xref: /linux/arch/s390/kernel/crash_dump.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * S390 kdump implementation
3  *
4  * Copyright IBM Corp. 2011
5  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6  */
7 
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <linux/memblock.h>
17 #include <asm/os_info.h>
18 #include <asm/elf.h>
19 #include <asm/ipl.h>
20 #include <asm/sclp.h>
21 
22 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
23 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
24 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
25 
26 static struct memblock_region oldmem_region;
27 
28 static struct memblock_type oldmem_type = {
29 	.cnt = 1,
30 	.max = 1,
31 	.total_size = 0,
32 	.regions = &oldmem_region,
33 };
34 
35 #define for_each_dump_mem_range(i, nid, p_start, p_end, p_nid)		\
36 	for (i = 0, __next_mem_range(&i, nid, &memblock.physmem,	\
37 				     &oldmem_type, p_start,		\
38 				     p_end, p_nid);			\
39 	     i != (u64)ULLONG_MAX;					\
40 	     __next_mem_range(&i, nid, &memblock.physmem,		\
41 			      &oldmem_type,				\
42 			      p_start, p_end, p_nid))
43 
44 struct dump_save_areas dump_save_areas;
45 
46 /*
47  * Allocate and add a save area for a CPU
48  */
49 struct save_area_ext *dump_save_area_create(int cpu)
50 {
51 	struct save_area_ext **save_areas, *save_area;
52 
53 	save_area = kmalloc(sizeof(*save_area), GFP_KERNEL);
54 	if (!save_area)
55 		return NULL;
56 	if (cpu + 1 > dump_save_areas.count) {
57 		dump_save_areas.count = cpu + 1;
58 		save_areas = krealloc(dump_save_areas.areas,
59 				      dump_save_areas.count * sizeof(void *),
60 				      GFP_KERNEL | __GFP_ZERO);
61 		if (!save_areas) {
62 			kfree(save_area);
63 			return NULL;
64 		}
65 		dump_save_areas.areas = save_areas;
66 	}
67 	dump_save_areas.areas[cpu] = save_area;
68 	return save_area;
69 }
70 
71 /*
72  * Return physical address for virtual address
73  */
74 static inline void *load_real_addr(void *addr)
75 {
76 	unsigned long real_addr;
77 
78 	asm volatile(
79 		   "	lra     %0,0(%1)\n"
80 		   "	jz	0f\n"
81 		   "	la	%0,0\n"
82 		   "0:"
83 		   : "=a" (real_addr) : "a" (addr) : "cc");
84 	return (void *)real_addr;
85 }
86 
87 /*
88  * Copy real to virtual or real memory
89  */
90 static int copy_from_realmem(void *dest, void *src, size_t count)
91 {
92 	unsigned long size;
93 
94 	if (!count)
95 		return 0;
96 	if (!is_vmalloc_or_module_addr(dest))
97 		return memcpy_real(dest, src, count);
98 	do {
99 		size = min(count, PAGE_SIZE - (__pa(dest) & ~PAGE_MASK));
100 		if (memcpy_real(load_real_addr(dest), src, size))
101 			return -EFAULT;
102 		count -= size;
103 		dest += size;
104 		src += size;
105 	} while (count);
106 	return 0;
107 }
108 
109 /*
110  * Pointer to ELF header in new kernel
111  */
112 static void *elfcorehdr_newmem;
113 
114 /*
115  * Copy one page from zfcpdump "oldmem"
116  *
117  * For pages below HSA size memory from the HSA is copied. Otherwise
118  * real memory copy is used.
119  */
120 static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize,
121 					 unsigned long src, int userbuf)
122 {
123 	int rc;
124 
125 	if (src < sclp_get_hsa_size()) {
126 		rc = memcpy_hsa(buf, src, csize, userbuf);
127 	} else {
128 		if (userbuf)
129 			rc = copy_to_user_real((void __force __user *) buf,
130 					       (void *) src, csize);
131 		else
132 			rc = memcpy_real(buf, (void *) src, csize);
133 	}
134 	return rc ? rc : csize;
135 }
136 
137 /*
138  * Copy one page from kdump "oldmem"
139  *
140  * For the kdump reserved memory this functions performs a swap operation:
141  *  - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
142  *  - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
143  */
144 static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize,
145 				      unsigned long src, int userbuf)
146 
147 {
148 	int rc;
149 
150 	if (src < OLDMEM_SIZE)
151 		src += OLDMEM_BASE;
152 	else if (src > OLDMEM_BASE &&
153 		 src < OLDMEM_BASE + OLDMEM_SIZE)
154 		src -= OLDMEM_BASE;
155 	if (userbuf)
156 		rc = copy_to_user_real((void __force __user *) buf,
157 				       (void *) src, csize);
158 	else
159 		rc = copy_from_realmem(buf, (void *) src, csize);
160 	return (rc == 0) ? rc : csize;
161 }
162 
163 /*
164  * Copy one page from "oldmem"
165  */
166 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
167 			 unsigned long offset, int userbuf)
168 {
169 	unsigned long src;
170 
171 	if (!csize)
172 		return 0;
173 	src = (pfn << PAGE_SHIFT) + offset;
174 	if (OLDMEM_BASE)
175 		return copy_oldmem_page_kdump(buf, csize, src, userbuf);
176 	else
177 		return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf);
178 }
179 
180 /*
181  * Remap "oldmem" for kdump
182  *
183  * For the kdump reserved memory this functions performs a swap operation:
184  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
185  */
186 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
187 					unsigned long from, unsigned long pfn,
188 					unsigned long size, pgprot_t prot)
189 {
190 	unsigned long size_old;
191 	int rc;
192 
193 	if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
194 		size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
195 		rc = remap_pfn_range(vma, from,
196 				     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
197 				     size_old, prot);
198 		if (rc || size == size_old)
199 			return rc;
200 		size -= size_old;
201 		from += size_old;
202 		pfn += size_old >> PAGE_SHIFT;
203 	}
204 	return remap_pfn_range(vma, from, pfn, size, prot);
205 }
206 
207 /*
208  * Remap "oldmem" for zfcpdump
209  *
210  * We only map available memory above HSA size. Memory below HSA size
211  * is read on demand using the copy_oldmem_page() function.
212  */
213 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
214 					   unsigned long from,
215 					   unsigned long pfn,
216 					   unsigned long size, pgprot_t prot)
217 {
218 	unsigned long hsa_end = sclp_get_hsa_size();
219 	unsigned long size_hsa;
220 
221 	if (pfn < hsa_end >> PAGE_SHIFT) {
222 		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
223 		if (size == size_hsa)
224 			return 0;
225 		size -= size_hsa;
226 		from += size_hsa;
227 		pfn += size_hsa >> PAGE_SHIFT;
228 	}
229 	return remap_pfn_range(vma, from, pfn, size, prot);
230 }
231 
232 /*
233  * Remap "oldmem" for kdump or zfcpdump
234  */
235 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
236 			   unsigned long pfn, unsigned long size, pgprot_t prot)
237 {
238 	if (OLDMEM_BASE)
239 		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
240 	else
241 		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
242 						       prot);
243 }
244 
245 /*
246  * Copy memory from old kernel
247  */
248 int copy_from_oldmem(void *dest, void *src, size_t count)
249 {
250 	unsigned long copied = 0;
251 	int rc;
252 
253 	if (OLDMEM_BASE) {
254 		if ((unsigned long) src < OLDMEM_SIZE) {
255 			copied = min(count, OLDMEM_SIZE - (unsigned long) src);
256 			rc = copy_from_realmem(dest, src + OLDMEM_BASE, copied);
257 			if (rc)
258 				return rc;
259 		}
260 	} else {
261 		unsigned long hsa_end = sclp_get_hsa_size();
262 		if ((unsigned long) src < hsa_end) {
263 			copied = min(count, hsa_end - (unsigned long) src);
264 			rc = memcpy_hsa(dest, (unsigned long) src, copied, 0);
265 			if (rc)
266 				return rc;
267 		}
268 	}
269 	return copy_from_realmem(dest + copied, src + copied, count - copied);
270 }
271 
272 /*
273  * Alloc memory and panic in case of ENOMEM
274  */
275 static void *kzalloc_panic(int len)
276 {
277 	void *rc;
278 
279 	rc = kzalloc(len, GFP_KERNEL);
280 	if (!rc)
281 		panic("s390 kdump kzalloc (%d) failed", len);
282 	return rc;
283 }
284 
285 /*
286  * Initialize ELF note
287  */
288 static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
289 		     const char *name)
290 {
291 	Elf64_Nhdr *note;
292 	u64 len;
293 
294 	note = (Elf64_Nhdr *)buf;
295 	note->n_namesz = strlen(name) + 1;
296 	note->n_descsz = d_len;
297 	note->n_type = type;
298 	len = sizeof(Elf64_Nhdr);
299 
300 	memcpy(buf + len, name, note->n_namesz);
301 	len = roundup(len + note->n_namesz, 4);
302 
303 	memcpy(buf + len, desc, note->n_descsz);
304 	len = roundup(len + note->n_descsz, 4);
305 
306 	return PTR_ADD(buf, len);
307 }
308 
309 /*
310  * Initialize prstatus note
311  */
312 static void *nt_prstatus(void *ptr, struct save_area *sa)
313 {
314 	struct elf_prstatus nt_prstatus;
315 	static int cpu_nr = 1;
316 
317 	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
318 	memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
319 	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
320 	memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
321 	nt_prstatus.pr_pid = cpu_nr;
322 	cpu_nr++;
323 
324 	return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
325 			 "CORE");
326 }
327 
328 /*
329  * Initialize fpregset (floating point) note
330  */
331 static void *nt_fpregset(void *ptr, struct save_area *sa)
332 {
333 	elf_fpregset_t nt_fpregset;
334 
335 	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
336 	memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
337 	memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
338 
339 	return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
340 		       "CORE");
341 }
342 
343 /*
344  * Initialize timer note
345  */
346 static void *nt_s390_timer(void *ptr, struct save_area *sa)
347 {
348 	return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
349 			 KEXEC_CORE_NOTE_NAME);
350 }
351 
352 /*
353  * Initialize TOD clock comparator note
354  */
355 static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
356 {
357 	return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
358 		       sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
359 }
360 
361 /*
362  * Initialize TOD programmable register note
363  */
364 static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
365 {
366 	return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
367 		       sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
368 }
369 
370 /*
371  * Initialize control register note
372  */
373 static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
374 {
375 	return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
376 		       sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
377 }
378 
379 /*
380  * Initialize prefix register note
381  */
382 static void *nt_s390_prefix(void *ptr, struct save_area *sa)
383 {
384 	return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
385 			 sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
386 }
387 
388 /*
389  * Initialize vxrs high note (full 128 bit VX registers 16-31)
390  */
391 static void *nt_s390_vx_high(void *ptr, __vector128 *vx_regs)
392 {
393 	return nt_init(ptr, NT_S390_VXRS_HIGH, &vx_regs[16],
394 		       16 * sizeof(__vector128), KEXEC_CORE_NOTE_NAME);
395 }
396 
397 /*
398  * Initialize vxrs low note (lower halves of VX registers 0-15)
399  */
400 static void *nt_s390_vx_low(void *ptr, __vector128 *vx_regs)
401 {
402 	Elf64_Nhdr *note;
403 	u64 len;
404 	int i;
405 
406 	note = (Elf64_Nhdr *)ptr;
407 	note->n_namesz = strlen(KEXEC_CORE_NOTE_NAME) + 1;
408 	note->n_descsz = 16 * 8;
409 	note->n_type = NT_S390_VXRS_LOW;
410 	len = sizeof(Elf64_Nhdr);
411 
412 	memcpy(ptr + len, KEXEC_CORE_NOTE_NAME, note->n_namesz);
413 	len = roundup(len + note->n_namesz, 4);
414 
415 	ptr += len;
416 	/* Copy lower halves of SIMD registers 0-15 */
417 	for (i = 0; i < 16; i++) {
418 		memcpy(ptr, &vx_regs[i], 8);
419 		ptr += 8;
420 	}
421 	return ptr;
422 }
423 
424 /*
425  * Fill ELF notes for one CPU with save area registers
426  */
427 void *fill_cpu_elf_notes(void *ptr, struct save_area *sa, __vector128 *vx_regs)
428 {
429 	ptr = nt_prstatus(ptr, sa);
430 	ptr = nt_fpregset(ptr, sa);
431 	ptr = nt_s390_timer(ptr, sa);
432 	ptr = nt_s390_tod_cmp(ptr, sa);
433 	ptr = nt_s390_tod_preg(ptr, sa);
434 	ptr = nt_s390_ctrs(ptr, sa);
435 	ptr = nt_s390_prefix(ptr, sa);
436 	if (MACHINE_HAS_VX && vx_regs) {
437 		ptr = nt_s390_vx_low(ptr, vx_regs);
438 		ptr = nt_s390_vx_high(ptr, vx_regs);
439 	}
440 	return ptr;
441 }
442 
443 /*
444  * Initialize prpsinfo note (new kernel)
445  */
446 static void *nt_prpsinfo(void *ptr)
447 {
448 	struct elf_prpsinfo prpsinfo;
449 
450 	memset(&prpsinfo, 0, sizeof(prpsinfo));
451 	prpsinfo.pr_sname = 'R';
452 	strcpy(prpsinfo.pr_fname, "vmlinux");
453 	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
454 		       KEXEC_CORE_NOTE_NAME);
455 }
456 
457 /*
458  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
459  */
460 static void *get_vmcoreinfo_old(unsigned long *size)
461 {
462 	char nt_name[11], *vmcoreinfo;
463 	Elf64_Nhdr note;
464 	void *addr;
465 
466 	if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
467 		return NULL;
468 	memset(nt_name, 0, sizeof(nt_name));
469 	if (copy_from_oldmem(&note, addr, sizeof(note)))
470 		return NULL;
471 	if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
472 		return NULL;
473 	if (strcmp(nt_name, "VMCOREINFO") != 0)
474 		return NULL;
475 	vmcoreinfo = kzalloc_panic(note.n_descsz);
476 	if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
477 		return NULL;
478 	*size = note.n_descsz;
479 	return vmcoreinfo;
480 }
481 
482 /*
483  * Initialize vmcoreinfo note (new kernel)
484  */
485 static void *nt_vmcoreinfo(void *ptr)
486 {
487 	unsigned long size;
488 	void *vmcoreinfo;
489 
490 	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
491 	if (!vmcoreinfo)
492 		vmcoreinfo = get_vmcoreinfo_old(&size);
493 	if (!vmcoreinfo)
494 		return ptr;
495 	return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
496 }
497 
498 /*
499  * Initialize ELF header (new kernel)
500  */
501 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
502 {
503 	memset(ehdr, 0, sizeof(*ehdr));
504 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
505 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
506 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
507 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
508 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
509 	ehdr->e_type = ET_CORE;
510 	ehdr->e_machine = EM_S390;
511 	ehdr->e_version = EV_CURRENT;
512 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
513 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
514 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
515 	ehdr->e_phnum = mem_chunk_cnt + 1;
516 	return ehdr + 1;
517 }
518 
519 /*
520  * Return CPU count for ELF header (new kernel)
521  */
522 static int get_cpu_cnt(void)
523 {
524 	int i, cpus = 0;
525 
526 	for (i = 0; i < dump_save_areas.count; i++) {
527 		if (dump_save_areas.areas[i]->sa.pref_reg == 0)
528 			continue;
529 		cpus++;
530 	}
531 	return cpus;
532 }
533 
534 /*
535  * Return memory chunk count for ELF header (new kernel)
536  */
537 static int get_mem_chunk_cnt(void)
538 {
539 	int cnt = 0;
540 	u64 idx;
541 
542 	for_each_dump_mem_range(idx, NUMA_NO_NODE, NULL, NULL, NULL)
543 		cnt++;
544 	return cnt;
545 }
546 
547 /*
548  * Initialize ELF loads (new kernel)
549  */
550 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
551 {
552 	phys_addr_t start, end;
553 	u64 idx;
554 
555 	for_each_dump_mem_range(idx, NUMA_NO_NODE, &start, &end, NULL) {
556 		phdr->p_filesz = end - start;
557 		phdr->p_type = PT_LOAD;
558 		phdr->p_offset = start;
559 		phdr->p_vaddr = start;
560 		phdr->p_paddr = start;
561 		phdr->p_memsz = end - start;
562 		phdr->p_flags = PF_R | PF_W | PF_X;
563 		phdr->p_align = PAGE_SIZE;
564 		phdr++;
565 	}
566 }
567 
568 /*
569  * Initialize notes (new kernel)
570  */
571 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
572 {
573 	struct save_area_ext *sa_ext;
574 	void *ptr_start = ptr;
575 	int i;
576 
577 	ptr = nt_prpsinfo(ptr);
578 
579 	for (i = 0; i < dump_save_areas.count; i++) {
580 		sa_ext = dump_save_areas.areas[i];
581 		if (sa_ext->sa.pref_reg == 0)
582 			continue;
583 		ptr = fill_cpu_elf_notes(ptr, &sa_ext->sa, sa_ext->vx_regs);
584 	}
585 	ptr = nt_vmcoreinfo(ptr);
586 	memset(phdr, 0, sizeof(*phdr));
587 	phdr->p_type = PT_NOTE;
588 	phdr->p_offset = notes_offset;
589 	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
590 	phdr->p_memsz = phdr->p_filesz;
591 	return ptr;
592 }
593 
594 /*
595  * Create ELF core header (new kernel)
596  */
597 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
598 {
599 	Elf64_Phdr *phdr_notes, *phdr_loads;
600 	int mem_chunk_cnt;
601 	void *ptr, *hdr;
602 	u32 alloc_size;
603 	u64 hdr_off;
604 
605 	/* If we are not in kdump or zfcpdump mode return */
606 	if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
607 		return 0;
608 	/* If elfcorehdr= has been passed via cmdline, we use that one */
609 	if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
610 		return 0;
611 	/* If we cannot get HSA size for zfcpdump return error */
612 	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp_get_hsa_size())
613 		return -ENODEV;
614 
615 	/* For kdump, exclude previous crashkernel memory */
616 	if (OLDMEM_BASE) {
617 		oldmem_region.base = OLDMEM_BASE;
618 		oldmem_region.size = OLDMEM_SIZE;
619 		oldmem_type.total_size = OLDMEM_SIZE;
620 	}
621 
622 	mem_chunk_cnt = get_mem_chunk_cnt();
623 
624 	alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
625 		mem_chunk_cnt * sizeof(Elf64_Phdr);
626 	hdr = kzalloc_panic(alloc_size);
627 	/* Init elf header */
628 	ptr = ehdr_init(hdr, mem_chunk_cnt);
629 	/* Init program headers */
630 	phdr_notes = ptr;
631 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
632 	phdr_loads = ptr;
633 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
634 	/* Init notes */
635 	hdr_off = PTR_DIFF(ptr, hdr);
636 	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
637 	/* Init loads */
638 	hdr_off = PTR_DIFF(ptr, hdr);
639 	loads_init(phdr_loads, hdr_off);
640 	*addr = (unsigned long long) hdr;
641 	elfcorehdr_newmem = hdr;
642 	*size = (unsigned long long) hdr_off;
643 	BUG_ON(elfcorehdr_size > alloc_size);
644 	return 0;
645 }
646 
647 /*
648  * Free ELF core header (new kernel)
649  */
650 void elfcorehdr_free(unsigned long long addr)
651 {
652 	if (!elfcorehdr_newmem)
653 		return;
654 	kfree((void *)(unsigned long)addr);
655 }
656 
657 /*
658  * Read from ELF header
659  */
660 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
661 {
662 	void *src = (void *)(unsigned long)*ppos;
663 
664 	src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
665 	memcpy(buf, src, count);
666 	*ppos += count;
667 	return count;
668 }
669 
670 /*
671  * Read from ELF notes data
672  */
673 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
674 {
675 	void *src = (void *)(unsigned long)*ppos;
676 	int rc;
677 
678 	if (elfcorehdr_newmem) {
679 		memcpy(buf, src, count);
680 	} else {
681 		rc = copy_from_oldmem(buf, src, count);
682 		if (rc)
683 			return rc;
684 	}
685 	*ppos += count;
686 	return count;
687 }
688