xref: /linux/arch/s390/kernel/ftrace.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Dynamic function tracer architecture backend.
3  *
4  * Copyright IBM Corp. 2009,2014
5  *
6  *   Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>,
7  *		Martin Schwidefsky <schwidefsky@de.ibm.com>
8  */
9 
10 #include <linux/moduleloader.h>
11 #include <linux/hardirq.h>
12 #include <linux/uaccess.h>
13 #include <linux/ftrace.h>
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/kprobes.h>
17 #include <trace/syscall.h>
18 #include <asm/asm-offsets.h>
19 #include <asm/cacheflush.h>
20 #include <asm/set_memory.h>
21 #include "entry.h"
22 
23 /*
24  * The mcount code looks like this:
25  *	stg	%r14,8(%r15)		# offset 0
26  *	larl	%r1,<&counter>		# offset 6
27  *	brasl	%r14,_mcount		# offset 12
28  *	lg	%r14,8(%r15)		# offset 18
29  * Total length is 24 bytes. Only the first instruction will be patched
30  * by ftrace_make_call / ftrace_make_nop.
31  * The enabled ftrace code block looks like this:
32  * >	brasl	%r0,ftrace_caller	# offset 0
33  *	larl	%r1,<&counter>		# offset 6
34  *	brasl	%r14,_mcount		# offset 12
35  *	lg	%r14,8(%r15)		# offset 18
36  * The ftrace function gets called with a non-standard C function call ABI
37  * where r0 contains the return address. It is also expected that the called
38  * function only clobbers r0 and r1, but restores r2-r15.
39  * For module code we can't directly jump to ftrace caller, but need a
40  * trampoline (ftrace_plt), which clobbers also r1.
41  * The return point of the ftrace function has offset 24, so execution
42  * continues behind the mcount block.
43  * The disabled ftrace code block looks like this:
44  * >	jg	.+24			# offset 0
45  *	larl	%r1,<&counter>		# offset 6
46  *	brasl	%r14,_mcount		# offset 12
47  *	lg	%r14,8(%r15)		# offset 18
48  * The jg instruction branches to offset 24 to skip as many instructions
49  * as possible.
50  * In case we use gcc's hotpatch feature the original and also the disabled
51  * function prologue contains only a single six byte instruction and looks
52  * like this:
53  * >	brcl	0,0			# offset 0
54  * To enable ftrace the code gets patched like above and afterwards looks
55  * like this:
56  * >	brasl	%r0,ftrace_caller	# offset 0
57  */
58 
59 unsigned long ftrace_plt;
60 
61 static inline void ftrace_generate_orig_insn(struct ftrace_insn *insn)
62 {
63 #ifdef CC_USING_HOTPATCH
64 	/* brcl 0,0 */
65 	insn->opc = 0xc004;
66 	insn->disp = 0;
67 #else
68 	/* stg r14,8(r15) */
69 	insn->opc = 0xe3e0;
70 	insn->disp = 0xf0080024;
71 #endif
72 }
73 
74 static inline int is_kprobe_on_ftrace(struct ftrace_insn *insn)
75 {
76 #ifdef CONFIG_KPROBES
77 	if (insn->opc == BREAKPOINT_INSTRUCTION)
78 		return 1;
79 #endif
80 	return 0;
81 }
82 
83 static inline void ftrace_generate_kprobe_nop_insn(struct ftrace_insn *insn)
84 {
85 #ifdef CONFIG_KPROBES
86 	insn->opc = BREAKPOINT_INSTRUCTION;
87 	insn->disp = KPROBE_ON_FTRACE_NOP;
88 #endif
89 }
90 
91 static inline void ftrace_generate_kprobe_call_insn(struct ftrace_insn *insn)
92 {
93 #ifdef CONFIG_KPROBES
94 	insn->opc = BREAKPOINT_INSTRUCTION;
95 	insn->disp = KPROBE_ON_FTRACE_CALL;
96 #endif
97 }
98 
99 int ftrace_modify_call(struct dyn_ftrace *rec, unsigned long old_addr,
100 		       unsigned long addr)
101 {
102 	return 0;
103 }
104 
105 int ftrace_make_nop(struct module *mod, struct dyn_ftrace *rec,
106 		    unsigned long addr)
107 {
108 	struct ftrace_insn orig, new, old;
109 
110 	if (probe_kernel_read(&old, (void *) rec->ip, sizeof(old)))
111 		return -EFAULT;
112 	if (addr == MCOUNT_ADDR) {
113 		/* Initial code replacement */
114 		ftrace_generate_orig_insn(&orig);
115 		ftrace_generate_nop_insn(&new);
116 	} else if (is_kprobe_on_ftrace(&old)) {
117 		/*
118 		 * If we find a breakpoint instruction, a kprobe has been
119 		 * placed at the beginning of the function. We write the
120 		 * constant KPROBE_ON_FTRACE_NOP into the remaining four
121 		 * bytes of the original instruction so that the kprobes
122 		 * handler can execute a nop, if it reaches this breakpoint.
123 		 */
124 		ftrace_generate_kprobe_call_insn(&orig);
125 		ftrace_generate_kprobe_nop_insn(&new);
126 	} else {
127 		/* Replace ftrace call with a nop. */
128 		ftrace_generate_call_insn(&orig, rec->ip);
129 		ftrace_generate_nop_insn(&new);
130 	}
131 	/* Verify that the to be replaced code matches what we expect. */
132 	if (memcmp(&orig, &old, sizeof(old)))
133 		return -EINVAL;
134 	s390_kernel_write((void *) rec->ip, &new, sizeof(new));
135 	return 0;
136 }
137 
138 int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
139 {
140 	struct ftrace_insn orig, new, old;
141 
142 	if (probe_kernel_read(&old, (void *) rec->ip, sizeof(old)))
143 		return -EFAULT;
144 	if (is_kprobe_on_ftrace(&old)) {
145 		/*
146 		 * If we find a breakpoint instruction, a kprobe has been
147 		 * placed at the beginning of the function. We write the
148 		 * constant KPROBE_ON_FTRACE_CALL into the remaining four
149 		 * bytes of the original instruction so that the kprobes
150 		 * handler can execute a brasl if it reaches this breakpoint.
151 		 */
152 		ftrace_generate_kprobe_nop_insn(&orig);
153 		ftrace_generate_kprobe_call_insn(&new);
154 	} else {
155 		/* Replace nop with an ftrace call. */
156 		ftrace_generate_nop_insn(&orig);
157 		ftrace_generate_call_insn(&new, rec->ip);
158 	}
159 	/* Verify that the to be replaced code matches what we expect. */
160 	if (memcmp(&orig, &old, sizeof(old)))
161 		return -EINVAL;
162 	s390_kernel_write((void *) rec->ip, &new, sizeof(new));
163 	return 0;
164 }
165 
166 int ftrace_update_ftrace_func(ftrace_func_t func)
167 {
168 	return 0;
169 }
170 
171 int __init ftrace_dyn_arch_init(void)
172 {
173 	return 0;
174 }
175 
176 #ifdef CONFIG_MODULES
177 
178 static int __init ftrace_plt_init(void)
179 {
180 	unsigned int *ip;
181 
182 	ftrace_plt = (unsigned long) module_alloc(PAGE_SIZE);
183 	if (!ftrace_plt)
184 		panic("cannot allocate ftrace plt\n");
185 	ip = (unsigned int *) ftrace_plt;
186 	ip[0] = 0x0d10e310; /* basr 1,0; lg 1,10(1); br 1 */
187 	ip[1] = 0x100a0004;
188 	ip[2] = 0x07f10000;
189 	ip[3] = FTRACE_ADDR >> 32;
190 	ip[4] = FTRACE_ADDR & 0xffffffff;
191 	set_memory_ro(ftrace_plt, 1);
192 	return 0;
193 }
194 device_initcall(ftrace_plt_init);
195 
196 #endif /* CONFIG_MODULES */
197 
198 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
199 /*
200  * Hook the return address and push it in the stack of return addresses
201  * in current thread info.
202  */
203 unsigned long prepare_ftrace_return(unsigned long parent, unsigned long ip)
204 {
205 	struct ftrace_graph_ent trace;
206 
207 	if (unlikely(ftrace_graph_is_dead()))
208 		goto out;
209 	if (unlikely(atomic_read(&current->tracing_graph_pause)))
210 		goto out;
211 	ip -= MCOUNT_INSN_SIZE;
212 	trace.func = ip;
213 	trace.depth = current->curr_ret_stack + 1;
214 	/* Only trace if the calling function expects to. */
215 	if (!ftrace_graph_entry(&trace))
216 		goto out;
217 	if (ftrace_push_return_trace(parent, ip, &trace.depth, 0,
218 				     NULL) == -EBUSY)
219 		goto out;
220 	parent = (unsigned long) return_to_handler;
221 out:
222 	return parent;
223 }
224 NOKPROBE_SYMBOL(prepare_ftrace_return);
225 
226 /*
227  * Patch the kernel code at ftrace_graph_caller location. The instruction
228  * there is branch relative on condition. To enable the ftrace graph code
229  * block, we simply patch the mask field of the instruction to zero and
230  * turn the instruction into a nop.
231  * To disable the ftrace graph code the mask field will be patched to
232  * all ones, which turns the instruction into an unconditional branch.
233  */
234 int ftrace_enable_ftrace_graph_caller(void)
235 {
236 	u8 op = 0x04; /* set mask field to zero */
237 
238 	s390_kernel_write(__va(ftrace_graph_caller)+1, &op, sizeof(op));
239 	return 0;
240 }
241 
242 int ftrace_disable_ftrace_graph_caller(void)
243 {
244 	u8 op = 0xf4; /* set mask field to all ones */
245 
246 	s390_kernel_write(__va(ftrace_graph_caller)+1, &op, sizeof(op));
247 	return 0;
248 }
249 
250 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
251