1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * S390 kdump implementation 4 * 5 * Copyright IBM Corp. 2011 6 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com> 7 */ 8 9 #include <linux/crash_dump.h> 10 #include <linux/export.h> 11 #include <asm/lowcore.h> 12 #include <linux/kernel.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/gfp.h> 16 #include <linux/slab.h> 17 #include <linux/memblock.h> 18 #include <linux/elf.h> 19 #include <linux/uio.h> 20 #include <asm/asm-offsets.h> 21 #include <asm/os_info.h> 22 #include <asm/elf.h> 23 #include <asm/ipl.h> 24 #include <asm/sclp.h> 25 #include <asm/maccess.h> 26 #include <asm/fpu.h> 27 28 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y))) 29 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y))) 30 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y)))) 31 32 static struct memblock_region oldmem_region; 33 34 static struct memblock_type oldmem_type = { 35 .cnt = 1, 36 .max = 1, 37 .total_size = 0, 38 .regions = &oldmem_region, 39 .name = "oldmem", 40 }; 41 42 struct save_area { 43 struct list_head list; 44 u64 psw[2]; 45 u64 ctrs[16]; 46 u64 gprs[16]; 47 u32 acrs[16]; 48 u64 fprs[16]; 49 u32 fpc; 50 u32 prefix; 51 u32 todpreg; 52 u64 timer; 53 u64 todcmp; 54 u64 vxrs_low[16]; 55 __vector128 vxrs_high[16]; 56 }; 57 58 static LIST_HEAD(dump_save_areas); 59 60 /* 61 * Allocate a save area 62 */ 63 struct save_area * __init save_area_alloc(bool is_boot_cpu) 64 { 65 struct save_area *sa; 66 67 sa = memblock_alloc_or_panic(sizeof(*sa), 8); 68 69 if (is_boot_cpu) 70 list_add(&sa->list, &dump_save_areas); 71 else 72 list_add_tail(&sa->list, &dump_save_areas); 73 return sa; 74 } 75 76 /* 77 * Return the address of the save area for the boot CPU 78 */ 79 struct save_area * __init save_area_boot_cpu(void) 80 { 81 return list_first_entry_or_null(&dump_save_areas, struct save_area, list); 82 } 83 84 /* 85 * Copy CPU registers into the save area 86 */ 87 void __init save_area_add_regs(struct save_area *sa, void *regs) 88 { 89 struct lowcore *lc; 90 91 lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA); 92 memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw)); 93 memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs)); 94 memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs)); 95 memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs)); 96 memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs)); 97 memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc)); 98 memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix)); 99 memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg)); 100 memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer)); 101 memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp)); 102 } 103 104 /* 105 * Copy vector registers into the save area 106 */ 107 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs) 108 { 109 int i; 110 111 /* Copy lower halves of vector registers 0-15 */ 112 for (i = 0; i < 16; i++) 113 sa->vxrs_low[i] = vxrs[i].low; 114 /* Copy vector registers 16-31 */ 115 memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128)); 116 } 117 118 static size_t copy_oldmem_iter(struct iov_iter *iter, unsigned long src, size_t count) 119 { 120 size_t len, copied, res = 0; 121 122 while (count) { 123 if (!oldmem_data.start && src < sclp.hsa_size) { 124 /* Copy from zfcp/nvme dump HSA area */ 125 len = min(count, sclp.hsa_size - src); 126 copied = memcpy_hsa_iter(iter, src, len); 127 } else { 128 /* Check for swapped kdump oldmem areas */ 129 if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) { 130 src -= oldmem_data.start; 131 len = min(count, oldmem_data.size - src); 132 } else if (oldmem_data.start && src < oldmem_data.size) { 133 len = min(count, oldmem_data.size - src); 134 src += oldmem_data.start; 135 } else { 136 len = count; 137 } 138 copied = memcpy_real_iter(iter, src, len); 139 } 140 count -= copied; 141 src += copied; 142 res += copied; 143 if (copied < len) 144 break; 145 } 146 return res; 147 } 148 149 int copy_oldmem_kernel(void *dst, unsigned long src, size_t count) 150 { 151 struct iov_iter iter; 152 struct kvec kvec; 153 154 kvec.iov_base = dst; 155 kvec.iov_len = count; 156 iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count); 157 if (copy_oldmem_iter(&iter, src, count) < count) 158 return -EFAULT; 159 return 0; 160 } 161 162 /* 163 * Copy one page from "oldmem" 164 */ 165 ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize, 166 unsigned long offset) 167 { 168 unsigned long src; 169 170 src = pfn_to_phys(pfn) + offset; 171 return copy_oldmem_iter(iter, src, csize); 172 } 173 174 /* 175 * Remap "oldmem" for kdump 176 * 177 * For the kdump reserved memory this functions performs a swap operation: 178 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] 179 */ 180 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma, 181 unsigned long from, unsigned long pfn, 182 unsigned long size, pgprot_t prot) 183 { 184 unsigned long size_old; 185 int rc; 186 187 if (pfn < oldmem_data.size >> PAGE_SHIFT) { 188 size_old = min(size, oldmem_data.size - (pfn << PAGE_SHIFT)); 189 rc = remap_pfn_range(vma, from, 190 pfn + (oldmem_data.start >> PAGE_SHIFT), 191 size_old, prot); 192 if (rc || size == size_old) 193 return rc; 194 size -= size_old; 195 from += size_old; 196 pfn += size_old >> PAGE_SHIFT; 197 } 198 return remap_pfn_range(vma, from, pfn, size, prot); 199 } 200 201 /* 202 * Remap "oldmem" for zfcp/nvme dump 203 * 204 * We only map available memory above HSA size. Memory below HSA size 205 * is read on demand using the copy_oldmem_page() function. 206 */ 207 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma, 208 unsigned long from, 209 unsigned long pfn, 210 unsigned long size, pgprot_t prot) 211 { 212 unsigned long hsa_end = sclp.hsa_size; 213 unsigned long size_hsa; 214 215 if (pfn < hsa_end >> PAGE_SHIFT) { 216 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT)); 217 if (size == size_hsa) 218 return 0; 219 size -= size_hsa; 220 from += size_hsa; 221 pfn += size_hsa >> PAGE_SHIFT; 222 } 223 return remap_pfn_range(vma, from, pfn, size, prot); 224 } 225 226 /* 227 * Remap "oldmem" for kdump or zfcp/nvme dump 228 */ 229 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from, 230 unsigned long pfn, unsigned long size, pgprot_t prot) 231 { 232 if (oldmem_data.start) 233 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot); 234 else 235 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size, 236 prot); 237 } 238 239 /* 240 * Return true only when in a kdump or stand-alone kdump environment. 241 * Note that /proc/vmcore might also be available in "standard zfcp/nvme dump" 242 * environments, where this function returns false; see dump_available(). 243 */ 244 bool is_kdump_kernel(void) 245 { 246 return oldmem_data.start; 247 } 248 EXPORT_SYMBOL_GPL(is_kdump_kernel); 249 250 /* 251 * Initialize ELF note 252 */ 253 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len, 254 const char *name) 255 { 256 Elf64_Nhdr *note; 257 u64 len; 258 259 note = (Elf64_Nhdr *)buf; 260 note->n_namesz = strlen(name) + 1; 261 note->n_descsz = d_len; 262 note->n_type = type; 263 len = sizeof(Elf64_Nhdr); 264 265 memcpy(buf + len, name, note->n_namesz); 266 len = roundup(len + note->n_namesz, 4); 267 268 memcpy(buf + len, desc, note->n_descsz); 269 len = roundup(len + note->n_descsz, 4); 270 271 return PTR_ADD(buf, len); 272 } 273 274 #define nt_init(buf, type, desc) \ 275 nt_init_name(buf, NT_ ## type, &(desc), sizeof(desc), NN_ ## type) 276 277 /* 278 * Calculate the size of ELF note 279 */ 280 static size_t nt_size_name(int d_len, const char *name) 281 { 282 size_t size; 283 284 size = sizeof(Elf64_Nhdr); 285 size += roundup(strlen(name) + 1, 4); 286 size += roundup(d_len, 4); 287 288 return size; 289 } 290 291 #define nt_size(type, desc) nt_size_name(sizeof(desc), NN_ ## type) 292 293 /* 294 * Fill ELF notes for one CPU with save area registers 295 */ 296 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa) 297 { 298 struct elf_prstatus nt_prstatus; 299 elf_fpregset_t nt_fpregset; 300 301 /* Prepare prstatus note */ 302 memset(&nt_prstatus, 0, sizeof(nt_prstatus)); 303 memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs)); 304 memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw)); 305 memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs)); 306 nt_prstatus.common.pr_pid = cpu; 307 /* Prepare fpregset (floating point) note */ 308 memset(&nt_fpregset, 0, sizeof(nt_fpregset)); 309 memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc)); 310 memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs)); 311 /* Create ELF notes for the CPU */ 312 ptr = nt_init(ptr, PRSTATUS, nt_prstatus); 313 ptr = nt_init(ptr, PRFPREG, nt_fpregset); 314 ptr = nt_init(ptr, S390_TIMER, sa->timer); 315 ptr = nt_init(ptr, S390_TODCMP, sa->todcmp); 316 ptr = nt_init(ptr, S390_TODPREG, sa->todpreg); 317 ptr = nt_init(ptr, S390_CTRS, sa->ctrs); 318 ptr = nt_init(ptr, S390_PREFIX, sa->prefix); 319 if (cpu_has_vx()) { 320 ptr = nt_init(ptr, S390_VXRS_HIGH, sa->vxrs_high); 321 ptr = nt_init(ptr, S390_VXRS_LOW, sa->vxrs_low); 322 } 323 return ptr; 324 } 325 326 /* 327 * Calculate size of ELF notes per cpu 328 */ 329 static size_t get_cpu_elf_notes_size(void) 330 { 331 struct save_area *sa = NULL; 332 size_t size; 333 334 size = nt_size(PRSTATUS, struct elf_prstatus); 335 size += nt_size(PRFPREG, elf_fpregset_t); 336 size += nt_size(S390_TIMER, sa->timer); 337 size += nt_size(S390_TODCMP, sa->todcmp); 338 size += nt_size(S390_TODPREG, sa->todpreg); 339 size += nt_size(S390_CTRS, sa->ctrs); 340 size += nt_size(S390_PREFIX, sa->prefix); 341 if (cpu_has_vx()) { 342 size += nt_size(S390_VXRS_HIGH, sa->vxrs_high); 343 size += nt_size(S390_VXRS_LOW, sa->vxrs_low); 344 } 345 346 return size; 347 } 348 349 /* 350 * Initialize prpsinfo note (new kernel) 351 */ 352 static void *nt_prpsinfo(void *ptr) 353 { 354 struct elf_prpsinfo prpsinfo; 355 356 memset(&prpsinfo, 0, sizeof(prpsinfo)); 357 prpsinfo.pr_sname = 'R'; 358 strscpy(prpsinfo.pr_fname, "vmlinux"); 359 return nt_init(ptr, PRPSINFO, prpsinfo); 360 } 361 362 /* 363 * Get vmcoreinfo using lowcore->vmcore_info (new kernel) 364 */ 365 static void *get_vmcoreinfo_old(unsigned long *size) 366 { 367 char nt_name[11], *vmcoreinfo; 368 unsigned long addr; 369 Elf64_Nhdr note; 370 371 if (copy_oldmem_kernel(&addr, __LC_VMCORE_INFO, sizeof(addr))) 372 return NULL; 373 memset(nt_name, 0, sizeof(nt_name)); 374 if (copy_oldmem_kernel(¬e, addr, sizeof(note))) 375 return NULL; 376 if (copy_oldmem_kernel(nt_name, addr + sizeof(note), 377 sizeof(nt_name) - 1)) 378 return NULL; 379 if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0) 380 return NULL; 381 vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL); 382 if (!vmcoreinfo) 383 return NULL; 384 if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) { 385 kfree(vmcoreinfo); 386 return NULL; 387 } 388 *size = note.n_descsz; 389 return vmcoreinfo; 390 } 391 392 /* 393 * Initialize vmcoreinfo note (new kernel) 394 */ 395 static void *nt_vmcoreinfo(void *ptr) 396 { 397 const char *name = VMCOREINFO_NOTE_NAME; 398 unsigned long size; 399 void *vmcoreinfo; 400 401 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size); 402 if (vmcoreinfo) 403 return nt_init_name(ptr, 0, vmcoreinfo, size, name); 404 405 vmcoreinfo = get_vmcoreinfo_old(&size); 406 if (!vmcoreinfo) 407 return ptr; 408 ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name); 409 kfree(vmcoreinfo); 410 return ptr; 411 } 412 413 static size_t nt_vmcoreinfo_size(void) 414 { 415 const char *name = VMCOREINFO_NOTE_NAME; 416 unsigned long size; 417 void *vmcoreinfo; 418 419 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size); 420 if (vmcoreinfo) 421 return nt_size_name(size, name); 422 423 vmcoreinfo = get_vmcoreinfo_old(&size); 424 if (!vmcoreinfo) 425 return 0; 426 427 kfree(vmcoreinfo); 428 return nt_size_name(size, name); 429 } 430 431 /* 432 * Initialize final note (needed for /proc/vmcore code) 433 */ 434 static void *nt_final(void *ptr) 435 { 436 Elf64_Nhdr *note; 437 438 note = (Elf64_Nhdr *) ptr; 439 note->n_namesz = 0; 440 note->n_descsz = 0; 441 note->n_type = 0; 442 return PTR_ADD(ptr, sizeof(Elf64_Nhdr)); 443 } 444 445 /* 446 * Initialize ELF header (new kernel) 447 */ 448 static void *ehdr_init(Elf64_Ehdr *ehdr, int phdr_count) 449 { 450 memset(ehdr, 0, sizeof(*ehdr)); 451 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 452 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 453 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 454 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 455 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 456 ehdr->e_type = ET_CORE; 457 ehdr->e_machine = EM_S390; 458 ehdr->e_version = EV_CURRENT; 459 ehdr->e_phoff = sizeof(Elf64_Ehdr); 460 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 461 ehdr->e_phentsize = sizeof(Elf64_Phdr); 462 /* Number of PT_LOAD program headers plus PT_NOTE program header */ 463 ehdr->e_phnum = phdr_count + 1; 464 return ehdr + 1; 465 } 466 467 /* 468 * Return CPU count for ELF header (new kernel) 469 */ 470 static int get_cpu_cnt(void) 471 { 472 struct save_area *sa; 473 int cpus = 0; 474 475 list_for_each_entry(sa, &dump_save_areas, list) 476 if (sa->prefix != 0) 477 cpus++; 478 return cpus; 479 } 480 481 /* 482 * Return memory chunk count for ELF header (new kernel) 483 */ 484 static int get_mem_chunk_cnt(void) 485 { 486 int cnt = 0; 487 u64 idx; 488 489 for_each_physmem_range(idx, &oldmem_type, NULL, NULL) 490 cnt++; 491 return cnt; 492 } 493 494 static void fill_ptload(Elf64_Phdr *phdr, unsigned long paddr, 495 unsigned long vaddr, unsigned long size) 496 { 497 phdr->p_type = PT_LOAD; 498 phdr->p_vaddr = vaddr; 499 phdr->p_offset = paddr; 500 phdr->p_paddr = paddr; 501 phdr->p_filesz = size; 502 phdr->p_memsz = size; 503 phdr->p_flags = PF_R | PF_W | PF_X; 504 phdr->p_align = PAGE_SIZE; 505 } 506 507 /* 508 * Initialize ELF loads (new kernel) 509 */ 510 static void loads_init(Elf64_Phdr *phdr, bool os_info_has_vm) 511 { 512 unsigned long old_identity_base = 0; 513 phys_addr_t start, end; 514 u64 idx; 515 516 if (os_info_has_vm) 517 old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE); 518 for_each_physmem_range(idx, &oldmem_type, &start, &end) { 519 fill_ptload(phdr, start, old_identity_base + start, 520 end - start); 521 phdr++; 522 } 523 } 524 525 static bool os_info_has_vm(void) 526 { 527 return os_info_old_value(OS_INFO_KASLR_OFFSET); 528 } 529 530 #ifdef CONFIG_PROC_VMCORE_DEVICE_RAM 531 /* 532 * Fill PT_LOAD for a physical memory range owned by a device and detected by 533 * its device driver. 534 */ 535 void elfcorehdr_fill_device_ram_ptload_elf64(Elf64_Phdr *phdr, 536 unsigned long long paddr, unsigned long long size) 537 { 538 unsigned long old_identity_base = 0; 539 540 if (os_info_has_vm()) 541 old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE); 542 fill_ptload(phdr, paddr, old_identity_base + paddr, size); 543 } 544 #endif 545 546 /* 547 * Prepare PT_LOAD type program header for kernel image region 548 */ 549 static void text_init(Elf64_Phdr *phdr) 550 { 551 unsigned long start_phys = os_info_old_value(OS_INFO_IMAGE_PHYS); 552 unsigned long start = os_info_old_value(OS_INFO_IMAGE_START); 553 unsigned long end = os_info_old_value(OS_INFO_IMAGE_END); 554 555 phdr->p_type = PT_LOAD; 556 phdr->p_vaddr = start; 557 phdr->p_filesz = end - start; 558 phdr->p_memsz = end - start; 559 phdr->p_offset = start_phys; 560 phdr->p_paddr = start_phys; 561 phdr->p_flags = PF_R | PF_W | PF_X; 562 phdr->p_align = PAGE_SIZE; 563 } 564 565 /* 566 * Initialize notes (new kernel) 567 */ 568 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset) 569 { 570 struct save_area *sa; 571 void *ptr_start = ptr; 572 int cpu; 573 574 ptr = nt_prpsinfo(ptr); 575 576 cpu = 1; 577 list_for_each_entry(sa, &dump_save_areas, list) 578 if (sa->prefix != 0) 579 ptr = fill_cpu_elf_notes(ptr, cpu++, sa); 580 ptr = nt_vmcoreinfo(ptr); 581 ptr = nt_final(ptr); 582 memset(phdr, 0, sizeof(*phdr)); 583 phdr->p_type = PT_NOTE; 584 phdr->p_offset = notes_offset; 585 phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start); 586 phdr->p_memsz = phdr->p_filesz; 587 return ptr; 588 } 589 590 static size_t get_elfcorehdr_size(int phdr_count) 591 { 592 size_t size; 593 594 size = sizeof(Elf64_Ehdr); 595 /* PT_NOTES */ 596 size += sizeof(Elf64_Phdr); 597 /* nt_prpsinfo */ 598 size += nt_size(PRPSINFO, struct elf_prpsinfo); 599 /* regsets */ 600 size += get_cpu_cnt() * get_cpu_elf_notes_size(); 601 /* nt_vmcoreinfo */ 602 size += nt_vmcoreinfo_size(); 603 /* nt_final */ 604 size += sizeof(Elf64_Nhdr); 605 /* PT_LOADS */ 606 size += phdr_count * sizeof(Elf64_Phdr); 607 608 return size; 609 } 610 611 /* 612 * Create ELF core header (new kernel) 613 */ 614 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size) 615 { 616 Elf64_Phdr *phdr_notes, *phdr_loads, *phdr_text; 617 int mem_chunk_cnt, phdr_text_cnt; 618 size_t alloc_size; 619 void *ptr, *hdr; 620 u64 hdr_off; 621 622 /* If we are not in kdump or zfcp/nvme dump mode return */ 623 if (!oldmem_data.start && !is_ipl_type_dump()) 624 return 0; 625 /* If we cannot get HSA size for zfcp/nvme dump return error */ 626 if (is_ipl_type_dump() && !sclp.hsa_size) 627 return -ENODEV; 628 629 /* For kdump, exclude previous crashkernel memory */ 630 if (oldmem_data.start) { 631 oldmem_region.base = oldmem_data.start; 632 oldmem_region.size = oldmem_data.size; 633 oldmem_type.total_size = oldmem_data.size; 634 } 635 636 mem_chunk_cnt = get_mem_chunk_cnt(); 637 phdr_text_cnt = os_info_has_vm() ? 1 : 0; 638 639 alloc_size = get_elfcorehdr_size(mem_chunk_cnt + phdr_text_cnt); 640 641 hdr = kzalloc(alloc_size, GFP_KERNEL); 642 643 /* 644 * Without elfcorehdr /proc/vmcore cannot be created. Thus creating 645 * a dump with this crash kernel will fail. Panic now to allow other 646 * dump mechanisms to take over. 647 */ 648 if (!hdr) 649 panic("s390 kdump allocating elfcorehdr failed"); 650 651 /* Init elf header */ 652 phdr_notes = ehdr_init(hdr, mem_chunk_cnt + phdr_text_cnt); 653 /* Init program headers */ 654 if (phdr_text_cnt) { 655 phdr_text = phdr_notes + 1; 656 phdr_loads = phdr_text + 1; 657 } else { 658 phdr_loads = phdr_notes + 1; 659 } 660 ptr = PTR_ADD(phdr_loads, sizeof(Elf64_Phdr) * mem_chunk_cnt); 661 /* Init notes */ 662 hdr_off = PTR_DIFF(ptr, hdr); 663 ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off); 664 /* Init kernel text program header */ 665 if (phdr_text_cnt) 666 text_init(phdr_text); 667 /* Init loads */ 668 loads_init(phdr_loads, phdr_text_cnt); 669 /* Finalize program headers */ 670 hdr_off = PTR_DIFF(ptr, hdr); 671 *addr = (unsigned long long) hdr; 672 *size = (unsigned long long) hdr_off; 673 BUG_ON(elfcorehdr_size > alloc_size); 674 return 0; 675 } 676 677 /* 678 * Free ELF core header (new kernel) 679 */ 680 void elfcorehdr_free(unsigned long long addr) 681 { 682 kfree((void *)(unsigned long)addr); 683 } 684 685 /* 686 * Read from ELF header 687 */ 688 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos) 689 { 690 void *src = (void *)(unsigned long)*ppos; 691 692 memcpy(buf, src, count); 693 *ppos += count; 694 return count; 695 } 696 697 /* 698 * Read from ELF notes data 699 */ 700 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos) 701 { 702 void *src = (void *)(unsigned long)*ppos; 703 704 memcpy(buf, src, count); 705 *ppos += count; 706 return count; 707 } 708