xref: /linux/arch/s390/kernel/crash_dump.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * S390 kdump implementation
3  *
4  * Copyright IBM Corp. 2011
5  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6  */
7 
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <linux/memblock.h>
17 #include <asm/os_info.h>
18 #include <asm/elf.h>
19 #include <asm/ipl.h>
20 #include <asm/sclp.h>
21 
22 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
23 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
24 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
25 
26 static struct memblock_region oldmem_region;
27 
28 static struct memblock_type oldmem_type = {
29 	.cnt = 1,
30 	.max = 1,
31 	.total_size = 0,
32 	.regions = &oldmem_region,
33 };
34 
35 #define for_each_dump_mem_range(i, nid, p_start, p_end, p_nid)		\
36 	for (i = 0, __next_mem_range(&i, nid, MEMBLOCK_NONE,		\
37 				     &memblock.physmem,			\
38 				     &oldmem_type, p_start,		\
39 				     p_end, p_nid);			\
40 	     i != (u64)ULLONG_MAX;					\
41 	     __next_mem_range(&i, nid, MEMBLOCK_NONE, &memblock.physmem,\
42 			      &oldmem_type,				\
43 			      p_start, p_end, p_nid))
44 
45 struct dump_save_areas dump_save_areas;
46 
47 /*
48  * Return physical address for virtual address
49  */
50 static inline void *load_real_addr(void *addr)
51 {
52 	unsigned long real_addr;
53 
54 	asm volatile(
55 		   "	lra     %0,0(%1)\n"
56 		   "	jz	0f\n"
57 		   "	la	%0,0\n"
58 		   "0:"
59 		   : "=a" (real_addr) : "a" (addr) : "cc");
60 	return (void *)real_addr;
61 }
62 
63 /*
64  * Copy real to virtual or real memory
65  */
66 static int copy_from_realmem(void *dest, void *src, size_t count)
67 {
68 	unsigned long size;
69 
70 	if (!count)
71 		return 0;
72 	if (!is_vmalloc_or_module_addr(dest))
73 		return memcpy_real(dest, src, count);
74 	do {
75 		size = min(count, PAGE_SIZE - (__pa(dest) & ~PAGE_MASK));
76 		if (memcpy_real(load_real_addr(dest), src, size))
77 			return -EFAULT;
78 		count -= size;
79 		dest += size;
80 		src += size;
81 	} while (count);
82 	return 0;
83 }
84 
85 /*
86  * Pointer to ELF header in new kernel
87  */
88 static void *elfcorehdr_newmem;
89 
90 /*
91  * Copy one page from zfcpdump "oldmem"
92  *
93  * For pages below HSA size memory from the HSA is copied. Otherwise
94  * real memory copy is used.
95  */
96 static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize,
97 					 unsigned long src, int userbuf)
98 {
99 	int rc;
100 
101 	if (src < sclp.hsa_size) {
102 		rc = memcpy_hsa(buf, src, csize, userbuf);
103 	} else {
104 		if (userbuf)
105 			rc = copy_to_user_real((void __force __user *) buf,
106 					       (void *) src, csize);
107 		else
108 			rc = memcpy_real(buf, (void *) src, csize);
109 	}
110 	return rc ? rc : csize;
111 }
112 
113 /*
114  * Copy one page from kdump "oldmem"
115  *
116  * For the kdump reserved memory this functions performs a swap operation:
117  *  - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
118  *  - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
119  */
120 static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize,
121 				      unsigned long src, int userbuf)
122 
123 {
124 	int rc;
125 
126 	if (src < OLDMEM_SIZE)
127 		src += OLDMEM_BASE;
128 	else if (src > OLDMEM_BASE &&
129 		 src < OLDMEM_BASE + OLDMEM_SIZE)
130 		src -= OLDMEM_BASE;
131 	if (userbuf)
132 		rc = copy_to_user_real((void __force __user *) buf,
133 				       (void *) src, csize);
134 	else
135 		rc = copy_from_realmem(buf, (void *) src, csize);
136 	return (rc == 0) ? rc : csize;
137 }
138 
139 /*
140  * Copy one page from "oldmem"
141  */
142 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
143 			 unsigned long offset, int userbuf)
144 {
145 	unsigned long src;
146 
147 	if (!csize)
148 		return 0;
149 	src = (pfn << PAGE_SHIFT) + offset;
150 	if (OLDMEM_BASE)
151 		return copy_oldmem_page_kdump(buf, csize, src, userbuf);
152 	else
153 		return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf);
154 }
155 
156 /*
157  * Remap "oldmem" for kdump
158  *
159  * For the kdump reserved memory this functions performs a swap operation:
160  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
161  */
162 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
163 					unsigned long from, unsigned long pfn,
164 					unsigned long size, pgprot_t prot)
165 {
166 	unsigned long size_old;
167 	int rc;
168 
169 	if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
170 		size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
171 		rc = remap_pfn_range(vma, from,
172 				     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
173 				     size_old, prot);
174 		if (rc || size == size_old)
175 			return rc;
176 		size -= size_old;
177 		from += size_old;
178 		pfn += size_old >> PAGE_SHIFT;
179 	}
180 	return remap_pfn_range(vma, from, pfn, size, prot);
181 }
182 
183 /*
184  * Remap "oldmem" for zfcpdump
185  *
186  * We only map available memory above HSA size. Memory below HSA size
187  * is read on demand using the copy_oldmem_page() function.
188  */
189 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
190 					   unsigned long from,
191 					   unsigned long pfn,
192 					   unsigned long size, pgprot_t prot)
193 {
194 	unsigned long hsa_end = sclp.hsa_size;
195 	unsigned long size_hsa;
196 
197 	if (pfn < hsa_end >> PAGE_SHIFT) {
198 		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
199 		if (size == size_hsa)
200 			return 0;
201 		size -= size_hsa;
202 		from += size_hsa;
203 		pfn += size_hsa >> PAGE_SHIFT;
204 	}
205 	return remap_pfn_range(vma, from, pfn, size, prot);
206 }
207 
208 /*
209  * Remap "oldmem" for kdump or zfcpdump
210  */
211 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
212 			   unsigned long pfn, unsigned long size, pgprot_t prot)
213 {
214 	if (OLDMEM_BASE)
215 		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
216 	else
217 		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
218 						       prot);
219 }
220 
221 /*
222  * Copy memory from old kernel
223  */
224 int copy_from_oldmem(void *dest, void *src, size_t count)
225 {
226 	unsigned long copied = 0;
227 	int rc;
228 
229 	if (OLDMEM_BASE) {
230 		if ((unsigned long) src < OLDMEM_SIZE) {
231 			copied = min(count, OLDMEM_SIZE - (unsigned long) src);
232 			rc = copy_from_realmem(dest, src + OLDMEM_BASE, copied);
233 			if (rc)
234 				return rc;
235 		}
236 	} else {
237 		unsigned long hsa_end = sclp.hsa_size;
238 		if ((unsigned long) src < hsa_end) {
239 			copied = min(count, hsa_end - (unsigned long) src);
240 			rc = memcpy_hsa(dest, (unsigned long) src, copied, 0);
241 			if (rc)
242 				return rc;
243 		}
244 	}
245 	return copy_from_realmem(dest + copied, src + copied, count - copied);
246 }
247 
248 /*
249  * Alloc memory and panic in case of ENOMEM
250  */
251 static void *kzalloc_panic(int len)
252 {
253 	void *rc;
254 
255 	rc = kzalloc(len, GFP_KERNEL);
256 	if (!rc)
257 		panic("s390 kdump kzalloc (%d) failed", len);
258 	return rc;
259 }
260 
261 /*
262  * Initialize ELF note
263  */
264 static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
265 		     const char *name)
266 {
267 	Elf64_Nhdr *note;
268 	u64 len;
269 
270 	note = (Elf64_Nhdr *)buf;
271 	note->n_namesz = strlen(name) + 1;
272 	note->n_descsz = d_len;
273 	note->n_type = type;
274 	len = sizeof(Elf64_Nhdr);
275 
276 	memcpy(buf + len, name, note->n_namesz);
277 	len = roundup(len + note->n_namesz, 4);
278 
279 	memcpy(buf + len, desc, note->n_descsz);
280 	len = roundup(len + note->n_descsz, 4);
281 
282 	return PTR_ADD(buf, len);
283 }
284 
285 /*
286  * Initialize prstatus note
287  */
288 static void *nt_prstatus(void *ptr, struct save_area *sa)
289 {
290 	struct elf_prstatus nt_prstatus;
291 	static int cpu_nr = 1;
292 
293 	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
294 	memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
295 	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
296 	memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
297 	nt_prstatus.pr_pid = cpu_nr;
298 	cpu_nr++;
299 
300 	return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
301 			 "CORE");
302 }
303 
304 /*
305  * Initialize fpregset (floating point) note
306  */
307 static void *nt_fpregset(void *ptr, struct save_area *sa)
308 {
309 	elf_fpregset_t nt_fpregset;
310 
311 	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
312 	memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
313 	memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
314 
315 	return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
316 		       "CORE");
317 }
318 
319 /*
320  * Initialize timer note
321  */
322 static void *nt_s390_timer(void *ptr, struct save_area *sa)
323 {
324 	return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
325 			 KEXEC_CORE_NOTE_NAME);
326 }
327 
328 /*
329  * Initialize TOD clock comparator note
330  */
331 static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
332 {
333 	return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
334 		       sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
335 }
336 
337 /*
338  * Initialize TOD programmable register note
339  */
340 static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
341 {
342 	return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
343 		       sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
344 }
345 
346 /*
347  * Initialize control register note
348  */
349 static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
350 {
351 	return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
352 		       sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
353 }
354 
355 /*
356  * Initialize prefix register note
357  */
358 static void *nt_s390_prefix(void *ptr, struct save_area *sa)
359 {
360 	return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
361 			 sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
362 }
363 
364 /*
365  * Initialize vxrs high note (full 128 bit VX registers 16-31)
366  */
367 static void *nt_s390_vx_high(void *ptr, __vector128 *vx_regs)
368 {
369 	return nt_init(ptr, NT_S390_VXRS_HIGH, &vx_regs[16],
370 		       16 * sizeof(__vector128), KEXEC_CORE_NOTE_NAME);
371 }
372 
373 /*
374  * Initialize vxrs low note (lower halves of VX registers 0-15)
375  */
376 static void *nt_s390_vx_low(void *ptr, __vector128 *vx_regs)
377 {
378 	Elf64_Nhdr *note;
379 	u64 len;
380 	int i;
381 
382 	note = (Elf64_Nhdr *)ptr;
383 	note->n_namesz = strlen(KEXEC_CORE_NOTE_NAME) + 1;
384 	note->n_descsz = 16 * 8;
385 	note->n_type = NT_S390_VXRS_LOW;
386 	len = sizeof(Elf64_Nhdr);
387 
388 	memcpy(ptr + len, KEXEC_CORE_NOTE_NAME, note->n_namesz);
389 	len = roundup(len + note->n_namesz, 4);
390 
391 	ptr += len;
392 	/* Copy lower halves of SIMD registers 0-15 */
393 	for (i = 0; i < 16; i++) {
394 		memcpy(ptr, &vx_regs[i].u[2], 8);
395 		ptr += 8;
396 	}
397 	return ptr;
398 }
399 
400 /*
401  * Fill ELF notes for one CPU with save area registers
402  */
403 void *fill_cpu_elf_notes(void *ptr, struct save_area *sa, __vector128 *vx_regs)
404 {
405 	ptr = nt_prstatus(ptr, sa);
406 	ptr = nt_fpregset(ptr, sa);
407 	ptr = nt_s390_timer(ptr, sa);
408 	ptr = nt_s390_tod_cmp(ptr, sa);
409 	ptr = nt_s390_tod_preg(ptr, sa);
410 	ptr = nt_s390_ctrs(ptr, sa);
411 	ptr = nt_s390_prefix(ptr, sa);
412 	if (MACHINE_HAS_VX && vx_regs) {
413 		ptr = nt_s390_vx_low(ptr, vx_regs);
414 		ptr = nt_s390_vx_high(ptr, vx_regs);
415 	}
416 	return ptr;
417 }
418 
419 /*
420  * Initialize prpsinfo note (new kernel)
421  */
422 static void *nt_prpsinfo(void *ptr)
423 {
424 	struct elf_prpsinfo prpsinfo;
425 
426 	memset(&prpsinfo, 0, sizeof(prpsinfo));
427 	prpsinfo.pr_sname = 'R';
428 	strcpy(prpsinfo.pr_fname, "vmlinux");
429 	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
430 		       KEXEC_CORE_NOTE_NAME);
431 }
432 
433 /*
434  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
435  */
436 static void *get_vmcoreinfo_old(unsigned long *size)
437 {
438 	char nt_name[11], *vmcoreinfo;
439 	Elf64_Nhdr note;
440 	void *addr;
441 
442 	if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
443 		return NULL;
444 	memset(nt_name, 0, sizeof(nt_name));
445 	if (copy_from_oldmem(&note, addr, sizeof(note)))
446 		return NULL;
447 	if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
448 		return NULL;
449 	if (strcmp(nt_name, "VMCOREINFO") != 0)
450 		return NULL;
451 	vmcoreinfo = kzalloc_panic(note.n_descsz);
452 	if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
453 		return NULL;
454 	*size = note.n_descsz;
455 	return vmcoreinfo;
456 }
457 
458 /*
459  * Initialize vmcoreinfo note (new kernel)
460  */
461 static void *nt_vmcoreinfo(void *ptr)
462 {
463 	unsigned long size;
464 	void *vmcoreinfo;
465 
466 	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
467 	if (!vmcoreinfo)
468 		vmcoreinfo = get_vmcoreinfo_old(&size);
469 	if (!vmcoreinfo)
470 		return ptr;
471 	return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
472 }
473 
474 /*
475  * Initialize ELF header (new kernel)
476  */
477 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
478 {
479 	memset(ehdr, 0, sizeof(*ehdr));
480 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
481 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
482 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
483 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
484 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
485 	ehdr->e_type = ET_CORE;
486 	ehdr->e_machine = EM_S390;
487 	ehdr->e_version = EV_CURRENT;
488 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
489 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
490 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
491 	ehdr->e_phnum = mem_chunk_cnt + 1;
492 	return ehdr + 1;
493 }
494 
495 /*
496  * Return CPU count for ELF header (new kernel)
497  */
498 static int get_cpu_cnt(void)
499 {
500 	int i, cpus = 0;
501 
502 	for (i = 0; i < dump_save_areas.count; i++) {
503 		if (dump_save_areas.areas[i]->sa.pref_reg == 0)
504 			continue;
505 		cpus++;
506 	}
507 	return cpus;
508 }
509 
510 /*
511  * Return memory chunk count for ELF header (new kernel)
512  */
513 static int get_mem_chunk_cnt(void)
514 {
515 	int cnt = 0;
516 	u64 idx;
517 
518 	for_each_dump_mem_range(idx, NUMA_NO_NODE, NULL, NULL, NULL)
519 		cnt++;
520 	return cnt;
521 }
522 
523 /*
524  * Initialize ELF loads (new kernel)
525  */
526 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
527 {
528 	phys_addr_t start, end;
529 	u64 idx;
530 
531 	for_each_dump_mem_range(idx, NUMA_NO_NODE, &start, &end, NULL) {
532 		phdr->p_filesz = end - start;
533 		phdr->p_type = PT_LOAD;
534 		phdr->p_offset = start;
535 		phdr->p_vaddr = start;
536 		phdr->p_paddr = start;
537 		phdr->p_memsz = end - start;
538 		phdr->p_flags = PF_R | PF_W | PF_X;
539 		phdr->p_align = PAGE_SIZE;
540 		phdr++;
541 	}
542 }
543 
544 /*
545  * Initialize notes (new kernel)
546  */
547 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
548 {
549 	struct save_area_ext *sa_ext;
550 	void *ptr_start = ptr;
551 	int i;
552 
553 	ptr = nt_prpsinfo(ptr);
554 
555 	for (i = 0; i < dump_save_areas.count; i++) {
556 		sa_ext = dump_save_areas.areas[i];
557 		if (sa_ext->sa.pref_reg == 0)
558 			continue;
559 		ptr = fill_cpu_elf_notes(ptr, &sa_ext->sa, sa_ext->vx_regs);
560 	}
561 	ptr = nt_vmcoreinfo(ptr);
562 	memset(phdr, 0, sizeof(*phdr));
563 	phdr->p_type = PT_NOTE;
564 	phdr->p_offset = notes_offset;
565 	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
566 	phdr->p_memsz = phdr->p_filesz;
567 	return ptr;
568 }
569 
570 /*
571  * Create ELF core header (new kernel)
572  */
573 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
574 {
575 	Elf64_Phdr *phdr_notes, *phdr_loads;
576 	int mem_chunk_cnt;
577 	void *ptr, *hdr;
578 	u32 alloc_size;
579 	u64 hdr_off;
580 
581 	/* If we are not in kdump or zfcpdump mode return */
582 	if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
583 		return 0;
584 	/* If elfcorehdr= has been passed via cmdline, we use that one */
585 	if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
586 		return 0;
587 	/* If we cannot get HSA size for zfcpdump return error */
588 	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
589 		return -ENODEV;
590 
591 	/* For kdump, exclude previous crashkernel memory */
592 	if (OLDMEM_BASE) {
593 		oldmem_region.base = OLDMEM_BASE;
594 		oldmem_region.size = OLDMEM_SIZE;
595 		oldmem_type.total_size = OLDMEM_SIZE;
596 	}
597 
598 	mem_chunk_cnt = get_mem_chunk_cnt();
599 
600 	alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
601 		mem_chunk_cnt * sizeof(Elf64_Phdr);
602 	hdr = kzalloc_panic(alloc_size);
603 	/* Init elf header */
604 	ptr = ehdr_init(hdr, mem_chunk_cnt);
605 	/* Init program headers */
606 	phdr_notes = ptr;
607 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
608 	phdr_loads = ptr;
609 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
610 	/* Init notes */
611 	hdr_off = PTR_DIFF(ptr, hdr);
612 	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
613 	/* Init loads */
614 	hdr_off = PTR_DIFF(ptr, hdr);
615 	loads_init(phdr_loads, hdr_off);
616 	*addr = (unsigned long long) hdr;
617 	elfcorehdr_newmem = hdr;
618 	*size = (unsigned long long) hdr_off;
619 	BUG_ON(elfcorehdr_size > alloc_size);
620 	return 0;
621 }
622 
623 /*
624  * Free ELF core header (new kernel)
625  */
626 void elfcorehdr_free(unsigned long long addr)
627 {
628 	if (!elfcorehdr_newmem)
629 		return;
630 	kfree((void *)(unsigned long)addr);
631 }
632 
633 /*
634  * Read from ELF header
635  */
636 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
637 {
638 	void *src = (void *)(unsigned long)*ppos;
639 
640 	src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
641 	memcpy(buf, src, count);
642 	*ppos += count;
643 	return count;
644 }
645 
646 /*
647  * Read from ELF notes data
648  */
649 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
650 {
651 	void *src = (void *)(unsigned long)*ppos;
652 	int rc;
653 
654 	if (elfcorehdr_newmem) {
655 		memcpy(buf, src, count);
656 	} else {
657 		rc = copy_from_oldmem(buf, src, count);
658 		if (rc)
659 			return rc;
660 	}
661 	*ppos += count;
662 	return count;
663 }
664