fmt 11 12 #include <linux/moduleloader.h> 13 #include <linux/kprobes.h> 14 #include <linux/ptrace.h> 15 #include <linux/preempt.h> 16 #include <linux/stop_machine.h> 17 #include <linux/kdebug.h> 18 #include <linux/uaccess.h> 19 #include <linux/extable.h> 20 #include <linux/module.h> 21 #include <linux/slab.h> 22 #include <linux/hardirq.h> 23 #include <linux/ftrace.h> 24 #include <asm/set_memory.h> 25 #include <asm/sections.h> 26 #include <asm/dis.h> 27 #include "entry.h" 28 29 DEFINE_PER_CPU(struct kprobe *, current_kprobe); 30 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 31 32 struct kretprobe_blackpoint kretprobe_blacklist[] = { }; 33 34 DEFINE_INSN_CACHE_OPS(s390_insn); 35 36 static int insn_page_in_use; 37 38 void *alloc_insn_page(void) 39 { 40 void *page; 41 42 page = module_alloc(PAGE_SIZE); 43 if (!page) 44 return NULL; 45 __set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X); 46 return page; 47 } 48 49 static void *alloc_s390_insn_page(void) 50 { 51 if (xchg(&insn_page_in_use, 1) == 1) 52 return NULL; 53 return &kprobes_insn_page; 54 } 55 56 static void free_s390_insn_page(void *page) 57 { 58 xchg(&insn_page_in_use, 0); 59 } 60 61 struct kprobe_insn_cache kprobe_s390_insn_slots = { 62 .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex), 63 .alloc = alloc_s390_insn_page, 64 .free = free_s390_insn_page, 65 .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages), 66 .insn_size = MAX_INSN_SIZE, 67 }; 68 69 static void copy_instruction(struct kprobe *p) 70 { 71 kprobe_opcode_t insn[MAX_INSN_SIZE]; 72 s64 disp, new_disp; 73 u64 addr, new_addr; 74 unsigned int len; 75 76 len = insn_length(*p->addr >> 8); 77 memcpy(&insn, p->addr, len); 78 p->opcode = insn[0]; 79 if (probe_is_insn_relative_long(&insn[0])) { 80 /* 81 * For pc-relative instructions in RIL-b or RIL-c format patch 82 * the RI2 displacement field. We have already made sure that 83 * the insn slot for the patched instruction is within the same 84 * 2GB area as the original instruction (either kernel image or 85 * module area). Therefore the new displacement will always fit. 86 */ 87 disp = *(s32 *)&insn[1]; 88 addr = (u64)(unsigned long)p->addr; 89 new_addr = (u64)(unsigned long)p->ainsn.insn; 90 new_disp = ((addr + (disp * 2)) - new_addr) / 2; 91 *(s32 *)&insn[1] = new_disp; 92 } 93 s390_kernel_write(p->ainsn.insn, &insn, len); 94 } 95 NOKPROBE_SYMBOL(copy_instruction); 96 97 static int s390_get_insn_slot(struct kprobe *p) 98 { 99 /* 100 * Get an insn slot that is within the same 2GB area like the original 101 * instruction. That way instructions with a 32bit signed displacement 102 * field can be patched and executed within the insn slot. 103 */ 104 p->ainsn.insn = NULL; 105 if (is_kernel((unsigned long)p->addr)) 106 p->ainsn.insn = get_s390_insn_slot(); 107 else if (is_module_addr(p->addr)) 108 p->ainsn.insn = get_insn_slot(); 109 return p->ainsn.insn ? 0 : -ENOMEM; 110 } 111 NOKPROBE_SYMBOL(s390_get_insn_slot); 112 113 static void s390_free_insn_slot(struct kprobe *p) 114 { 115 if (!p->ainsn.insn) 116 return; 117 if (is_kernel((unsigned long)p->addr)) 118 free_s390_insn_slot(p->ainsn.insn, 0); 119 else 120 free_insn_slot(p->ainsn.insn, 0); 121 p->ainsn.insn = NULL; 122 } 123 NOKPROBE_SYMBOL(s390_free_insn_slot); 124 125 int arch_prepare_kprobe(struct kprobe *p) 126 { 127 if ((unsigned long) p->addr & 0x01) 128 return -EINVAL; 129 /* Make sure the probe isn't going on a difficult instruction */ 130 if (probe_is_prohibited_opcode(p->addr)) 131 return -EINVAL; 132 if (s390_get_insn_slot(p)) 133 return -ENOMEM; 134 copy_instruction(p); 135 return 0; 136 } 137 NOKPROBE_SYMBOL(arch_prepare_kprobe); 138 139 struct swap_insn_args { 140 struct kprobe *p; 141 unsigned int arm_kprobe : 1; 142 }; 143 144 static int swap_instruction(void *data) 145 { 146 struct swap_insn_args *args = data; 147 struct kprobe *p = args->p; 148 u16 opc; 149 150 opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode; 151 s390_kernel_write(p->addr, &opc, sizeof(opc)); 152 return 0; 153 } 154 NOKPROBE_SYMBOL(swap_instruction); 155 156 void arch_arm_kprobe(struct kprobe *p) 157 { 158 struct swap_insn_args args = {.p = p, .arm_kprobe = 1}; 159 160 stop_machine_cpuslocked(swap_instruction, &args, NULL); 161 } 162 NOKPROBE_SYMBOL(arch_arm_kprobe); 163 164 void arch_disarm_kprobe(struct kprobe *p) 165 { 166 struct swap_insn_args args = {.p = p, .arm_kprobe = 0}; 167 168 stop_machine_cpuslocked(swap_instruction, &args, NULL); 169 } 170 NOKPROBE_SYMBOL(arch_disarm_kprobe); 171 172 void arch_remove_kprobe(struct kprobe *p) 173 { 174 s390_free_insn_slot(p); 175 } 176 NOKPROBE_SYMBOL(arch_remove_kprobe); 177 178 static void enable_singlestep(struct kprobe_ctlblk *kcb, 179 struct pt_regs *regs, 180 unsigned long ip) 181 { 182 struct per_regs per_kprobe; 183 184 /* Set up the PER control registers %cr9-%cr11 */ 185 per_kprobe.control = PER_EVENT_IFETCH; 186 per_kprobe.start = ip; 187 per_kprobe.end = ip; 188 189 /* Save control regs and psw mask */ 190 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 191 kcb->kprobe_saved_imask = regs->psw.mask & 192 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); 193 194 /* Set PER control regs, turns on single step for the given address */ 195 __ctl_load(per_kprobe, 9, 11); 196 regs->psw.mask |= PSW_MASK_PER; 197 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 198 regs->psw.addr = ip; 199 } 200 NOKPROBE_SYMBOL(enable_singlestep); 201 202 static void disable_singlestep(struct kprobe_ctlblk *kcb, 203 struct pt_regs *regs, 204 unsigned long ip) 205 { 206 /* Restore control regs and psw mask, set new psw address */ 207 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 208 regs->psw.mask &= ~PSW_MASK_PER; 209 regs->psw.mask |= kcb->kprobe_saved_imask; 210 regs->psw.addr = ip; 211 } 212 NOKPROBE_SYMBOL(disable_singlestep); 213 214 /* 215 * Activate a kprobe by storing its pointer to current_kprobe. The 216 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to 217 * two kprobes can be active, see KPROBE_REENTER. 218 */ 219 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) 220 { 221 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe); 222 kcb->prev_kprobe.status = kcb->kprobe_status; 223 __this_cpu_write(current_kprobe, p); 224 } 225 NOKPROBE_SYMBOL(push_kprobe); 226 227 /* 228 * Deactivate a kprobe by backing up to the previous state. If the 229 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, 230 * for any other state prev_kprobe.kp will be NULL. 231 */ 232 static void pop_kprobe(struct kprobe_ctlblk *kcb) 233 { 234 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 235 kcb->kprobe_status = kcb->prev_kprobe.status; 236 } 237 NOKPROBE_SYMBOL(pop_kprobe); 238 239 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 240 { 241 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; 242 ri->fp = NULL; 243 244 /* Replace the return addr with trampoline addr */ 245 regs->gprs[14] = (unsigned long) &__kretprobe_trampoline; 246 } 247 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 248 249 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p) 250 { 251 switch (kcb->kprobe_status) { 252 case KPROBE_HIT_SSDONE: 253 case KPROBE_HIT_ACTIVE: 254 kprobes_inc_nmissed_count(p); 255 break; 256 case KPROBE_HIT_SS: 257 case KPROBE_REENTER: 258 default: 259 /* 260 * A kprobe on the code path to single step an instruction 261 * is a BUG. The code path resides in the .kprobes.text 262 * section and is executed with interrupts disabled. 263 */ 264 pr_err("Failed to recover from reentered kprobes.\n"); 265 dump_kprobe(p); 266 BUG(); 267 } 268 } 269 NOKPROBE_SYMBOL(kprobe_reenter_check); 270 271 static int kprobe_handler(struct pt_regs *regs) 272 { 273 struct kprobe_ctlblk *kcb; 274 struct kprobe *p; 275 276 /* 277 * We want to disable preemption for the entire duration of kprobe 278 * processing. That includes the calls to the pre/post handlers 279 * and single stepping the kprobe instruction. 280 */ 281 preempt_disable(); 282 kcb = get_kprobe_ctlblk(); 283 p = get_kprobe((void *)(regs->psw.addr - 2)); 284 285 if (p) { 286 if (kprobe_running()) { 287 /* 288 * We have hit a kprobe while another is still 289 * active. This can happen in the pre and post 290 * handler. Single step the instruction of the 291 * new probe but do not call any handler function 292 * of this secondary kprobe. 293 * push_kprobe and pop_kprobe saves and restores 294 * the currently active kprobe. 295 */ 296 kprobe_reenter_check(kcb, p); 297 push_kprobe(kcb, p); 298 kcb->kprobe_status = KPROBE_REENTER; 299 } else { 300 /* 301 * If we have no pre-handler or it returned 0, we 302 * continue with single stepping. If we have a 303 * pre-handler and it returned non-zero, it prepped 304 * for changing execution path, so get out doing 305 * nothing more here. 306 */ 307 push_kprobe(kcb, p); 308 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 309 if (p->pre_handler && p->pre_handler(p, regs)) { 310 pop_kprobe(kcb); 311 preempt_enable_no_resched(); 312 return 1; 313 } 314 kcb->kprobe_status = KPROBE_HIT_SS; 315 } 316 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); 317 return 1; 318 } /* else: 319 * No kprobe at this address and no active kprobe. The trap has 320 * not been caused by a kprobe breakpoint. The race of breakpoint 321 * vs. kprobe remove does not exist because on s390 as we use 322 * stop_machine to arm/disarm the breakpoints. 323 */ 324 preempt_enable_no_resched(); 325 return 0; 326 } 327 NOKPROBE_SYMBOL(kprobe_handler); 328 329 /* 330 * Function return probe trampoline: 331 * - init_kprobes() establishes a probepoint here 332 * - When the probed function returns, this probe 333 * causes the handlers to fire 334 */ 335 static void __used kretprobe_trampoline_holder(void) 336 { 337 asm volatile(".global __kretprobe_trampoline\n" 338 "__kretprobe_trampoline: bcr 0,0\n"); 339 } 340 341 /* 342 * Called when the probe at kretprobe trampoline is hit 343 */ 344 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 345 { 346 regs->psw.addr = __kretprobe_trampoline_handler(regs, NULL); 347 /* 348 * By returning a non-zero value, we are telling 349 * kprobe_handler() that we don't want the post_handler 350 * to run (and have re-enabled preemption) 351 */ 352 return 1; 353 } 354 NOKPROBE_SYMBOL(trampoline_probe_handler); 355 356 /* 357 * Called after single-stepping. p->addr is the address of the 358 * instruction whose first byte has been replaced by the "breakpoint" 359 * instruction. To avoid the SMP problems that can occur when we 360 * temporarily put back the original opcode to single-step, we 361 * single-stepped a copy of the instruction. The address of this 362 * copy is p->ainsn.insn. 363 */ 364 static void resume_execution(struct kprobe *p, struct pt_regs *regs) 365 { 366 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 367 unsigned long ip = regs->psw.addr; 368 int fixup = probe_get_fixup_type(p->ainsn.insn); 369 370 if (fixup & FIXUP_PSW_NORMAL) 371 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; 372 373 if (fixup & FIXUP_BRANCH_NOT_TAKEN) { 374 int ilen = insn_length(p->ainsn.insn[0] >> 8); 375 if (ip - (unsigned long) p->ainsn.insn == ilen) 376 ip = (unsigned long) p->addr + ilen; 377 } 378 379 if (fixup & FIXUP_RETURN_REGISTER) { 380 int reg = (p->ainsn.insn[0] & 0xf0) >> 4; 381 regs->gprs[reg] += (unsigned long) p->addr - 382 (unsigned long) p->ainsn.insn; 383 } 384 385 disable_singlestep(kcb, regs, ip); 386 } 387 NOKPROBE_SYMBOL(resume_execution); 388 389 static int post_kprobe_handler(struct pt_regs *regs) 390 { 391 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 392 struct kprobe *p = kprobe_running(); 393 394 if (!p) 395 return 0; 396 397 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { 398 kcb->kprobe_status = KPROBE_HIT_SSDONE; 399 p->post_handler(p, regs, 0); 400 } 401 402 resume_execution(p, regs); 403 pop_kprobe(kcb); 404 preempt_enable_no_resched(); 405 406 /* 407 * if somebody else is singlestepping across a probe point, psw mask 408 * will have PER set, in which case, continue the remaining processing 409 * of do_single_step, as if this is not a probe hit. 410 */ 411 if (regs->psw.mask & PSW_MASK_PER) 412 return 0; 413 414 return 1; 415 } 416 NOKPROBE_SYMBOL(post_kprobe_handler); 417 418 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr) 419 { 420 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 421 struct kprobe *p = kprobe_running(); 422 const struct exception_table_entry *entry; 423 424 switch(kcb->kprobe_status) { 425 case KPROBE_HIT_SS: 426 case KPROBE_REENTER: 427 /* 428 * We are here because the instruction being single 429 * stepped caused a page fault. We reset the current 430 * kprobe and the nip points back to the probe address 431 * and allow the page fault handler to continue as a 432 * normal page fault. 433 */ 434 disable_singlestep(kcb, regs, (unsigned long) p->addr); 435 pop_kprobe(kcb); 436 preempt_enable_no_resched(); 437 break; 438 case KPROBE_HIT_ACTIVE: 439 case KPROBE_HIT_SSDONE: 440 /* 441 * In case the user-specified fault handler returned 442 * zero, try to fix up. 443 */ 444 entry = s390_search_extables(regs->psw.addr); 445 if (entry && ex_handle(entry, regs)) 446 return 1; 447 448 /* 449 * fixup_exception() could not handle it, 450 * Let do_page_fault() fix it. 451 */ 452 break; 453 default: 454 break; 455 } 456 return 0; 457 } 458 NOKPROBE_SYMBOL(kprobe_trap_handler); 459 460 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 461 { 462 int ret; 463 464 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 465 local_irq_disable(); 466 ret = kprobe_trap_handler(regs, trapnr); 467 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 468 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 469 return ret; 470 } 471 NOKPROBE_SYMBOL(kprobe_fault_handler); 472 473 /* 474 * Wrapper routine to for handling exceptions. 475 */ 476 int kprobe_exceptions_notify(struct notifier_block *self, 477 unsigned long val, void *data) 478 { 479 struct die_args *args = (struct die_args *) data; 480 struct pt_regs *regs = args->regs; 481 int ret = NOTIFY_DONE; 482 483 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 484 local_irq_disable(); 485 486 switch (val) { 487 case DIE_BPT: 488 if (kprobe_handler(regs)) 489 ret = NOTIFY_STOP; 490 break; 491 case DIE_SSTEP: 492 if (post_kprobe_handler(regs)) 493 ret = NOTIFY_STOP; 494 break; 495 case DIE_TRAP: 496 if (!preemptible() && kprobe_running() && 497 kprobe_trap_handler(regs, args->trapnr)) 498 ret = NOTIFY_STOP; 499 break; 500 default: 501 break; 502 } 503 504 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 505 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 506 507 return ret; 508 } 509 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 510 511 static struct kprobe trampoline = { 512 .addr = (kprobe_opcode_t *) &__kretprobe_trampoline, 513 .pre_handler = trampoline_probe_handler 514 }; 515 516 int __init arch_init_kprobes(void) 517 { 518 return register_kprobe(&trampoline); 519 } 520 521 int arch_trampoline_kprobe(struct kprobe *p) 522 { 523 return p->addr == (kprobe_opcode_t *) &__kretprobe_trampoline; 524 } 525 NOKPROBE_SYMBOL(arch_trampoline_kprobe); 526