1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * S390 kdump implementation 4 * 5 * Copyright IBM Corp. 2011 6 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com> 7 */ 8 9 #include <linux/crash_dump.h> 10 #include <asm/lowcore.h> 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/mm.h> 14 #include <linux/gfp.h> 15 #include <linux/slab.h> 16 #include <linux/memblock.h> 17 #include <linux/elf.h> 18 #include <linux/uio.h> 19 #include <asm/asm-offsets.h> 20 #include <asm/os_info.h> 21 #include <asm/elf.h> 22 #include <asm/ipl.h> 23 #include <asm/sclp.h> 24 #include <asm/maccess.h> 25 #include <asm/fpu.h> 26 27 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y))) 28 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y))) 29 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y)))) 30 31 static struct memblock_region oldmem_region; 32 33 static struct memblock_type oldmem_type = { 34 .cnt = 1, 35 .max = 1, 36 .total_size = 0, 37 .regions = &oldmem_region, 38 .name = "oldmem", 39 }; 40 41 struct save_area { 42 struct list_head list; 43 u64 psw[2]; 44 u64 ctrs[16]; 45 u64 gprs[16]; 46 u32 acrs[16]; 47 u64 fprs[16]; 48 u32 fpc; 49 u32 prefix; 50 u32 todpreg; 51 u64 timer; 52 u64 todcmp; 53 u64 vxrs_low[16]; 54 __vector128 vxrs_high[16]; 55 }; 56 57 static LIST_HEAD(dump_save_areas); 58 59 /* 60 * Allocate a save area 61 */ 62 struct save_area * __init save_area_alloc(bool is_boot_cpu) 63 { 64 struct save_area *sa; 65 66 sa = memblock_alloc_or_panic(sizeof(*sa), 8); 67 68 if (is_boot_cpu) 69 list_add(&sa->list, &dump_save_areas); 70 else 71 list_add_tail(&sa->list, &dump_save_areas); 72 return sa; 73 } 74 75 /* 76 * Return the address of the save area for the boot CPU 77 */ 78 struct save_area * __init save_area_boot_cpu(void) 79 { 80 return list_first_entry_or_null(&dump_save_areas, struct save_area, list); 81 } 82 83 /* 84 * Copy CPU registers into the save area 85 */ 86 void __init save_area_add_regs(struct save_area *sa, void *regs) 87 { 88 struct lowcore *lc; 89 90 lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA); 91 memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw)); 92 memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs)); 93 memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs)); 94 memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs)); 95 memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs)); 96 memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc)); 97 memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix)); 98 memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg)); 99 memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer)); 100 memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp)); 101 } 102 103 /* 104 * Copy vector registers into the save area 105 */ 106 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs) 107 { 108 int i; 109 110 /* Copy lower halves of vector registers 0-15 */ 111 for (i = 0; i < 16; i++) 112 sa->vxrs_low[i] = vxrs[i].low; 113 /* Copy vector registers 16-31 */ 114 memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128)); 115 } 116 117 static size_t copy_oldmem_iter(struct iov_iter *iter, unsigned long src, size_t count) 118 { 119 size_t len, copied, res = 0; 120 121 while (count) { 122 if (!oldmem_data.start && src < sclp.hsa_size) { 123 /* Copy from zfcp/nvme dump HSA area */ 124 len = min(count, sclp.hsa_size - src); 125 copied = memcpy_hsa_iter(iter, src, len); 126 } else { 127 /* Check for swapped kdump oldmem areas */ 128 if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) { 129 src -= oldmem_data.start; 130 len = min(count, oldmem_data.size - src); 131 } else if (oldmem_data.start && src < oldmem_data.size) { 132 len = min(count, oldmem_data.size - src); 133 src += oldmem_data.start; 134 } else { 135 len = count; 136 } 137 copied = memcpy_real_iter(iter, src, len); 138 } 139 count -= copied; 140 src += copied; 141 res += copied; 142 if (copied < len) 143 break; 144 } 145 return res; 146 } 147 148 int copy_oldmem_kernel(void *dst, unsigned long src, size_t count) 149 { 150 struct iov_iter iter; 151 struct kvec kvec; 152 153 kvec.iov_base = dst; 154 kvec.iov_len = count; 155 iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count); 156 if (copy_oldmem_iter(&iter, src, count) < count) 157 return -EFAULT; 158 return 0; 159 } 160 161 /* 162 * Copy one page from "oldmem" 163 */ 164 ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize, 165 unsigned long offset) 166 { 167 unsigned long src; 168 169 src = pfn_to_phys(pfn) + offset; 170 return copy_oldmem_iter(iter, src, csize); 171 } 172 173 /* 174 * Remap "oldmem" for kdump 175 * 176 * For the kdump reserved memory this functions performs a swap operation: 177 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] 178 */ 179 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma, 180 unsigned long from, unsigned long pfn, 181 unsigned long size, pgprot_t prot) 182 { 183 unsigned long size_old; 184 int rc; 185 186 if (pfn < oldmem_data.size >> PAGE_SHIFT) { 187 size_old = min(size, oldmem_data.size - (pfn << PAGE_SHIFT)); 188 rc = remap_pfn_range(vma, from, 189 pfn + (oldmem_data.start >> PAGE_SHIFT), 190 size_old, prot); 191 if (rc || size == size_old) 192 return rc; 193 size -= size_old; 194 from += size_old; 195 pfn += size_old >> PAGE_SHIFT; 196 } 197 return remap_pfn_range(vma, from, pfn, size, prot); 198 } 199 200 /* 201 * Remap "oldmem" for zfcp/nvme dump 202 * 203 * We only map available memory above HSA size. Memory below HSA size 204 * is read on demand using the copy_oldmem_page() function. 205 */ 206 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma, 207 unsigned long from, 208 unsigned long pfn, 209 unsigned long size, pgprot_t prot) 210 { 211 unsigned long hsa_end = sclp.hsa_size; 212 unsigned long size_hsa; 213 214 if (pfn < hsa_end >> PAGE_SHIFT) { 215 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT)); 216 if (size == size_hsa) 217 return 0; 218 size -= size_hsa; 219 from += size_hsa; 220 pfn += size_hsa >> PAGE_SHIFT; 221 } 222 return remap_pfn_range(vma, from, pfn, size, prot); 223 } 224 225 /* 226 * Remap "oldmem" for kdump or zfcp/nvme dump 227 */ 228 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from, 229 unsigned long pfn, unsigned long size, pgprot_t prot) 230 { 231 if (oldmem_data.start) 232 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot); 233 else 234 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size, 235 prot); 236 } 237 238 /* 239 * Return true only when in a kdump or stand-alone kdump environment. 240 * Note that /proc/vmcore might also be available in "standard zfcp/nvme dump" 241 * environments, where this function returns false; see dump_available(). 242 */ 243 bool is_kdump_kernel(void) 244 { 245 return oldmem_data.start; 246 } 247 EXPORT_SYMBOL_GPL(is_kdump_kernel); 248 249 /* 250 * Initialize ELF note 251 */ 252 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len, 253 const char *name) 254 { 255 Elf64_Nhdr *note; 256 u64 len; 257 258 note = (Elf64_Nhdr *)buf; 259 note->n_namesz = strlen(name) + 1; 260 note->n_descsz = d_len; 261 note->n_type = type; 262 len = sizeof(Elf64_Nhdr); 263 264 memcpy(buf + len, name, note->n_namesz); 265 len = roundup(len + note->n_namesz, 4); 266 267 memcpy(buf + len, desc, note->n_descsz); 268 len = roundup(len + note->n_descsz, 4); 269 270 return PTR_ADD(buf, len); 271 } 272 273 #define nt_init(buf, type, desc) \ 274 nt_init_name(buf, NT_ ## type, &(desc), sizeof(desc), NN_ ## type) 275 276 /* 277 * Calculate the size of ELF note 278 */ 279 static size_t nt_size_name(int d_len, const char *name) 280 { 281 size_t size; 282 283 size = sizeof(Elf64_Nhdr); 284 size += roundup(strlen(name) + 1, 4); 285 size += roundup(d_len, 4); 286 287 return size; 288 } 289 290 #define nt_size(type, desc) nt_size_name(sizeof(desc), NN_ ## type) 291 292 /* 293 * Fill ELF notes for one CPU with save area registers 294 */ 295 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa) 296 { 297 struct elf_prstatus nt_prstatus; 298 elf_fpregset_t nt_fpregset; 299 300 /* Prepare prstatus note */ 301 memset(&nt_prstatus, 0, sizeof(nt_prstatus)); 302 memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs)); 303 memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw)); 304 memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs)); 305 nt_prstatus.common.pr_pid = cpu; 306 /* Prepare fpregset (floating point) note */ 307 memset(&nt_fpregset, 0, sizeof(nt_fpregset)); 308 memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc)); 309 memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs)); 310 /* Create ELF notes for the CPU */ 311 ptr = nt_init(ptr, PRSTATUS, nt_prstatus); 312 ptr = nt_init(ptr, PRFPREG, nt_fpregset); 313 ptr = nt_init(ptr, S390_TIMER, sa->timer); 314 ptr = nt_init(ptr, S390_TODCMP, sa->todcmp); 315 ptr = nt_init(ptr, S390_TODPREG, sa->todpreg); 316 ptr = nt_init(ptr, S390_CTRS, sa->ctrs); 317 ptr = nt_init(ptr, S390_PREFIX, sa->prefix); 318 if (cpu_has_vx()) { 319 ptr = nt_init(ptr, S390_VXRS_HIGH, sa->vxrs_high); 320 ptr = nt_init(ptr, S390_VXRS_LOW, sa->vxrs_low); 321 } 322 return ptr; 323 } 324 325 /* 326 * Calculate size of ELF notes per cpu 327 */ 328 static size_t get_cpu_elf_notes_size(void) 329 { 330 struct save_area *sa = NULL; 331 size_t size; 332 333 size = nt_size(PRSTATUS, struct elf_prstatus); 334 size += nt_size(PRFPREG, elf_fpregset_t); 335 size += nt_size(S390_TIMER, sa->timer); 336 size += nt_size(S390_TODCMP, sa->todcmp); 337 size += nt_size(S390_TODPREG, sa->todpreg); 338 size += nt_size(S390_CTRS, sa->ctrs); 339 size += nt_size(S390_PREFIX, sa->prefix); 340 if (cpu_has_vx()) { 341 size += nt_size(S390_VXRS_HIGH, sa->vxrs_high); 342 size += nt_size(S390_VXRS_LOW, sa->vxrs_low); 343 } 344 345 return size; 346 } 347 348 /* 349 * Initialize prpsinfo note (new kernel) 350 */ 351 static void *nt_prpsinfo(void *ptr) 352 { 353 struct elf_prpsinfo prpsinfo; 354 355 memset(&prpsinfo, 0, sizeof(prpsinfo)); 356 prpsinfo.pr_sname = 'R'; 357 strcpy(prpsinfo.pr_fname, "vmlinux"); 358 return nt_init(ptr, PRPSINFO, prpsinfo); 359 } 360 361 /* 362 * Get vmcoreinfo using lowcore->vmcore_info (new kernel) 363 */ 364 static void *get_vmcoreinfo_old(unsigned long *size) 365 { 366 char nt_name[11], *vmcoreinfo; 367 unsigned long addr; 368 Elf64_Nhdr note; 369 370 if (copy_oldmem_kernel(&addr, __LC_VMCORE_INFO, sizeof(addr))) 371 return NULL; 372 memset(nt_name, 0, sizeof(nt_name)); 373 if (copy_oldmem_kernel(¬e, addr, sizeof(note))) 374 return NULL; 375 if (copy_oldmem_kernel(nt_name, addr + sizeof(note), 376 sizeof(nt_name) - 1)) 377 return NULL; 378 if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0) 379 return NULL; 380 vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL); 381 if (!vmcoreinfo) 382 return NULL; 383 if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) { 384 kfree(vmcoreinfo); 385 return NULL; 386 } 387 *size = note.n_descsz; 388 return vmcoreinfo; 389 } 390 391 /* 392 * Initialize vmcoreinfo note (new kernel) 393 */ 394 static void *nt_vmcoreinfo(void *ptr) 395 { 396 const char *name = VMCOREINFO_NOTE_NAME; 397 unsigned long size; 398 void *vmcoreinfo; 399 400 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size); 401 if (vmcoreinfo) 402 return nt_init_name(ptr, 0, vmcoreinfo, size, name); 403 404 vmcoreinfo = get_vmcoreinfo_old(&size); 405 if (!vmcoreinfo) 406 return ptr; 407 ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name); 408 kfree(vmcoreinfo); 409 return ptr; 410 } 411 412 static size_t nt_vmcoreinfo_size(void) 413 { 414 const char *name = VMCOREINFO_NOTE_NAME; 415 unsigned long size; 416 void *vmcoreinfo; 417 418 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size); 419 if (vmcoreinfo) 420 return nt_size_name(size, name); 421 422 vmcoreinfo = get_vmcoreinfo_old(&size); 423 if (!vmcoreinfo) 424 return 0; 425 426 kfree(vmcoreinfo); 427 return nt_size_name(size, name); 428 } 429 430 /* 431 * Initialize final note (needed for /proc/vmcore code) 432 */ 433 static void *nt_final(void *ptr) 434 { 435 Elf64_Nhdr *note; 436 437 note = (Elf64_Nhdr *) ptr; 438 note->n_namesz = 0; 439 note->n_descsz = 0; 440 note->n_type = 0; 441 return PTR_ADD(ptr, sizeof(Elf64_Nhdr)); 442 } 443 444 /* 445 * Initialize ELF header (new kernel) 446 */ 447 static void *ehdr_init(Elf64_Ehdr *ehdr, int phdr_count) 448 { 449 memset(ehdr, 0, sizeof(*ehdr)); 450 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 451 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 452 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 453 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 454 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 455 ehdr->e_type = ET_CORE; 456 ehdr->e_machine = EM_S390; 457 ehdr->e_version = EV_CURRENT; 458 ehdr->e_phoff = sizeof(Elf64_Ehdr); 459 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 460 ehdr->e_phentsize = sizeof(Elf64_Phdr); 461 /* Number of PT_LOAD program headers plus PT_NOTE program header */ 462 ehdr->e_phnum = phdr_count + 1; 463 return ehdr + 1; 464 } 465 466 /* 467 * Return CPU count for ELF header (new kernel) 468 */ 469 static int get_cpu_cnt(void) 470 { 471 struct save_area *sa; 472 int cpus = 0; 473 474 list_for_each_entry(sa, &dump_save_areas, list) 475 if (sa->prefix != 0) 476 cpus++; 477 return cpus; 478 } 479 480 /* 481 * Return memory chunk count for ELF header (new kernel) 482 */ 483 static int get_mem_chunk_cnt(void) 484 { 485 int cnt = 0; 486 u64 idx; 487 488 for_each_physmem_range(idx, &oldmem_type, NULL, NULL) 489 cnt++; 490 return cnt; 491 } 492 493 static void fill_ptload(Elf64_Phdr *phdr, unsigned long paddr, 494 unsigned long vaddr, unsigned long size) 495 { 496 phdr->p_type = PT_LOAD; 497 phdr->p_vaddr = vaddr; 498 phdr->p_offset = paddr; 499 phdr->p_paddr = paddr; 500 phdr->p_filesz = size; 501 phdr->p_memsz = size; 502 phdr->p_flags = PF_R | PF_W | PF_X; 503 phdr->p_align = PAGE_SIZE; 504 } 505 506 /* 507 * Initialize ELF loads (new kernel) 508 */ 509 static void loads_init(Elf64_Phdr *phdr, bool os_info_has_vm) 510 { 511 unsigned long old_identity_base = 0; 512 phys_addr_t start, end; 513 u64 idx; 514 515 if (os_info_has_vm) 516 old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE); 517 for_each_physmem_range(idx, &oldmem_type, &start, &end) { 518 fill_ptload(phdr, start, old_identity_base + start, 519 end - start); 520 phdr++; 521 } 522 } 523 524 static bool os_info_has_vm(void) 525 { 526 return os_info_old_value(OS_INFO_KASLR_OFFSET); 527 } 528 529 #ifdef CONFIG_PROC_VMCORE_DEVICE_RAM 530 /* 531 * Fill PT_LOAD for a physical memory range owned by a device and detected by 532 * its device driver. 533 */ 534 void elfcorehdr_fill_device_ram_ptload_elf64(Elf64_Phdr *phdr, 535 unsigned long long paddr, unsigned long long size) 536 { 537 unsigned long old_identity_base = 0; 538 539 if (os_info_has_vm()) 540 old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE); 541 fill_ptload(phdr, paddr, old_identity_base + paddr, size); 542 } 543 #endif 544 545 /* 546 * Prepare PT_LOAD type program header for kernel image region 547 */ 548 static void text_init(Elf64_Phdr *phdr) 549 { 550 unsigned long start_phys = os_info_old_value(OS_INFO_IMAGE_PHYS); 551 unsigned long start = os_info_old_value(OS_INFO_IMAGE_START); 552 unsigned long end = os_info_old_value(OS_INFO_IMAGE_END); 553 554 phdr->p_type = PT_LOAD; 555 phdr->p_vaddr = start; 556 phdr->p_filesz = end - start; 557 phdr->p_memsz = end - start; 558 phdr->p_offset = start_phys; 559 phdr->p_paddr = start_phys; 560 phdr->p_flags = PF_R | PF_W | PF_X; 561 phdr->p_align = PAGE_SIZE; 562 } 563 564 /* 565 * Initialize notes (new kernel) 566 */ 567 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset) 568 { 569 struct save_area *sa; 570 void *ptr_start = ptr; 571 int cpu; 572 573 ptr = nt_prpsinfo(ptr); 574 575 cpu = 1; 576 list_for_each_entry(sa, &dump_save_areas, list) 577 if (sa->prefix != 0) 578 ptr = fill_cpu_elf_notes(ptr, cpu++, sa); 579 ptr = nt_vmcoreinfo(ptr); 580 ptr = nt_final(ptr); 581 memset(phdr, 0, sizeof(*phdr)); 582 phdr->p_type = PT_NOTE; 583 phdr->p_offset = notes_offset; 584 phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start); 585 phdr->p_memsz = phdr->p_filesz; 586 return ptr; 587 } 588 589 static size_t get_elfcorehdr_size(int phdr_count) 590 { 591 size_t size; 592 593 size = sizeof(Elf64_Ehdr); 594 /* PT_NOTES */ 595 size += sizeof(Elf64_Phdr); 596 /* nt_prpsinfo */ 597 size += nt_size(PRPSINFO, struct elf_prpsinfo); 598 /* regsets */ 599 size += get_cpu_cnt() * get_cpu_elf_notes_size(); 600 /* nt_vmcoreinfo */ 601 size += nt_vmcoreinfo_size(); 602 /* nt_final */ 603 size += sizeof(Elf64_Nhdr); 604 /* PT_LOADS */ 605 size += phdr_count * sizeof(Elf64_Phdr); 606 607 return size; 608 } 609 610 /* 611 * Create ELF core header (new kernel) 612 */ 613 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size) 614 { 615 Elf64_Phdr *phdr_notes, *phdr_loads, *phdr_text; 616 int mem_chunk_cnt, phdr_text_cnt; 617 size_t alloc_size; 618 void *ptr, *hdr; 619 u64 hdr_off; 620 621 /* If we are not in kdump or zfcp/nvme dump mode return */ 622 if (!oldmem_data.start && !is_ipl_type_dump()) 623 return 0; 624 /* If we cannot get HSA size for zfcp/nvme dump return error */ 625 if (is_ipl_type_dump() && !sclp.hsa_size) 626 return -ENODEV; 627 628 /* For kdump, exclude previous crashkernel memory */ 629 if (oldmem_data.start) { 630 oldmem_region.base = oldmem_data.start; 631 oldmem_region.size = oldmem_data.size; 632 oldmem_type.total_size = oldmem_data.size; 633 } 634 635 mem_chunk_cnt = get_mem_chunk_cnt(); 636 phdr_text_cnt = os_info_has_vm() ? 1 : 0; 637 638 alloc_size = get_elfcorehdr_size(mem_chunk_cnt + phdr_text_cnt); 639 640 hdr = kzalloc(alloc_size, GFP_KERNEL); 641 642 /* 643 * Without elfcorehdr /proc/vmcore cannot be created. Thus creating 644 * a dump with this crash kernel will fail. Panic now to allow other 645 * dump mechanisms to take over. 646 */ 647 if (!hdr) 648 panic("s390 kdump allocating elfcorehdr failed"); 649 650 /* Init elf header */ 651 phdr_notes = ehdr_init(hdr, mem_chunk_cnt + phdr_text_cnt); 652 /* Init program headers */ 653 if (phdr_text_cnt) { 654 phdr_text = phdr_notes + 1; 655 phdr_loads = phdr_text + 1; 656 } else { 657 phdr_loads = phdr_notes + 1; 658 } 659 ptr = PTR_ADD(phdr_loads, sizeof(Elf64_Phdr) * mem_chunk_cnt); 660 /* Init notes */ 661 hdr_off = PTR_DIFF(ptr, hdr); 662 ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off); 663 /* Init kernel text program header */ 664 if (phdr_text_cnt) 665 text_init(phdr_text); 666 /* Init loads */ 667 loads_init(phdr_loads, phdr_text_cnt); 668 /* Finalize program headers */ 669 hdr_off = PTR_DIFF(ptr, hdr); 670 *addr = (unsigned long long) hdr; 671 *size = (unsigned long long) hdr_off; 672 BUG_ON(elfcorehdr_size > alloc_size); 673 return 0; 674 } 675 676 /* 677 * Free ELF core header (new kernel) 678 */ 679 void elfcorehdr_free(unsigned long long addr) 680 { 681 kfree((void *)(unsigned long)addr); 682 } 683 684 /* 685 * Read from ELF header 686 */ 687 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos) 688 { 689 void *src = (void *)(unsigned long)*ppos; 690 691 memcpy(buf, src, count); 692 *ppos += count; 693 return count; 694 } 695 696 /* 697 * Read from ELF notes data 698 */ 699 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos) 700 { 701 void *src = (void *)(unsigned long)*ppos; 702 703 memcpy(buf, src, count); 704 *ppos += count; 705 return count; 706 } 707