xref: /linux/arch/s390/kernel/crash_dump.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * S390 kdump implementation
4  *
5  * Copyright IBM Corp. 2011
6  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
7  */
8 
9 #include <linux/crash_dump.h>
10 #include <asm/lowcore.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/slab.h>
16 #include <linux/bootmem.h>
17 #include <linux/elf.h>
18 #include <asm/asm-offsets.h>
19 #include <linux/memblock.h>
20 #include <asm/os_info.h>
21 #include <asm/elf.h>
22 #include <asm/ipl.h>
23 #include <asm/sclp.h>
24 
25 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
26 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
27 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
28 
29 static struct memblock_region oldmem_region;
30 
31 static struct memblock_type oldmem_type = {
32 	.cnt = 1,
33 	.max = 1,
34 	.total_size = 0,
35 	.regions = &oldmem_region,
36 	.name = "oldmem",
37 };
38 
39 struct save_area {
40 	struct list_head list;
41 	u64 psw[2];
42 	u64 ctrs[16];
43 	u64 gprs[16];
44 	u32 acrs[16];
45 	u64 fprs[16];
46 	u32 fpc;
47 	u32 prefix;
48 	u64 todpreg;
49 	u64 timer;
50 	u64 todcmp;
51 	u64 vxrs_low[16];
52 	__vector128 vxrs_high[16];
53 };
54 
55 static LIST_HEAD(dump_save_areas);
56 
57 /*
58  * Allocate a save area
59  */
60 struct save_area * __init save_area_alloc(bool is_boot_cpu)
61 {
62 	struct save_area *sa;
63 
64 	sa = (void *) memblock_alloc(sizeof(*sa), 8);
65 	if (is_boot_cpu)
66 		list_add(&sa->list, &dump_save_areas);
67 	else
68 		list_add_tail(&sa->list, &dump_save_areas);
69 	return sa;
70 }
71 
72 /*
73  * Return the address of the save area for the boot CPU
74  */
75 struct save_area * __init save_area_boot_cpu(void)
76 {
77 	return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
78 }
79 
80 /*
81  * Copy CPU registers into the save area
82  */
83 void __init save_area_add_regs(struct save_area *sa, void *regs)
84 {
85 	struct lowcore *lc;
86 
87 	lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
88 	memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
89 	memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
90 	memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
91 	memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
92 	memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
93 	memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
94 	memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
95 	memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
96 	memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
97 	memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
98 }
99 
100 /*
101  * Copy vector registers into the save area
102  */
103 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
104 {
105 	int i;
106 
107 	/* Copy lower halves of vector registers 0-15 */
108 	for (i = 0; i < 16; i++)
109 		memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
110 	/* Copy vector registers 16-31 */
111 	memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
112 }
113 
114 /*
115  * Return physical address for virtual address
116  */
117 static inline void *load_real_addr(void *addr)
118 {
119 	unsigned long real_addr;
120 
121 	asm volatile(
122 		   "	lra     %0,0(%1)\n"
123 		   "	jz	0f\n"
124 		   "	la	%0,0\n"
125 		   "0:"
126 		   : "=a" (real_addr) : "a" (addr) : "cc");
127 	return (void *)real_addr;
128 }
129 
130 /*
131  * Copy memory of the old, dumped system to a kernel space virtual address
132  */
133 int copy_oldmem_kernel(void *dst, void *src, size_t count)
134 {
135 	unsigned long from, len;
136 	void *ra;
137 	int rc;
138 
139 	while (count) {
140 		from = __pa(src);
141 		if (!OLDMEM_BASE && from < sclp.hsa_size) {
142 			/* Copy from zfcpdump HSA area */
143 			len = min(count, sclp.hsa_size - from);
144 			rc = memcpy_hsa_kernel(dst, from, len);
145 			if (rc)
146 				return rc;
147 		} else {
148 			/* Check for swapped kdump oldmem areas */
149 			if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
150 				from -= OLDMEM_BASE;
151 				len = min(count, OLDMEM_SIZE - from);
152 			} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
153 				len = min(count, OLDMEM_SIZE - from);
154 				from += OLDMEM_BASE;
155 			} else {
156 				len = count;
157 			}
158 			if (is_vmalloc_or_module_addr(dst)) {
159 				ra = load_real_addr(dst);
160 				len = min(PAGE_SIZE - offset_in_page(ra), len);
161 			} else {
162 				ra = dst;
163 			}
164 			if (memcpy_real(ra, (void *) from, len))
165 				return -EFAULT;
166 		}
167 		dst += len;
168 		src += len;
169 		count -= len;
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Copy memory of the old, dumped system to a user space virtual address
176  */
177 static int copy_oldmem_user(void __user *dst, void *src, size_t count)
178 {
179 	unsigned long from, len;
180 	int rc;
181 
182 	while (count) {
183 		from = __pa(src);
184 		if (!OLDMEM_BASE && from < sclp.hsa_size) {
185 			/* Copy from zfcpdump HSA area */
186 			len = min(count, sclp.hsa_size - from);
187 			rc = memcpy_hsa_user(dst, from, len);
188 			if (rc)
189 				return rc;
190 		} else {
191 			/* Check for swapped kdump oldmem areas */
192 			if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
193 				from -= OLDMEM_BASE;
194 				len = min(count, OLDMEM_SIZE - from);
195 			} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
196 				len = min(count, OLDMEM_SIZE - from);
197 				from += OLDMEM_BASE;
198 			} else {
199 				len = count;
200 			}
201 			rc = copy_to_user_real(dst, (void *) from, count);
202 			if (rc)
203 				return rc;
204 		}
205 		dst += len;
206 		src += len;
207 		count -= len;
208 	}
209 	return 0;
210 }
211 
212 /*
213  * Copy one page from "oldmem"
214  */
215 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
216 			 unsigned long offset, int userbuf)
217 {
218 	void *src;
219 	int rc;
220 
221 	if (!csize)
222 		return 0;
223 	src = (void *) (pfn << PAGE_SHIFT) + offset;
224 	if (userbuf)
225 		rc = copy_oldmem_user((void __force __user *) buf, src, csize);
226 	else
227 		rc = copy_oldmem_kernel((void *) buf, src, csize);
228 	return rc;
229 }
230 
231 /*
232  * Remap "oldmem" for kdump
233  *
234  * For the kdump reserved memory this functions performs a swap operation:
235  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
236  */
237 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
238 					unsigned long from, unsigned long pfn,
239 					unsigned long size, pgprot_t prot)
240 {
241 	unsigned long size_old;
242 	int rc;
243 
244 	if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
245 		size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
246 		rc = remap_pfn_range(vma, from,
247 				     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
248 				     size_old, prot);
249 		if (rc || size == size_old)
250 			return rc;
251 		size -= size_old;
252 		from += size_old;
253 		pfn += size_old >> PAGE_SHIFT;
254 	}
255 	return remap_pfn_range(vma, from, pfn, size, prot);
256 }
257 
258 /*
259  * Remap "oldmem" for zfcpdump
260  *
261  * We only map available memory above HSA size. Memory below HSA size
262  * is read on demand using the copy_oldmem_page() function.
263  */
264 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
265 					   unsigned long from,
266 					   unsigned long pfn,
267 					   unsigned long size, pgprot_t prot)
268 {
269 	unsigned long hsa_end = sclp.hsa_size;
270 	unsigned long size_hsa;
271 
272 	if (pfn < hsa_end >> PAGE_SHIFT) {
273 		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
274 		if (size == size_hsa)
275 			return 0;
276 		size -= size_hsa;
277 		from += size_hsa;
278 		pfn += size_hsa >> PAGE_SHIFT;
279 	}
280 	return remap_pfn_range(vma, from, pfn, size, prot);
281 }
282 
283 /*
284  * Remap "oldmem" for kdump or zfcpdump
285  */
286 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
287 			   unsigned long pfn, unsigned long size, pgprot_t prot)
288 {
289 	if (OLDMEM_BASE)
290 		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
291 	else
292 		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
293 						       prot);
294 }
295 
296 /*
297  * Alloc memory and panic in case of ENOMEM
298  */
299 static void *kzalloc_panic(int len)
300 {
301 	void *rc;
302 
303 	rc = kzalloc(len, GFP_KERNEL);
304 	if (!rc)
305 		panic("s390 kdump kzalloc (%d) failed", len);
306 	return rc;
307 }
308 
309 /*
310  * Initialize ELF note
311  */
312 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
313 			  const char *name)
314 {
315 	Elf64_Nhdr *note;
316 	u64 len;
317 
318 	note = (Elf64_Nhdr *)buf;
319 	note->n_namesz = strlen(name) + 1;
320 	note->n_descsz = d_len;
321 	note->n_type = type;
322 	len = sizeof(Elf64_Nhdr);
323 
324 	memcpy(buf + len, name, note->n_namesz);
325 	len = roundup(len + note->n_namesz, 4);
326 
327 	memcpy(buf + len, desc, note->n_descsz);
328 	len = roundup(len + note->n_descsz, 4);
329 
330 	return PTR_ADD(buf, len);
331 }
332 
333 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
334 {
335 	const char *note_name = "LINUX";
336 
337 	if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
338 		note_name = KEXEC_CORE_NOTE_NAME;
339 	return nt_init_name(buf, type, desc, d_len, note_name);
340 }
341 
342 /*
343  * Fill ELF notes for one CPU with save area registers
344  */
345 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
346 {
347 	struct elf_prstatus nt_prstatus;
348 	elf_fpregset_t nt_fpregset;
349 
350 	/* Prepare prstatus note */
351 	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
352 	memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
353 	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
354 	memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
355 	nt_prstatus.pr_pid = cpu;
356 	/* Prepare fpregset (floating point) note */
357 	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
358 	memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
359 	memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
360 	/* Create ELF notes for the CPU */
361 	ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
362 	ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
363 	ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
364 	ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
365 	ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
366 	ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
367 	ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
368 	if (MACHINE_HAS_VX) {
369 		ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
370 			      &sa->vxrs_high, sizeof(sa->vxrs_high));
371 		ptr = nt_init(ptr, NT_S390_VXRS_LOW,
372 			      &sa->vxrs_low, sizeof(sa->vxrs_low));
373 	}
374 	return ptr;
375 }
376 
377 /*
378  * Initialize prpsinfo note (new kernel)
379  */
380 static void *nt_prpsinfo(void *ptr)
381 {
382 	struct elf_prpsinfo prpsinfo;
383 
384 	memset(&prpsinfo, 0, sizeof(prpsinfo));
385 	prpsinfo.pr_sname = 'R';
386 	strcpy(prpsinfo.pr_fname, "vmlinux");
387 	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
388 }
389 
390 /*
391  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
392  */
393 static void *get_vmcoreinfo_old(unsigned long *size)
394 {
395 	char nt_name[11], *vmcoreinfo;
396 	Elf64_Nhdr note;
397 	void *addr;
398 
399 	if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
400 		return NULL;
401 	memset(nt_name, 0, sizeof(nt_name));
402 	if (copy_oldmem_kernel(&note, addr, sizeof(note)))
403 		return NULL;
404 	if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
405 			       sizeof(nt_name) - 1))
406 		return NULL;
407 	if (strcmp(nt_name, "VMCOREINFO") != 0)
408 		return NULL;
409 	vmcoreinfo = kzalloc_panic(note.n_descsz);
410 	if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz))
411 		return NULL;
412 	*size = note.n_descsz;
413 	return vmcoreinfo;
414 }
415 
416 /*
417  * Initialize vmcoreinfo note (new kernel)
418  */
419 static void *nt_vmcoreinfo(void *ptr)
420 {
421 	unsigned long size;
422 	void *vmcoreinfo;
423 
424 	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
425 	if (!vmcoreinfo)
426 		vmcoreinfo = get_vmcoreinfo_old(&size);
427 	if (!vmcoreinfo)
428 		return ptr;
429 	return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
430 }
431 
432 /*
433  * Initialize final note (needed for /proc/vmcore code)
434  */
435 static void *nt_final(void *ptr)
436 {
437 	Elf64_Nhdr *note;
438 
439 	note = (Elf64_Nhdr *) ptr;
440 	note->n_namesz = 0;
441 	note->n_descsz = 0;
442 	note->n_type = 0;
443 	return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
444 }
445 
446 /*
447  * Initialize ELF header (new kernel)
448  */
449 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
450 {
451 	memset(ehdr, 0, sizeof(*ehdr));
452 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
453 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
454 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
455 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
456 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
457 	ehdr->e_type = ET_CORE;
458 	ehdr->e_machine = EM_S390;
459 	ehdr->e_version = EV_CURRENT;
460 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
461 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
462 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
463 	ehdr->e_phnum = mem_chunk_cnt + 1;
464 	return ehdr + 1;
465 }
466 
467 /*
468  * Return CPU count for ELF header (new kernel)
469  */
470 static int get_cpu_cnt(void)
471 {
472 	struct save_area *sa;
473 	int cpus = 0;
474 
475 	list_for_each_entry(sa, &dump_save_areas, list)
476 		if (sa->prefix != 0)
477 			cpus++;
478 	return cpus;
479 }
480 
481 /*
482  * Return memory chunk count for ELF header (new kernel)
483  */
484 static int get_mem_chunk_cnt(void)
485 {
486 	int cnt = 0;
487 	u64 idx;
488 
489 	for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
490 			   MEMBLOCK_NONE, NULL, NULL, NULL)
491 		cnt++;
492 	return cnt;
493 }
494 
495 /*
496  * Initialize ELF loads (new kernel)
497  */
498 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
499 {
500 	phys_addr_t start, end;
501 	u64 idx;
502 
503 	for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
504 			   MEMBLOCK_NONE, &start, &end, NULL) {
505 		phdr->p_filesz = end - start;
506 		phdr->p_type = PT_LOAD;
507 		phdr->p_offset = start;
508 		phdr->p_vaddr = start;
509 		phdr->p_paddr = start;
510 		phdr->p_memsz = end - start;
511 		phdr->p_flags = PF_R | PF_W | PF_X;
512 		phdr->p_align = PAGE_SIZE;
513 		phdr++;
514 	}
515 }
516 
517 /*
518  * Initialize notes (new kernel)
519  */
520 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
521 {
522 	struct save_area *sa;
523 	void *ptr_start = ptr;
524 	int cpu;
525 
526 	ptr = nt_prpsinfo(ptr);
527 
528 	cpu = 1;
529 	list_for_each_entry(sa, &dump_save_areas, list)
530 		if (sa->prefix != 0)
531 			ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
532 	ptr = nt_vmcoreinfo(ptr);
533 	ptr = nt_final(ptr);
534 	memset(phdr, 0, sizeof(*phdr));
535 	phdr->p_type = PT_NOTE;
536 	phdr->p_offset = notes_offset;
537 	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
538 	phdr->p_memsz = phdr->p_filesz;
539 	return ptr;
540 }
541 
542 /*
543  * Create ELF core header (new kernel)
544  */
545 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
546 {
547 	Elf64_Phdr *phdr_notes, *phdr_loads;
548 	int mem_chunk_cnt;
549 	void *ptr, *hdr;
550 	u32 alloc_size;
551 	u64 hdr_off;
552 
553 	/* If we are not in kdump or zfcpdump mode return */
554 	if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
555 		return 0;
556 	/* If we cannot get HSA size for zfcpdump return error */
557 	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
558 		return -ENODEV;
559 
560 	/* For kdump, exclude previous crashkernel memory */
561 	if (OLDMEM_BASE) {
562 		oldmem_region.base = OLDMEM_BASE;
563 		oldmem_region.size = OLDMEM_SIZE;
564 		oldmem_type.total_size = OLDMEM_SIZE;
565 	}
566 
567 	mem_chunk_cnt = get_mem_chunk_cnt();
568 
569 	alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
570 		mem_chunk_cnt * sizeof(Elf64_Phdr);
571 	hdr = kzalloc_panic(alloc_size);
572 	/* Init elf header */
573 	ptr = ehdr_init(hdr, mem_chunk_cnt);
574 	/* Init program headers */
575 	phdr_notes = ptr;
576 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
577 	phdr_loads = ptr;
578 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
579 	/* Init notes */
580 	hdr_off = PTR_DIFF(ptr, hdr);
581 	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
582 	/* Init loads */
583 	hdr_off = PTR_DIFF(ptr, hdr);
584 	loads_init(phdr_loads, hdr_off);
585 	*addr = (unsigned long long) hdr;
586 	*size = (unsigned long long) hdr_off;
587 	BUG_ON(elfcorehdr_size > alloc_size);
588 	return 0;
589 }
590 
591 /*
592  * Free ELF core header (new kernel)
593  */
594 void elfcorehdr_free(unsigned long long addr)
595 {
596 	kfree((void *)(unsigned long)addr);
597 }
598 
599 /*
600  * Read from ELF header
601  */
602 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
603 {
604 	void *src = (void *)(unsigned long)*ppos;
605 
606 	memcpy(buf, src, count);
607 	*ppos += count;
608 	return count;
609 }
610 
611 /*
612  * Read from ELF notes data
613  */
614 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
615 {
616 	void *src = (void *)(unsigned long)*ppos;
617 
618 	memcpy(buf, src, count);
619 	*ppos += count;
620 	return count;
621 }
622