1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * S390 kdump implementation 4 * 5 * Copyright IBM Corp. 2011 6 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com> 7 */ 8 9 #include <linux/crash_dump.h> 10 #include <asm/lowcore.h> 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/mm.h> 14 #include <linux/gfp.h> 15 #include <linux/slab.h> 16 #include <linux/memblock.h> 17 #include <linux/elf.h> 18 #include <linux/uio.h> 19 #include <asm/asm-offsets.h> 20 #include <asm/os_info.h> 21 #include <asm/elf.h> 22 #include <asm/ipl.h> 23 #include <asm/sclp.h> 24 #include <asm/maccess.h> 25 #include <asm/fpu.h> 26 27 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y))) 28 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y))) 29 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y)))) 30 31 static struct memblock_region oldmem_region; 32 33 static struct memblock_type oldmem_type = { 34 .cnt = 1, 35 .max = 1, 36 .total_size = 0, 37 .regions = &oldmem_region, 38 .name = "oldmem", 39 }; 40 41 struct save_area { 42 struct list_head list; 43 u64 psw[2]; 44 u64 ctrs[16]; 45 u64 gprs[16]; 46 u32 acrs[16]; 47 u64 fprs[16]; 48 u32 fpc; 49 u32 prefix; 50 u32 todpreg; 51 u64 timer; 52 u64 todcmp; 53 u64 vxrs_low[16]; 54 __vector128 vxrs_high[16]; 55 }; 56 57 static LIST_HEAD(dump_save_areas); 58 59 /* 60 * Allocate a save area 61 */ 62 struct save_area * __init save_area_alloc(bool is_boot_cpu) 63 { 64 struct save_area *sa; 65 66 sa = memblock_alloc(sizeof(*sa), 8); 67 if (!sa) 68 return NULL; 69 70 if (is_boot_cpu) 71 list_add(&sa->list, &dump_save_areas); 72 else 73 list_add_tail(&sa->list, &dump_save_areas); 74 return sa; 75 } 76 77 /* 78 * Return the address of the save area for the boot CPU 79 */ 80 struct save_area * __init save_area_boot_cpu(void) 81 { 82 return list_first_entry_or_null(&dump_save_areas, struct save_area, list); 83 } 84 85 /* 86 * Copy CPU registers into the save area 87 */ 88 void __init save_area_add_regs(struct save_area *sa, void *regs) 89 { 90 struct lowcore *lc; 91 92 lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA); 93 memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw)); 94 memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs)); 95 memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs)); 96 memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs)); 97 memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs)); 98 memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc)); 99 memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix)); 100 memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg)); 101 memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer)); 102 memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp)); 103 } 104 105 /* 106 * Copy vector registers into the save area 107 */ 108 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs) 109 { 110 int i; 111 112 /* Copy lower halves of vector registers 0-15 */ 113 for (i = 0; i < 16; i++) 114 sa->vxrs_low[i] = vxrs[i].low; 115 /* Copy vector registers 16-31 */ 116 memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128)); 117 } 118 119 static size_t copy_oldmem_iter(struct iov_iter *iter, unsigned long src, size_t count) 120 { 121 size_t len, copied, res = 0; 122 123 while (count) { 124 if (!oldmem_data.start && src < sclp.hsa_size) { 125 /* Copy from zfcp/nvme dump HSA area */ 126 len = min(count, sclp.hsa_size - src); 127 copied = memcpy_hsa_iter(iter, src, len); 128 } else { 129 /* Check for swapped kdump oldmem areas */ 130 if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) { 131 src -= oldmem_data.start; 132 len = min(count, oldmem_data.size - src); 133 } else if (oldmem_data.start && src < oldmem_data.size) { 134 len = min(count, oldmem_data.size - src); 135 src += oldmem_data.start; 136 } else { 137 len = count; 138 } 139 copied = memcpy_real_iter(iter, src, len); 140 } 141 count -= copied; 142 src += copied; 143 res += copied; 144 if (copied < len) 145 break; 146 } 147 return res; 148 } 149 150 int copy_oldmem_kernel(void *dst, unsigned long src, size_t count) 151 { 152 struct iov_iter iter; 153 struct kvec kvec; 154 155 kvec.iov_base = dst; 156 kvec.iov_len = count; 157 iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count); 158 if (copy_oldmem_iter(&iter, src, count) < count) 159 return -EFAULT; 160 return 0; 161 } 162 163 /* 164 * Copy one page from "oldmem" 165 */ 166 ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize, 167 unsigned long offset) 168 { 169 unsigned long src; 170 171 src = pfn_to_phys(pfn) + offset; 172 return copy_oldmem_iter(iter, src, csize); 173 } 174 175 /* 176 * Remap "oldmem" for kdump 177 * 178 * For the kdump reserved memory this functions performs a swap operation: 179 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] 180 */ 181 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma, 182 unsigned long from, unsigned long pfn, 183 unsigned long size, pgprot_t prot) 184 { 185 unsigned long size_old; 186 int rc; 187 188 if (pfn < oldmem_data.size >> PAGE_SHIFT) { 189 size_old = min(size, oldmem_data.size - (pfn << PAGE_SHIFT)); 190 rc = remap_pfn_range(vma, from, 191 pfn + (oldmem_data.start >> PAGE_SHIFT), 192 size_old, prot); 193 if (rc || size == size_old) 194 return rc; 195 size -= size_old; 196 from += size_old; 197 pfn += size_old >> PAGE_SHIFT; 198 } 199 return remap_pfn_range(vma, from, pfn, size, prot); 200 } 201 202 /* 203 * Remap "oldmem" for zfcp/nvme dump 204 * 205 * We only map available memory above HSA size. Memory below HSA size 206 * is read on demand using the copy_oldmem_page() function. 207 */ 208 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma, 209 unsigned long from, 210 unsigned long pfn, 211 unsigned long size, pgprot_t prot) 212 { 213 unsigned long hsa_end = sclp.hsa_size; 214 unsigned long size_hsa; 215 216 if (pfn < hsa_end >> PAGE_SHIFT) { 217 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT)); 218 if (size == size_hsa) 219 return 0; 220 size -= size_hsa; 221 from += size_hsa; 222 pfn += size_hsa >> PAGE_SHIFT; 223 } 224 return remap_pfn_range(vma, from, pfn, size, prot); 225 } 226 227 /* 228 * Remap "oldmem" for kdump or zfcp/nvme dump 229 */ 230 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from, 231 unsigned long pfn, unsigned long size, pgprot_t prot) 232 { 233 if (oldmem_data.start) 234 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot); 235 else 236 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size, 237 prot); 238 } 239 240 /* 241 * Return true only when in a kdump or stand-alone kdump environment. 242 * Note that /proc/vmcore might also be available in "standard zfcp/nvme dump" 243 * environments, where this function returns false; see dump_available(). 244 */ 245 bool is_kdump_kernel(void) 246 { 247 return oldmem_data.start; 248 } 249 EXPORT_SYMBOL_GPL(is_kdump_kernel); 250 251 static const char *nt_name(Elf64_Word type) 252 { 253 const char *name = "LINUX"; 254 255 if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG) 256 name = KEXEC_CORE_NOTE_NAME; 257 return name; 258 } 259 260 /* 261 * Initialize ELF note 262 */ 263 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len, 264 const char *name) 265 { 266 Elf64_Nhdr *note; 267 u64 len; 268 269 note = (Elf64_Nhdr *)buf; 270 note->n_namesz = strlen(name) + 1; 271 note->n_descsz = d_len; 272 note->n_type = type; 273 len = sizeof(Elf64_Nhdr); 274 275 memcpy(buf + len, name, note->n_namesz); 276 len = roundup(len + note->n_namesz, 4); 277 278 memcpy(buf + len, desc, note->n_descsz); 279 len = roundup(len + note->n_descsz, 4); 280 281 return PTR_ADD(buf, len); 282 } 283 284 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len) 285 { 286 return nt_init_name(buf, type, desc, d_len, nt_name(type)); 287 } 288 289 /* 290 * Calculate the size of ELF note 291 */ 292 static size_t nt_size_name(int d_len, const char *name) 293 { 294 size_t size; 295 296 size = sizeof(Elf64_Nhdr); 297 size += roundup(strlen(name) + 1, 4); 298 size += roundup(d_len, 4); 299 300 return size; 301 } 302 303 static inline size_t nt_size(Elf64_Word type, int d_len) 304 { 305 return nt_size_name(d_len, nt_name(type)); 306 } 307 308 /* 309 * Fill ELF notes for one CPU with save area registers 310 */ 311 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa) 312 { 313 struct elf_prstatus nt_prstatus; 314 elf_fpregset_t nt_fpregset; 315 316 /* Prepare prstatus note */ 317 memset(&nt_prstatus, 0, sizeof(nt_prstatus)); 318 memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs)); 319 memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw)); 320 memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs)); 321 nt_prstatus.common.pr_pid = cpu; 322 /* Prepare fpregset (floating point) note */ 323 memset(&nt_fpregset, 0, sizeof(nt_fpregset)); 324 memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc)); 325 memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs)); 326 /* Create ELF notes for the CPU */ 327 ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus)); 328 ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset)); 329 ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer)); 330 ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp)); 331 ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg)); 332 ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs)); 333 ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix)); 334 if (cpu_has_vx()) { 335 ptr = nt_init(ptr, NT_S390_VXRS_HIGH, 336 &sa->vxrs_high, sizeof(sa->vxrs_high)); 337 ptr = nt_init(ptr, NT_S390_VXRS_LOW, 338 &sa->vxrs_low, sizeof(sa->vxrs_low)); 339 } 340 return ptr; 341 } 342 343 /* 344 * Calculate size of ELF notes per cpu 345 */ 346 static size_t get_cpu_elf_notes_size(void) 347 { 348 struct save_area *sa = NULL; 349 size_t size; 350 351 size = nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus)); 352 size += nt_size(NT_PRFPREG, sizeof(elf_fpregset_t)); 353 size += nt_size(NT_S390_TIMER, sizeof(sa->timer)); 354 size += nt_size(NT_S390_TODCMP, sizeof(sa->todcmp)); 355 size += nt_size(NT_S390_TODPREG, sizeof(sa->todpreg)); 356 size += nt_size(NT_S390_CTRS, sizeof(sa->ctrs)); 357 size += nt_size(NT_S390_PREFIX, sizeof(sa->prefix)); 358 if (cpu_has_vx()) { 359 size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high)); 360 size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low)); 361 } 362 363 return size; 364 } 365 366 /* 367 * Initialize prpsinfo note (new kernel) 368 */ 369 static void *nt_prpsinfo(void *ptr) 370 { 371 struct elf_prpsinfo prpsinfo; 372 373 memset(&prpsinfo, 0, sizeof(prpsinfo)); 374 prpsinfo.pr_sname = 'R'; 375 strcpy(prpsinfo.pr_fname, "vmlinux"); 376 return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo)); 377 } 378 379 /* 380 * Get vmcoreinfo using lowcore->vmcore_info (new kernel) 381 */ 382 static void *get_vmcoreinfo_old(unsigned long *size) 383 { 384 char nt_name[11], *vmcoreinfo; 385 unsigned long addr; 386 Elf64_Nhdr note; 387 388 if (copy_oldmem_kernel(&addr, __LC_VMCORE_INFO, sizeof(addr))) 389 return NULL; 390 memset(nt_name, 0, sizeof(nt_name)); 391 if (copy_oldmem_kernel(¬e, addr, sizeof(note))) 392 return NULL; 393 if (copy_oldmem_kernel(nt_name, addr + sizeof(note), 394 sizeof(nt_name) - 1)) 395 return NULL; 396 if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0) 397 return NULL; 398 vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL); 399 if (!vmcoreinfo) 400 return NULL; 401 if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) { 402 kfree(vmcoreinfo); 403 return NULL; 404 } 405 *size = note.n_descsz; 406 return vmcoreinfo; 407 } 408 409 /* 410 * Initialize vmcoreinfo note (new kernel) 411 */ 412 static void *nt_vmcoreinfo(void *ptr) 413 { 414 const char *name = VMCOREINFO_NOTE_NAME; 415 unsigned long size; 416 void *vmcoreinfo; 417 418 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size); 419 if (vmcoreinfo) 420 return nt_init_name(ptr, 0, vmcoreinfo, size, name); 421 422 vmcoreinfo = get_vmcoreinfo_old(&size); 423 if (!vmcoreinfo) 424 return ptr; 425 ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name); 426 kfree(vmcoreinfo); 427 return ptr; 428 } 429 430 static size_t nt_vmcoreinfo_size(void) 431 { 432 const char *name = VMCOREINFO_NOTE_NAME; 433 unsigned long size; 434 void *vmcoreinfo; 435 436 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size); 437 if (vmcoreinfo) 438 return nt_size_name(size, name); 439 440 vmcoreinfo = get_vmcoreinfo_old(&size); 441 if (!vmcoreinfo) 442 return 0; 443 444 kfree(vmcoreinfo); 445 return nt_size_name(size, name); 446 } 447 448 /* 449 * Initialize final note (needed for /proc/vmcore code) 450 */ 451 static void *nt_final(void *ptr) 452 { 453 Elf64_Nhdr *note; 454 455 note = (Elf64_Nhdr *) ptr; 456 note->n_namesz = 0; 457 note->n_descsz = 0; 458 note->n_type = 0; 459 return PTR_ADD(ptr, sizeof(Elf64_Nhdr)); 460 } 461 462 /* 463 * Initialize ELF header (new kernel) 464 */ 465 static void *ehdr_init(Elf64_Ehdr *ehdr, int phdr_count) 466 { 467 memset(ehdr, 0, sizeof(*ehdr)); 468 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 469 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 470 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 471 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 472 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 473 ehdr->e_type = ET_CORE; 474 ehdr->e_machine = EM_S390; 475 ehdr->e_version = EV_CURRENT; 476 ehdr->e_phoff = sizeof(Elf64_Ehdr); 477 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 478 ehdr->e_phentsize = sizeof(Elf64_Phdr); 479 /* Number of PT_LOAD program headers plus PT_NOTE program header */ 480 ehdr->e_phnum = phdr_count + 1; 481 return ehdr + 1; 482 } 483 484 /* 485 * Return CPU count for ELF header (new kernel) 486 */ 487 static int get_cpu_cnt(void) 488 { 489 struct save_area *sa; 490 int cpus = 0; 491 492 list_for_each_entry(sa, &dump_save_areas, list) 493 if (sa->prefix != 0) 494 cpus++; 495 return cpus; 496 } 497 498 /* 499 * Return memory chunk count for ELF header (new kernel) 500 */ 501 static int get_mem_chunk_cnt(void) 502 { 503 int cnt = 0; 504 u64 idx; 505 506 for_each_physmem_range(idx, &oldmem_type, NULL, NULL) 507 cnt++; 508 return cnt; 509 } 510 511 /* 512 * Initialize ELF loads (new kernel) 513 */ 514 static void loads_init(Elf64_Phdr *phdr, bool os_info_has_vm) 515 { 516 unsigned long old_identity_base = 0; 517 phys_addr_t start, end; 518 u64 idx; 519 520 if (os_info_has_vm) 521 old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE); 522 for_each_physmem_range(idx, &oldmem_type, &start, &end) { 523 phdr->p_type = PT_LOAD; 524 phdr->p_vaddr = old_identity_base + start; 525 phdr->p_offset = start; 526 phdr->p_paddr = start; 527 phdr->p_filesz = end - start; 528 phdr->p_memsz = end - start; 529 phdr->p_flags = PF_R | PF_W | PF_X; 530 phdr->p_align = PAGE_SIZE; 531 phdr++; 532 } 533 } 534 535 static bool os_info_has_vm(void) 536 { 537 return os_info_old_value(OS_INFO_KASLR_OFFSET); 538 } 539 540 /* 541 * Prepare PT_LOAD type program header for kernel image region 542 */ 543 static void text_init(Elf64_Phdr *phdr) 544 { 545 unsigned long start_phys = os_info_old_value(OS_INFO_IMAGE_PHYS); 546 unsigned long start = os_info_old_value(OS_INFO_IMAGE_START); 547 unsigned long end = os_info_old_value(OS_INFO_IMAGE_END); 548 549 phdr->p_type = PT_LOAD; 550 phdr->p_vaddr = start; 551 phdr->p_filesz = end - start; 552 phdr->p_memsz = end - start; 553 phdr->p_offset = start_phys; 554 phdr->p_paddr = start_phys; 555 phdr->p_flags = PF_R | PF_W | PF_X; 556 phdr->p_align = PAGE_SIZE; 557 } 558 559 /* 560 * Initialize notes (new kernel) 561 */ 562 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset) 563 { 564 struct save_area *sa; 565 void *ptr_start = ptr; 566 int cpu; 567 568 ptr = nt_prpsinfo(ptr); 569 570 cpu = 1; 571 list_for_each_entry(sa, &dump_save_areas, list) 572 if (sa->prefix != 0) 573 ptr = fill_cpu_elf_notes(ptr, cpu++, sa); 574 ptr = nt_vmcoreinfo(ptr); 575 ptr = nt_final(ptr); 576 memset(phdr, 0, sizeof(*phdr)); 577 phdr->p_type = PT_NOTE; 578 phdr->p_offset = notes_offset; 579 phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start); 580 phdr->p_memsz = phdr->p_filesz; 581 return ptr; 582 } 583 584 static size_t get_elfcorehdr_size(int phdr_count) 585 { 586 size_t size; 587 588 size = sizeof(Elf64_Ehdr); 589 /* PT_NOTES */ 590 size += sizeof(Elf64_Phdr); 591 /* nt_prpsinfo */ 592 size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo)); 593 /* regsets */ 594 size += get_cpu_cnt() * get_cpu_elf_notes_size(); 595 /* nt_vmcoreinfo */ 596 size += nt_vmcoreinfo_size(); 597 /* nt_final */ 598 size += sizeof(Elf64_Nhdr); 599 /* PT_LOADS */ 600 size += phdr_count * sizeof(Elf64_Phdr); 601 602 return size; 603 } 604 605 /* 606 * Create ELF core header (new kernel) 607 */ 608 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size) 609 { 610 Elf64_Phdr *phdr_notes, *phdr_loads, *phdr_text; 611 int mem_chunk_cnt, phdr_text_cnt; 612 size_t alloc_size; 613 void *ptr, *hdr; 614 u64 hdr_off; 615 616 /* If we are not in kdump or zfcp/nvme dump mode return */ 617 if (!oldmem_data.start && !is_ipl_type_dump()) 618 return 0; 619 /* If we cannot get HSA size for zfcp/nvme dump return error */ 620 if (is_ipl_type_dump() && !sclp.hsa_size) 621 return -ENODEV; 622 623 /* For kdump, exclude previous crashkernel memory */ 624 if (oldmem_data.start) { 625 oldmem_region.base = oldmem_data.start; 626 oldmem_region.size = oldmem_data.size; 627 oldmem_type.total_size = oldmem_data.size; 628 } 629 630 mem_chunk_cnt = get_mem_chunk_cnt(); 631 phdr_text_cnt = os_info_has_vm() ? 1 : 0; 632 633 alloc_size = get_elfcorehdr_size(mem_chunk_cnt + phdr_text_cnt); 634 635 hdr = kzalloc(alloc_size, GFP_KERNEL); 636 637 /* 638 * Without elfcorehdr /proc/vmcore cannot be created. Thus creating 639 * a dump with this crash kernel will fail. Panic now to allow other 640 * dump mechanisms to take over. 641 */ 642 if (!hdr) 643 panic("s390 kdump allocating elfcorehdr failed"); 644 645 /* Init elf header */ 646 phdr_notes = ehdr_init(hdr, mem_chunk_cnt + phdr_text_cnt); 647 /* Init program headers */ 648 if (phdr_text_cnt) { 649 phdr_text = phdr_notes + 1; 650 phdr_loads = phdr_text + 1; 651 } else { 652 phdr_loads = phdr_notes + 1; 653 } 654 ptr = PTR_ADD(phdr_loads, sizeof(Elf64_Phdr) * mem_chunk_cnt); 655 /* Init notes */ 656 hdr_off = PTR_DIFF(ptr, hdr); 657 ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off); 658 /* Init kernel text program header */ 659 if (phdr_text_cnt) 660 text_init(phdr_text); 661 /* Init loads */ 662 loads_init(phdr_loads, phdr_text_cnt); 663 /* Finalize program headers */ 664 hdr_off = PTR_DIFF(ptr, hdr); 665 *addr = (unsigned long long) hdr; 666 *size = (unsigned long long) hdr_off; 667 BUG_ON(elfcorehdr_size > alloc_size); 668 return 0; 669 } 670 671 /* 672 * Free ELF core header (new kernel) 673 */ 674 void elfcorehdr_free(unsigned long long addr) 675 { 676 kfree((void *)(unsigned long)addr); 677 } 678 679 /* 680 * Read from ELF header 681 */ 682 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos) 683 { 684 void *src = (void *)(unsigned long)*ppos; 685 686 memcpy(buf, src, count); 687 *ppos += count; 688 return count; 689 } 690 691 /* 692 * Read from ELF notes data 693 */ 694 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos) 695 { 696 void *src = (void *)(unsigned long)*ppos; 697 698 memcpy(buf, src, count); 699 *ppos += count; 700 return count; 701 } 702