1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * S390 version 4 * Copyright IBM Corp. 1999, 2000 5 * Author(s): Hartmut Penner (hp@de.ibm.com) 6 * Ulrich Weigand (weigand@de.ibm.com) 7 * Martin Schwidefsky (schwidefsky@de.ibm.com) 8 * 9 * Derived from "include/asm-i386/pgtable.h" 10 */ 11 12 #ifndef _ASM_S390_PGTABLE_H 13 #define _ASM_S390_PGTABLE_H 14 15 #include <linux/sched.h> 16 #include <linux/mm_types.h> 17 #include <linux/page-flags.h> 18 #include <linux/radix-tree.h> 19 #include <linux/atomic.h> 20 #include <asm/sections.h> 21 #include <asm/ctlreg.h> 22 #include <asm/bug.h> 23 #include <asm/page.h> 24 #include <asm/uv.h> 25 26 extern pgd_t swapper_pg_dir[]; 27 extern pgd_t invalid_pg_dir[]; 28 extern void paging_init(void); 29 extern struct ctlreg s390_invalid_asce; 30 31 enum { 32 PG_DIRECT_MAP_4K = 0, 33 PG_DIRECT_MAP_1M, 34 PG_DIRECT_MAP_2G, 35 PG_DIRECT_MAP_MAX 36 }; 37 38 extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]); 39 40 static inline void update_page_count(int level, long count) 41 { 42 if (IS_ENABLED(CONFIG_PROC_FS)) 43 atomic_long_add(count, &direct_pages_count[level]); 44 } 45 46 /* 47 * The S390 doesn't have any external MMU info: the kernel page 48 * tables contain all the necessary information. 49 */ 50 #define update_mmu_cache(vma, address, ptep) do { } while (0) 51 #define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0) 52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 53 54 /* 55 * ZERO_PAGE is a global shared page that is always zero; used 56 * for zero-mapped memory areas etc.. 57 */ 58 59 extern unsigned long empty_zero_page; 60 extern unsigned long zero_page_mask; 61 62 #define ZERO_PAGE(vaddr) \ 63 (virt_to_page((void *)(empty_zero_page + \ 64 (((unsigned long)(vaddr)) &zero_page_mask)))) 65 #define __HAVE_COLOR_ZERO_PAGE 66 67 /* TODO: s390 cannot support io_remap_pfn_range... */ 68 69 #define pte_ERROR(e) \ 70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) 71 #define pmd_ERROR(e) \ 72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) 73 #define pud_ERROR(e) \ 74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) 75 #define p4d_ERROR(e) \ 76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e)) 77 #define pgd_ERROR(e) \ 78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) 79 80 /* 81 * The vmalloc and module area will always be on the topmost area of the 82 * kernel mapping. 512GB are reserved for vmalloc by default. 83 * At the top of the vmalloc area a 2GB area is reserved where modules 84 * will reside. That makes sure that inter module branches always 85 * happen without trampolines and in addition the placement within a 86 * 2GB frame is branch prediction unit friendly. 87 */ 88 extern unsigned long __bootdata_preserved(VMALLOC_START); 89 extern unsigned long __bootdata_preserved(VMALLOC_END); 90 #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN) 91 extern struct page *__bootdata_preserved(vmemmap); 92 extern unsigned long __bootdata_preserved(vmemmap_size); 93 94 extern unsigned long __bootdata_preserved(MODULES_VADDR); 95 extern unsigned long __bootdata_preserved(MODULES_END); 96 #define MODULES_VADDR MODULES_VADDR 97 #define MODULES_END MODULES_END 98 #define MODULES_LEN (1UL << 31) 99 100 static inline int is_module_addr(void *addr) 101 { 102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 103 if (addr < (void *)MODULES_VADDR) 104 return 0; 105 if (addr > (void *)MODULES_END) 106 return 0; 107 return 1; 108 } 109 110 #ifdef CONFIG_KMSAN 111 #define KMSAN_VMALLOC_SIZE (VMALLOC_END - VMALLOC_START) 112 #define KMSAN_VMALLOC_SHADOW_START VMALLOC_END 113 #define KMSAN_VMALLOC_SHADOW_END (KMSAN_VMALLOC_SHADOW_START + KMSAN_VMALLOC_SIZE) 114 #define KMSAN_VMALLOC_ORIGIN_START KMSAN_VMALLOC_SHADOW_END 115 #define KMSAN_VMALLOC_ORIGIN_END (KMSAN_VMALLOC_ORIGIN_START + KMSAN_VMALLOC_SIZE) 116 #define KMSAN_MODULES_SHADOW_START KMSAN_VMALLOC_ORIGIN_END 117 #define KMSAN_MODULES_SHADOW_END (KMSAN_MODULES_SHADOW_START + MODULES_LEN) 118 #define KMSAN_MODULES_ORIGIN_START KMSAN_MODULES_SHADOW_END 119 #define KMSAN_MODULES_ORIGIN_END (KMSAN_MODULES_ORIGIN_START + MODULES_LEN) 120 #endif 121 122 #ifdef CONFIG_RANDOMIZE_BASE 123 #define KASLR_LEN (1UL << 31) 124 #else 125 #define KASLR_LEN 0UL 126 #endif 127 128 /* 129 * A 64 bit pagetable entry of S390 has following format: 130 * | PFRA |0IPC| OS | 131 * 0000000000111111111122222222223333333333444444444455555555556666 132 * 0123456789012345678901234567890123456789012345678901234567890123 133 * 134 * I Page-Invalid Bit: Page is not available for address-translation 135 * P Page-Protection Bit: Store access not possible for page 136 * C Change-bit override: HW is not required to set change bit 137 * 138 * A 64 bit segmenttable entry of S390 has following format: 139 * | P-table origin | TT 140 * 0000000000111111111122222222223333333333444444444455555555556666 141 * 0123456789012345678901234567890123456789012345678901234567890123 142 * 143 * I Segment-Invalid Bit: Segment is not available for address-translation 144 * C Common-Segment Bit: Segment is not private (PoP 3-30) 145 * P Page-Protection Bit: Store access not possible for page 146 * TT Type 00 147 * 148 * A 64 bit region table entry of S390 has following format: 149 * | S-table origin | TF TTTL 150 * 0000000000111111111122222222223333333333444444444455555555556666 151 * 0123456789012345678901234567890123456789012345678901234567890123 152 * 153 * I Segment-Invalid Bit: Segment is not available for address-translation 154 * TT Type 01 155 * TF 156 * TL Table length 157 * 158 * The 64 bit regiontable origin of S390 has following format: 159 * | region table origon | DTTL 160 * 0000000000111111111122222222223333333333444444444455555555556666 161 * 0123456789012345678901234567890123456789012345678901234567890123 162 * 163 * X Space-Switch event: 164 * G Segment-Invalid Bit: 165 * P Private-Space Bit: 166 * S Storage-Alteration: 167 * R Real space 168 * TL Table-Length: 169 * 170 * A storage key has the following format: 171 * | ACC |F|R|C|0| 172 * 0 3 4 5 6 7 173 * ACC: access key 174 * F : fetch protection bit 175 * R : referenced bit 176 * C : changed bit 177 */ 178 179 /* Hardware bits in the page table entry */ 180 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */ 181 #define _PAGE_PROTECT 0x200 /* HW read-only bit */ 182 #define _PAGE_INVALID 0x400 /* HW invalid bit */ 183 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ 184 185 /* Software bits in the page table entry */ 186 #define _PAGE_PRESENT 0x001 /* SW pte present bit */ 187 #define _PAGE_YOUNG 0x004 /* SW pte young bit */ 188 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ 189 #define _PAGE_READ 0x010 /* SW pte read bit */ 190 #define _PAGE_WRITE 0x020 /* SW pte write bit */ 191 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */ 192 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ 193 194 #ifdef CONFIG_MEM_SOFT_DIRTY 195 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ 196 #else 197 #define _PAGE_SOFT_DIRTY 0x000 198 #endif 199 200 #define _PAGE_SW_BITS 0xffUL /* All SW bits */ 201 202 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */ 203 204 /* Set of bits not changed in pte_modify */ 205 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ 206 _PAGE_YOUNG | _PAGE_SOFT_DIRTY) 207 208 /* 209 * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT 210 * HW bit and all SW bits. 211 */ 212 #define _PAGE_RDP_MASK ~(_PAGE_PROTECT | _PAGE_SW_BITS) 213 214 /* 215 * handle_pte_fault uses pte_present and pte_none to find out the pte type 216 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to 217 * distinguish present from not-present ptes. It is changed only with the page 218 * table lock held. 219 * 220 * The following table gives the different possible bit combinations for 221 * the pte hardware and software bits in the last 12 bits of a pte 222 * (. unassigned bit, x don't care, t swap type): 223 * 224 * 842100000000 225 * 000084210000 226 * 000000008421 227 * .IR.uswrdy.p 228 * empty .10.00000000 229 * swap .11..ttttt.0 230 * prot-none, clean, old .11.xx0000.1 231 * prot-none, clean, young .11.xx0001.1 232 * prot-none, dirty, old .11.xx0010.1 233 * prot-none, dirty, young .11.xx0011.1 234 * read-only, clean, old .11.xx0100.1 235 * read-only, clean, young .01.xx0101.1 236 * read-only, dirty, old .11.xx0110.1 237 * read-only, dirty, young .01.xx0111.1 238 * read-write, clean, old .11.xx1100.1 239 * read-write, clean, young .01.xx1101.1 240 * read-write, dirty, old .10.xx1110.1 241 * read-write, dirty, young .00.xx1111.1 242 * HW-bits: R read-only, I invalid 243 * SW-bits: p present, y young, d dirty, r read, w write, s special, 244 * u unused, l large 245 * 246 * pte_none is true for the bit pattern .10.00000000, pte == 0x400 247 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 248 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 249 */ 250 251 /* Bits in the segment/region table address-space-control-element */ 252 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */ 253 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 254 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 255 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 256 #define _ASCE_REAL_SPACE 0x20 /* real space control */ 257 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 258 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 259 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 260 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 261 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 262 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 263 264 /* Bits in the region table entry */ 265 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 266 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ 267 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */ 268 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */ 269 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ 270 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */ 271 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 272 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 273 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 274 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 275 276 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 277 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) 278 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 279 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) 280 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 281 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) 282 283 #define _REGION3_ENTRY_HARDWARE_BITS 0xfffffffffffff6ffUL 284 #define _REGION3_ENTRY_HARDWARE_BITS_LARGE 0xffffffff8001073cUL 285 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */ 286 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */ 287 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */ 288 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */ 289 #define _REGION3_ENTRY_WRITE 0x0002 /* SW region write bit */ 290 #define _REGION3_ENTRY_READ 0x0001 /* SW region read bit */ 291 292 #ifdef CONFIG_MEM_SOFT_DIRTY 293 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */ 294 #else 295 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */ 296 #endif 297 298 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL 299 300 /* Bits in the segment table entry */ 301 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe3fUL 302 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe3cUL 303 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff1073cUL 304 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 305 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */ 306 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */ 307 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */ 308 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 309 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */ 310 311 #define _SEGMENT_ENTRY (0) 312 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 313 314 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ 315 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ 316 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ 317 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */ 318 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */ 319 320 #ifdef CONFIG_MEM_SOFT_DIRTY 321 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ 322 #else 323 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ 324 #endif 325 326 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */ 327 #define _PAGE_ENTRIES 256 /* number of page table entries */ 328 329 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8) 330 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8) 331 332 #define _REGION1_SHIFT 53 333 #define _REGION2_SHIFT 42 334 #define _REGION3_SHIFT 31 335 #define _SEGMENT_SHIFT 20 336 337 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT) 338 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT) 339 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT) 340 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT) 341 #define _PAGE_INDEX (0xffUL << PAGE_SHIFT) 342 343 #define _REGION1_SIZE (1UL << _REGION1_SHIFT) 344 #define _REGION2_SIZE (1UL << _REGION2_SHIFT) 345 #define _REGION3_SIZE (1UL << _REGION3_SHIFT) 346 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT) 347 348 #define _REGION1_MASK (~(_REGION1_SIZE - 1)) 349 #define _REGION2_MASK (~(_REGION2_SIZE - 1)) 350 #define _REGION3_MASK (~(_REGION3_SIZE - 1)) 351 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1)) 352 353 #define PMD_SHIFT _SEGMENT_SHIFT 354 #define PUD_SHIFT _REGION3_SHIFT 355 #define P4D_SHIFT _REGION2_SHIFT 356 #define PGDIR_SHIFT _REGION1_SHIFT 357 358 #define PMD_SIZE _SEGMENT_SIZE 359 #define PUD_SIZE _REGION3_SIZE 360 #define P4D_SIZE _REGION2_SIZE 361 #define PGDIR_SIZE _REGION1_SIZE 362 363 #define PMD_MASK _SEGMENT_MASK 364 #define PUD_MASK _REGION3_MASK 365 #define P4D_MASK _REGION2_MASK 366 #define PGDIR_MASK _REGION1_MASK 367 368 #define PTRS_PER_PTE _PAGE_ENTRIES 369 #define PTRS_PER_PMD _CRST_ENTRIES 370 #define PTRS_PER_PUD _CRST_ENTRIES 371 #define PTRS_PER_P4D _CRST_ENTRIES 372 #define PTRS_PER_PGD _CRST_ENTRIES 373 374 /* 375 * Segment table and region3 table entry encoding 376 * (R = read-only, I = invalid, y = young bit): 377 * dy..R...I...wr 378 * prot-none, clean, old 00..1...1...00 379 * prot-none, clean, young 01..1...1...00 380 * prot-none, dirty, old 10..1...1...00 381 * prot-none, dirty, young 11..1...1...00 382 * read-only, clean, old 00..1...1...01 383 * read-only, clean, young 01..1...0...01 384 * read-only, dirty, old 10..1...1...01 385 * read-only, dirty, young 11..1...0...01 386 * read-write, clean, old 00..1...1...11 387 * read-write, clean, young 01..1...0...11 388 * read-write, dirty, old 10..0...1...11 389 * read-write, dirty, young 11..0...0...11 390 * The segment table origin is used to distinguish empty (origin==0) from 391 * read-write, old segment table entries (origin!=0) 392 * HW-bits: R read-only, I invalid 393 * SW-bits: y young, d dirty, r read, w write 394 */ 395 396 /* Page status table bits for virtualization */ 397 #define PGSTE_ACC_BITS 0xf000000000000000UL 398 #define PGSTE_FP_BIT 0x0800000000000000UL 399 #define PGSTE_PCL_BIT 0x0080000000000000UL 400 #define PGSTE_HR_BIT 0x0040000000000000UL 401 #define PGSTE_HC_BIT 0x0020000000000000UL 402 #define PGSTE_GR_BIT 0x0004000000000000UL 403 #define PGSTE_GC_BIT 0x0002000000000000UL 404 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ 405 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ 406 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */ 407 408 /* Guest Page State used for virtualization */ 409 #define _PGSTE_GPS_ZERO 0x0000000080000000UL 410 #define _PGSTE_GPS_NODAT 0x0000000040000000UL 411 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL 412 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL 413 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL 414 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL 415 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK 416 417 /* 418 * A user page table pointer has the space-switch-event bit, the 419 * private-space-control bit and the storage-alteration-event-control 420 * bit set. A kernel page table pointer doesn't need them. 421 */ 422 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 423 _ASCE_ALT_EVENT) 424 425 /* 426 * Page protection definitions. 427 */ 428 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT) 429 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 430 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 431 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 432 _PAGE_INVALID | _PAGE_PROTECT) 433 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 434 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 435 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 436 _PAGE_INVALID | _PAGE_PROTECT) 437 438 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 439 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 440 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 441 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 442 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ 443 _PAGE_PROTECT | _PAGE_NOEXEC) 444 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 445 _PAGE_YOUNG | _PAGE_DIRTY) 446 447 /* 448 * On s390 the page table entry has an invalid bit and a read-only bit. 449 * Read permission implies execute permission and write permission 450 * implies read permission. 451 */ 452 /*xwr*/ 453 454 /* 455 * Segment entry (large page) protection definitions. 456 */ 457 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ 458 _SEGMENT_ENTRY_PROTECT) 459 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \ 460 _SEGMENT_ENTRY_READ | \ 461 _SEGMENT_ENTRY_NOEXEC) 462 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \ 463 _SEGMENT_ENTRY_READ) 464 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \ 465 _SEGMENT_ENTRY_WRITE | \ 466 _SEGMENT_ENTRY_NOEXEC) 467 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \ 468 _SEGMENT_ENTRY_WRITE) 469 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \ 470 _SEGMENT_ENTRY_LARGE | \ 471 _SEGMENT_ENTRY_READ | \ 472 _SEGMENT_ENTRY_WRITE | \ 473 _SEGMENT_ENTRY_YOUNG | \ 474 _SEGMENT_ENTRY_DIRTY | \ 475 _SEGMENT_ENTRY_NOEXEC) 476 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \ 477 _SEGMENT_ENTRY_LARGE | \ 478 _SEGMENT_ENTRY_READ | \ 479 _SEGMENT_ENTRY_YOUNG | \ 480 _SEGMENT_ENTRY_PROTECT | \ 481 _SEGMENT_ENTRY_NOEXEC) 482 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \ 483 _SEGMENT_ENTRY_LARGE | \ 484 _SEGMENT_ENTRY_READ | \ 485 _SEGMENT_ENTRY_WRITE | \ 486 _SEGMENT_ENTRY_YOUNG | \ 487 _SEGMENT_ENTRY_DIRTY) 488 489 /* 490 * Region3 entry (large page) protection definitions. 491 */ 492 493 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \ 494 _REGION3_ENTRY_LARGE | \ 495 _REGION3_ENTRY_READ | \ 496 _REGION3_ENTRY_WRITE | \ 497 _REGION3_ENTRY_YOUNG | \ 498 _REGION3_ENTRY_DIRTY | \ 499 _REGION_ENTRY_NOEXEC) 500 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \ 501 _REGION3_ENTRY_LARGE | \ 502 _REGION3_ENTRY_READ | \ 503 _REGION3_ENTRY_YOUNG | \ 504 _REGION_ENTRY_PROTECT | \ 505 _REGION_ENTRY_NOEXEC) 506 #define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \ 507 _REGION3_ENTRY_LARGE | \ 508 _REGION3_ENTRY_READ | \ 509 _REGION3_ENTRY_WRITE | \ 510 _REGION3_ENTRY_YOUNG | \ 511 _REGION3_ENTRY_DIRTY) 512 513 static inline bool mm_p4d_folded(struct mm_struct *mm) 514 { 515 return mm->context.asce_limit <= _REGION1_SIZE; 516 } 517 #define mm_p4d_folded(mm) mm_p4d_folded(mm) 518 519 static inline bool mm_pud_folded(struct mm_struct *mm) 520 { 521 return mm->context.asce_limit <= _REGION2_SIZE; 522 } 523 #define mm_pud_folded(mm) mm_pud_folded(mm) 524 525 static inline bool mm_pmd_folded(struct mm_struct *mm) 526 { 527 return mm->context.asce_limit <= _REGION3_SIZE; 528 } 529 #define mm_pmd_folded(mm) mm_pmd_folded(mm) 530 531 static inline int mm_has_pgste(struct mm_struct *mm) 532 { 533 #ifdef CONFIG_PGSTE 534 if (unlikely(mm->context.has_pgste)) 535 return 1; 536 #endif 537 return 0; 538 } 539 540 static inline int mm_is_protected(struct mm_struct *mm) 541 { 542 #ifdef CONFIG_PGSTE 543 if (unlikely(atomic_read(&mm->context.protected_count))) 544 return 1; 545 #endif 546 return 0; 547 } 548 549 static inline int mm_alloc_pgste(struct mm_struct *mm) 550 { 551 #ifdef CONFIG_PGSTE 552 if (unlikely(mm->context.alloc_pgste)) 553 return 1; 554 #endif 555 return 0; 556 } 557 558 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 559 { 560 return __pte(pte_val(pte) & ~pgprot_val(prot)); 561 } 562 563 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 564 { 565 return __pte(pte_val(pte) | pgprot_val(prot)); 566 } 567 568 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) 569 { 570 return __pmd(pmd_val(pmd) & ~pgprot_val(prot)); 571 } 572 573 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) 574 { 575 return __pmd(pmd_val(pmd) | pgprot_val(prot)); 576 } 577 578 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot) 579 { 580 return __pud(pud_val(pud) & ~pgprot_val(prot)); 581 } 582 583 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot) 584 { 585 return __pud(pud_val(pud) | pgprot_val(prot)); 586 } 587 588 /* 589 * As soon as the guest uses storage keys or enables PV, we deduplicate all 590 * mapped shared zeropages and prevent new shared zeropages from getting 591 * mapped. 592 */ 593 #define mm_forbids_zeropage mm_forbids_zeropage 594 static inline int mm_forbids_zeropage(struct mm_struct *mm) 595 { 596 #ifdef CONFIG_PGSTE 597 if (!mm->context.allow_cow_sharing) 598 return 1; 599 #endif 600 return 0; 601 } 602 603 static inline int mm_uses_skeys(struct mm_struct *mm) 604 { 605 #ifdef CONFIG_PGSTE 606 if (mm->context.uses_skeys) 607 return 1; 608 #endif 609 return 0; 610 } 611 612 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new) 613 { 614 union register_pair r1 = { .even = old, .odd = new, }; 615 unsigned long address = (unsigned long)ptr | 1; 616 617 asm volatile( 618 " csp %[r1],%[address]" 619 : [r1] "+&d" (r1.pair), "+m" (*ptr) 620 : [address] "d" (address) 621 : "cc"); 622 } 623 624 /** 625 * cspg() - Compare and Swap and Purge (CSPG) 626 * @ptr: Pointer to the value to be exchanged 627 * @old: The expected old value 628 * @new: The new value 629 * 630 * Return: True if compare and swap was successful, otherwise false. 631 */ 632 static inline bool cspg(unsigned long *ptr, unsigned long old, unsigned long new) 633 { 634 union register_pair r1 = { .even = old, .odd = new, }; 635 unsigned long address = (unsigned long)ptr | 1; 636 637 asm volatile( 638 " cspg %[r1],%[address]" 639 : [r1] "+&d" (r1.pair), "+m" (*ptr) 640 : [address] "d" (address) 641 : "cc"); 642 return old == r1.even; 643 } 644 645 #define CRDTE_DTT_PAGE 0x00UL 646 #define CRDTE_DTT_SEGMENT 0x10UL 647 #define CRDTE_DTT_REGION3 0x14UL 648 #define CRDTE_DTT_REGION2 0x18UL 649 #define CRDTE_DTT_REGION1 0x1cUL 650 651 /** 652 * crdte() - Compare and Replace DAT Table Entry 653 * @old: The expected old value 654 * @new: The new value 655 * @table: Pointer to the value to be exchanged 656 * @dtt: Table type of the table to be exchanged 657 * @address: The address mapped by the entry to be replaced 658 * @asce: The ASCE of this entry 659 * 660 * Return: True if compare and replace was successful, otherwise false. 661 */ 662 static inline bool crdte(unsigned long old, unsigned long new, 663 unsigned long *table, unsigned long dtt, 664 unsigned long address, unsigned long asce) 665 { 666 union register_pair r1 = { .even = old, .odd = new, }; 667 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, }; 668 669 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0" 670 : [r1] "+&d" (r1.pair) 671 : [r2] "d" (r2.pair), [asce] "a" (asce) 672 : "memory", "cc"); 673 return old == r1.even; 674 } 675 676 /* 677 * pgd/p4d/pud/pmd/pte query functions 678 */ 679 static inline int pgd_folded(pgd_t pgd) 680 { 681 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1; 682 } 683 684 static inline int pgd_present(pgd_t pgd) 685 { 686 if (pgd_folded(pgd)) 687 return 1; 688 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 689 } 690 691 static inline int pgd_none(pgd_t pgd) 692 { 693 if (pgd_folded(pgd)) 694 return 0; 695 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; 696 } 697 698 static inline int pgd_bad(pgd_t pgd) 699 { 700 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1) 701 return 0; 702 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0; 703 } 704 705 static inline unsigned long pgd_pfn(pgd_t pgd) 706 { 707 unsigned long origin_mask; 708 709 origin_mask = _REGION_ENTRY_ORIGIN; 710 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT; 711 } 712 713 static inline int p4d_folded(p4d_t p4d) 714 { 715 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2; 716 } 717 718 static inline int p4d_present(p4d_t p4d) 719 { 720 if (p4d_folded(p4d)) 721 return 1; 722 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL; 723 } 724 725 static inline int p4d_none(p4d_t p4d) 726 { 727 if (p4d_folded(p4d)) 728 return 0; 729 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY; 730 } 731 732 static inline unsigned long p4d_pfn(p4d_t p4d) 733 { 734 unsigned long origin_mask; 735 736 origin_mask = _REGION_ENTRY_ORIGIN; 737 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT; 738 } 739 740 static inline int pud_folded(pud_t pud) 741 { 742 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3; 743 } 744 745 static inline int pud_present(pud_t pud) 746 { 747 if (pud_folded(pud)) 748 return 1; 749 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 750 } 751 752 static inline int pud_none(pud_t pud) 753 { 754 if (pud_folded(pud)) 755 return 0; 756 return pud_val(pud) == _REGION3_ENTRY_EMPTY; 757 } 758 759 #define pud_leaf pud_leaf 760 static inline bool pud_leaf(pud_t pud) 761 { 762 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 763 return 0; 764 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 765 } 766 767 #define pmd_leaf pmd_leaf 768 static inline bool pmd_leaf(pmd_t pmd) 769 { 770 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; 771 } 772 773 static inline int pmd_bad(pmd_t pmd) 774 { 775 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_leaf(pmd)) 776 return 1; 777 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; 778 } 779 780 static inline int pud_bad(pud_t pud) 781 { 782 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK; 783 784 if (type > _REGION_ENTRY_TYPE_R3 || pud_leaf(pud)) 785 return 1; 786 if (type < _REGION_ENTRY_TYPE_R3) 787 return 0; 788 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0; 789 } 790 791 static inline int p4d_bad(p4d_t p4d) 792 { 793 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK; 794 795 if (type > _REGION_ENTRY_TYPE_R2) 796 return 1; 797 if (type < _REGION_ENTRY_TYPE_R2) 798 return 0; 799 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0; 800 } 801 802 static inline int pmd_present(pmd_t pmd) 803 { 804 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY; 805 } 806 807 static inline int pmd_none(pmd_t pmd) 808 { 809 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY; 810 } 811 812 #define pmd_write pmd_write 813 static inline int pmd_write(pmd_t pmd) 814 { 815 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; 816 } 817 818 #define pud_write pud_write 819 static inline int pud_write(pud_t pud) 820 { 821 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0; 822 } 823 824 #define pmd_dirty pmd_dirty 825 static inline int pmd_dirty(pmd_t pmd) 826 { 827 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; 828 } 829 830 #define pmd_young pmd_young 831 static inline int pmd_young(pmd_t pmd) 832 { 833 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; 834 } 835 836 static inline int pte_present(pte_t pte) 837 { 838 /* Bit pattern: (pte & 0x001) == 0x001 */ 839 return (pte_val(pte) & _PAGE_PRESENT) != 0; 840 } 841 842 static inline int pte_none(pte_t pte) 843 { 844 /* Bit pattern: pte == 0x400 */ 845 return pte_val(pte) == _PAGE_INVALID; 846 } 847 848 static inline int pte_swap(pte_t pte) 849 { 850 /* Bit pattern: (pte & 0x201) == 0x200 */ 851 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) 852 == _PAGE_PROTECT; 853 } 854 855 static inline int pte_special(pte_t pte) 856 { 857 return (pte_val(pte) & _PAGE_SPECIAL); 858 } 859 860 #define __HAVE_ARCH_PTE_SAME 861 static inline int pte_same(pte_t a, pte_t b) 862 { 863 return pte_val(a) == pte_val(b); 864 } 865 866 #ifdef CONFIG_NUMA_BALANCING 867 static inline int pte_protnone(pte_t pte) 868 { 869 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); 870 } 871 872 static inline int pmd_protnone(pmd_t pmd) 873 { 874 /* pmd_leaf(pmd) implies pmd_present(pmd) */ 875 return pmd_leaf(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); 876 } 877 #endif 878 879 static inline int pte_swp_exclusive(pte_t pte) 880 { 881 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 882 } 883 884 static inline pte_t pte_swp_mkexclusive(pte_t pte) 885 { 886 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE)); 887 } 888 889 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 890 { 891 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE)); 892 } 893 894 static inline int pte_soft_dirty(pte_t pte) 895 { 896 return pte_val(pte) & _PAGE_SOFT_DIRTY; 897 } 898 #define pte_swp_soft_dirty pte_soft_dirty 899 900 static inline pte_t pte_mksoft_dirty(pte_t pte) 901 { 902 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY)); 903 } 904 #define pte_swp_mksoft_dirty pte_mksoft_dirty 905 906 static inline pte_t pte_clear_soft_dirty(pte_t pte) 907 { 908 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY)); 909 } 910 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty 911 912 static inline int pmd_soft_dirty(pmd_t pmd) 913 { 914 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; 915 } 916 917 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 918 { 919 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY)); 920 } 921 922 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 923 { 924 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY)); 925 } 926 927 /* 928 * query functions pte_write/pte_dirty/pte_young only work if 929 * pte_present() is true. Undefined behaviour if not.. 930 */ 931 static inline int pte_write(pte_t pte) 932 { 933 return (pte_val(pte) & _PAGE_WRITE) != 0; 934 } 935 936 static inline int pte_dirty(pte_t pte) 937 { 938 return (pte_val(pte) & _PAGE_DIRTY) != 0; 939 } 940 941 static inline int pte_young(pte_t pte) 942 { 943 return (pte_val(pte) & _PAGE_YOUNG) != 0; 944 } 945 946 #define __HAVE_ARCH_PTE_UNUSED 947 static inline int pte_unused(pte_t pte) 948 { 949 return pte_val(pte) & _PAGE_UNUSED; 950 } 951 952 /* 953 * Extract the pgprot value from the given pte while at the same time making it 954 * usable for kernel address space mappings where fault driven dirty and 955 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID 956 * must not be set. 957 */ 958 #define pte_pgprot pte_pgprot 959 static inline pgprot_t pte_pgprot(pte_t pte) 960 { 961 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK; 962 963 if (pte_write(pte)) 964 pte_flags |= pgprot_val(PAGE_KERNEL); 965 else 966 pte_flags |= pgprot_val(PAGE_KERNEL_RO); 967 pte_flags |= pte_val(pte) & mio_wb_bit_mask; 968 969 return __pgprot(pte_flags); 970 } 971 972 /* 973 * pgd/pmd/pte modification functions 974 */ 975 976 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) 977 { 978 WRITE_ONCE(*pgdp, pgd); 979 } 980 981 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) 982 { 983 WRITE_ONCE(*p4dp, p4d); 984 } 985 986 static inline void set_pud(pud_t *pudp, pud_t pud) 987 { 988 WRITE_ONCE(*pudp, pud); 989 } 990 991 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 992 { 993 WRITE_ONCE(*pmdp, pmd); 994 } 995 996 static inline void set_pte(pte_t *ptep, pte_t pte) 997 { 998 WRITE_ONCE(*ptep, pte); 999 } 1000 1001 static inline void pgd_clear(pgd_t *pgd) 1002 { 1003 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1) 1004 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY)); 1005 } 1006 1007 static inline void p4d_clear(p4d_t *p4d) 1008 { 1009 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 1010 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY)); 1011 } 1012 1013 static inline void pud_clear(pud_t *pud) 1014 { 1015 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 1016 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY)); 1017 } 1018 1019 static inline void pmd_clear(pmd_t *pmdp) 1020 { 1021 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1022 } 1023 1024 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 1025 { 1026 set_pte(ptep, __pte(_PAGE_INVALID)); 1027 } 1028 1029 /* 1030 * The following pte modification functions only work if 1031 * pte_present() is true. Undefined behaviour if not.. 1032 */ 1033 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 1034 { 1035 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK)); 1036 pte = set_pte_bit(pte, newprot); 1037 /* 1038 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX 1039 * has the invalid bit set, clear it again for readable, young pages 1040 */ 1041 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) 1042 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID)); 1043 /* 1044 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page 1045 * protection bit set, clear it again for writable, dirty pages 1046 */ 1047 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) 1048 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1049 return pte; 1050 } 1051 1052 static inline pte_t pte_wrprotect(pte_t pte) 1053 { 1054 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE)); 1055 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1056 } 1057 1058 static inline pte_t pte_mkwrite_novma(pte_t pte) 1059 { 1060 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE)); 1061 if (pte_val(pte) & _PAGE_DIRTY) 1062 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1063 return pte; 1064 } 1065 1066 static inline pte_t pte_mkclean(pte_t pte) 1067 { 1068 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY)); 1069 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1070 } 1071 1072 static inline pte_t pte_mkdirty(pte_t pte) 1073 { 1074 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY)); 1075 if (pte_val(pte) & _PAGE_WRITE) 1076 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1077 return pte; 1078 } 1079 1080 static inline pte_t pte_mkold(pte_t pte) 1081 { 1082 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG)); 1083 return set_pte_bit(pte, __pgprot(_PAGE_INVALID)); 1084 } 1085 1086 static inline pte_t pte_mkyoung(pte_t pte) 1087 { 1088 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG)); 1089 if (pte_val(pte) & _PAGE_READ) 1090 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID)); 1091 return pte; 1092 } 1093 1094 static inline pte_t pte_mkspecial(pte_t pte) 1095 { 1096 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL)); 1097 } 1098 1099 #ifdef CONFIG_HUGETLB_PAGE 1100 static inline pte_t pte_mkhuge(pte_t pte) 1101 { 1102 return set_pte_bit(pte, __pgprot(_PAGE_LARGE)); 1103 } 1104 #endif 1105 1106 #define IPTE_GLOBAL 0 1107 #define IPTE_LOCAL 1 1108 1109 #define IPTE_NODAT 0x400 1110 #define IPTE_GUEST_ASCE 0x800 1111 1112 static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep, 1113 unsigned long opt, unsigned long asce, 1114 int local) 1115 { 1116 unsigned long pto; 1117 1118 pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1); 1119 asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]" 1120 : "+m" (*ptep) 1121 : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt), 1122 [asce] "a" (asce), [m4] "i" (local)); 1123 } 1124 1125 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep, 1126 unsigned long opt, unsigned long asce, 1127 int local) 1128 { 1129 unsigned long pto = __pa(ptep); 1130 1131 if (__builtin_constant_p(opt) && opt == 0) { 1132 /* Invalidation + TLB flush for the pte */ 1133 asm volatile( 1134 " ipte %[r1],%[r2],0,%[m4]" 1135 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address), 1136 [m4] "i" (local)); 1137 return; 1138 } 1139 1140 /* Invalidate ptes with options + TLB flush of the ptes */ 1141 opt = opt | (asce & _ASCE_ORIGIN); 1142 asm volatile( 1143 " ipte %[r1],%[r2],%[r3],%[m4]" 1144 : [r2] "+a" (address), [r3] "+a" (opt) 1145 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1146 } 1147 1148 static __always_inline void __ptep_ipte_range(unsigned long address, int nr, 1149 pte_t *ptep, int local) 1150 { 1151 unsigned long pto = __pa(ptep); 1152 1153 /* Invalidate a range of ptes + TLB flush of the ptes */ 1154 do { 1155 asm volatile( 1156 " ipte %[r1],%[r2],%[r3],%[m4]" 1157 : [r2] "+a" (address), [r3] "+a" (nr) 1158 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1159 } while (nr != 255); 1160 } 1161 1162 /* 1163 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 1164 * both clear the TLB for the unmapped pte. The reason is that 1165 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 1166 * to modify an active pte. The sequence is 1167 * 1) ptep_get_and_clear 1168 * 2) set_pte_at 1169 * 3) flush_tlb_range 1170 * On s390 the tlb needs to get flushed with the modification of the pte 1171 * if the pte is active. The only way how this can be implemented is to 1172 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1173 * is a nop. 1174 */ 1175 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t); 1176 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t); 1177 1178 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1179 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1180 unsigned long addr, pte_t *ptep) 1181 { 1182 pte_t pte = *ptep; 1183 1184 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte)); 1185 return pte_young(pte); 1186 } 1187 1188 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1189 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1190 unsigned long address, pte_t *ptep) 1191 { 1192 return ptep_test_and_clear_young(vma, address, ptep); 1193 } 1194 1195 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1196 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1197 unsigned long addr, pte_t *ptep) 1198 { 1199 pte_t res; 1200 1201 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1202 /* At this point the reference through the mapping is still present */ 1203 if (mm_is_protected(mm) && pte_present(res)) 1204 uv_convert_from_secure_pte(res); 1205 return res; 1206 } 1207 1208 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1209 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); 1210 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, 1211 pte_t *, pte_t, pte_t); 1212 1213 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1214 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1215 unsigned long addr, pte_t *ptep) 1216 { 1217 pte_t res; 1218 1219 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID)); 1220 /* At this point the reference through the mapping is still present */ 1221 if (mm_is_protected(vma->vm_mm) && pte_present(res)) 1222 uv_convert_from_secure_pte(res); 1223 return res; 1224 } 1225 1226 /* 1227 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1228 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1229 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1230 * cannot be accessed while the batched unmap is running. In this case 1231 * full==1 and a simple pte_clear is enough. See tlb.h. 1232 */ 1233 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1234 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1235 unsigned long addr, 1236 pte_t *ptep, int full) 1237 { 1238 pte_t res; 1239 1240 if (full) { 1241 res = *ptep; 1242 set_pte(ptep, __pte(_PAGE_INVALID)); 1243 } else { 1244 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1245 } 1246 /* Nothing to do */ 1247 if (!mm_is_protected(mm) || !pte_present(res)) 1248 return res; 1249 /* 1250 * At this point the reference through the mapping is still present. 1251 * The notifier should have destroyed all protected vCPUs at this 1252 * point, so the destroy should be successful. 1253 */ 1254 if (full && !uv_destroy_pte(res)) 1255 return res; 1256 /* 1257 * If something went wrong and the page could not be destroyed, or 1258 * if this is not a mm teardown, the slower export is used as 1259 * fallback instead. 1260 */ 1261 uv_convert_from_secure_pte(res); 1262 return res; 1263 } 1264 1265 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1266 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1267 unsigned long addr, pte_t *ptep) 1268 { 1269 pte_t pte = *ptep; 1270 1271 if (pte_write(pte)) 1272 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte)); 1273 } 1274 1275 /* 1276 * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE 1277 * bits in the comparison. Those might change e.g. because of dirty and young 1278 * tracking. 1279 */ 1280 static inline int pte_allow_rdp(pte_t old, pte_t new) 1281 { 1282 /* 1283 * Only allow changes from RO to RW 1284 */ 1285 if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT) 1286 return 0; 1287 1288 return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK); 1289 } 1290 1291 static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma, 1292 unsigned long address, 1293 pte_t *ptep) 1294 { 1295 /* 1296 * RDP might not have propagated the PTE protection reset to all CPUs, 1297 * so there could be spurious TLB protection faults. 1298 * NOTE: This will also be called when a racing pagetable update on 1299 * another thread already installed the correct PTE. Both cases cannot 1300 * really be distinguished. 1301 * Therefore, only do the local TLB flush when RDP can be used, and the 1302 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead. 1303 * A local RDP can be used to do the flush. 1304 */ 1305 if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT)) 1306 __ptep_rdp(address, ptep, 0, 0, 1); 1307 } 1308 #define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault 1309 1310 void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep, 1311 pte_t new); 1312 1313 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1314 static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1315 unsigned long addr, pte_t *ptep, 1316 pte_t entry, int dirty) 1317 { 1318 if (pte_same(*ptep, entry)) 1319 return 0; 1320 if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry)) 1321 ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry); 1322 else 1323 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry); 1324 return 1; 1325 } 1326 1327 /* 1328 * Additional functions to handle KVM guest page tables 1329 */ 1330 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr, 1331 pte_t *ptep, pte_t entry); 1332 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1333 void ptep_notify(struct mm_struct *mm, unsigned long addr, 1334 pte_t *ptep, unsigned long bits); 1335 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr, 1336 pte_t *ptep, int prot, unsigned long bit); 1337 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr, 1338 pte_t *ptep , int reset); 1339 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1340 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr, 1341 pte_t *sptep, pte_t *tptep, pte_t pte); 1342 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep); 1343 1344 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address, 1345 pte_t *ptep); 1346 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1347 unsigned char key, bool nq); 1348 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1349 unsigned char key, unsigned char *oldkey, 1350 bool nq, bool mr, bool mc); 1351 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr); 1352 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1353 unsigned char *key); 1354 1355 int set_pgste_bits(struct mm_struct *mm, unsigned long addr, 1356 unsigned long bits, unsigned long value); 1357 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep); 1358 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc, 1359 unsigned long *oldpte, unsigned long *oldpgste); 1360 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr); 1361 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr); 1362 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr); 1363 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr); 1364 1365 #define pgprot_writecombine pgprot_writecombine 1366 pgprot_t pgprot_writecombine(pgprot_t prot); 1367 1368 #define pgprot_writethrough pgprot_writethrough 1369 pgprot_t pgprot_writethrough(pgprot_t prot); 1370 1371 #define PFN_PTE_SHIFT PAGE_SHIFT 1372 1373 /* 1374 * Set multiple PTEs to consecutive pages with a single call. All PTEs 1375 * are within the same folio, PMD and VMA. 1376 */ 1377 static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 1378 pte_t *ptep, pte_t entry, unsigned int nr) 1379 { 1380 if (pte_present(entry)) 1381 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED)); 1382 if (mm_has_pgste(mm)) { 1383 for (;;) { 1384 ptep_set_pte_at(mm, addr, ptep, entry); 1385 if (--nr == 0) 1386 break; 1387 ptep++; 1388 entry = __pte(pte_val(entry) + PAGE_SIZE); 1389 addr += PAGE_SIZE; 1390 } 1391 } else { 1392 for (;;) { 1393 set_pte(ptep, entry); 1394 if (--nr == 0) 1395 break; 1396 ptep++; 1397 entry = __pte(pte_val(entry) + PAGE_SIZE); 1398 } 1399 } 1400 } 1401 #define set_ptes set_ptes 1402 1403 /* 1404 * Conversion functions: convert a page and protection to a page entry, 1405 * and a page entry and page directory to the page they refer to. 1406 */ 1407 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1408 { 1409 pte_t __pte; 1410 1411 __pte = __pte(physpage | pgprot_val(pgprot)); 1412 if (!MACHINE_HAS_NX) 1413 __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC)); 1414 return pte_mkyoung(__pte); 1415 } 1416 1417 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1418 { 1419 unsigned long physpage = page_to_phys(page); 1420 pte_t __pte = mk_pte_phys(physpage, pgprot); 1421 1422 if (pte_write(__pte) && PageDirty(page)) 1423 __pte = pte_mkdirty(__pte); 1424 return __pte; 1425 } 1426 1427 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1428 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1)) 1429 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1430 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1431 1432 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN)) 1433 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN)) 1434 1435 static inline unsigned long pmd_deref(pmd_t pmd) 1436 { 1437 unsigned long origin_mask; 1438 1439 origin_mask = _SEGMENT_ENTRY_ORIGIN; 1440 if (pmd_leaf(pmd)) 1441 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 1442 return (unsigned long)__va(pmd_val(pmd) & origin_mask); 1443 } 1444 1445 static inline unsigned long pmd_pfn(pmd_t pmd) 1446 { 1447 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT; 1448 } 1449 1450 static inline unsigned long pud_deref(pud_t pud) 1451 { 1452 unsigned long origin_mask; 1453 1454 origin_mask = _REGION_ENTRY_ORIGIN; 1455 if (pud_leaf(pud)) 1456 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE; 1457 return (unsigned long)__va(pud_val(pud) & origin_mask); 1458 } 1459 1460 #define pud_pfn pud_pfn 1461 static inline unsigned long pud_pfn(pud_t pud) 1462 { 1463 return __pa(pud_deref(pud)) >> PAGE_SHIFT; 1464 } 1465 1466 /* 1467 * The pgd_offset function *always* adds the index for the top-level 1468 * region/segment table. This is done to get a sequence like the 1469 * following to work: 1470 * pgdp = pgd_offset(current->mm, addr); 1471 * pgd = READ_ONCE(*pgdp); 1472 * p4dp = p4d_offset(&pgd, addr); 1473 * ... 1474 * The subsequent p4d_offset, pud_offset and pmd_offset functions 1475 * only add an index if they dereferenced the pointer. 1476 */ 1477 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address) 1478 { 1479 unsigned long rste; 1480 unsigned int shift; 1481 1482 /* Get the first entry of the top level table */ 1483 rste = pgd_val(*pgd); 1484 /* Pick up the shift from the table type of the first entry */ 1485 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20; 1486 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1)); 1487 } 1488 1489 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address) 1490 1491 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address) 1492 { 1493 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1) 1494 return (p4d_t *) pgd_deref(pgd) + p4d_index(address); 1495 return (p4d_t *) pgdp; 1496 } 1497 #define p4d_offset_lockless p4d_offset_lockless 1498 1499 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address) 1500 { 1501 return p4d_offset_lockless(pgdp, *pgdp, address); 1502 } 1503 1504 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address) 1505 { 1506 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2) 1507 return (pud_t *) p4d_deref(p4d) + pud_index(address); 1508 return (pud_t *) p4dp; 1509 } 1510 #define pud_offset_lockless pud_offset_lockless 1511 1512 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address) 1513 { 1514 return pud_offset_lockless(p4dp, *p4dp, address); 1515 } 1516 #define pud_offset pud_offset 1517 1518 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address) 1519 { 1520 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3) 1521 return (pmd_t *) pud_deref(pud) + pmd_index(address); 1522 return (pmd_t *) pudp; 1523 } 1524 #define pmd_offset_lockless pmd_offset_lockless 1525 1526 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address) 1527 { 1528 return pmd_offset_lockless(pudp, *pudp, address); 1529 } 1530 #define pmd_offset pmd_offset 1531 1532 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 1533 { 1534 return (unsigned long) pmd_deref(pmd); 1535 } 1536 1537 static inline bool gup_fast_permitted(unsigned long start, unsigned long end) 1538 { 1539 return end <= current->mm->context.asce_limit; 1540 } 1541 #define gup_fast_permitted gup_fast_permitted 1542 1543 #define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot)) 1544 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1545 #define pte_page(x) pfn_to_page(pte_pfn(x)) 1546 1547 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1548 #define pud_page(pud) pfn_to_page(pud_pfn(pud)) 1549 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 1550 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 1551 1552 static inline pmd_t pmd_wrprotect(pmd_t pmd) 1553 { 1554 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE)); 1555 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1556 } 1557 1558 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) 1559 { 1560 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE)); 1561 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) 1562 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1563 return pmd; 1564 } 1565 1566 static inline pmd_t pmd_mkclean(pmd_t pmd) 1567 { 1568 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY)); 1569 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1570 } 1571 1572 static inline pmd_t pmd_mkdirty(pmd_t pmd) 1573 { 1574 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY)); 1575 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) 1576 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1577 return pmd; 1578 } 1579 1580 static inline pud_t pud_wrprotect(pud_t pud) 1581 { 1582 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE)); 1583 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1584 } 1585 1586 static inline pud_t pud_mkwrite(pud_t pud) 1587 { 1588 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE)); 1589 if (pud_val(pud) & _REGION3_ENTRY_DIRTY) 1590 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1591 return pud; 1592 } 1593 1594 static inline pud_t pud_mkclean(pud_t pud) 1595 { 1596 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY)); 1597 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1598 } 1599 1600 static inline pud_t pud_mkdirty(pud_t pud) 1601 { 1602 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY)); 1603 if (pud_val(pud) & _REGION3_ENTRY_WRITE) 1604 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1605 return pud; 1606 } 1607 1608 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1609 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1610 { 1611 /* 1612 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX 1613 * (see __Pxxx / __Sxxx). Convert to segment table entry format. 1614 */ 1615 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1616 return pgprot_val(SEGMENT_NONE); 1617 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) 1618 return pgprot_val(SEGMENT_RO); 1619 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX)) 1620 return pgprot_val(SEGMENT_RX); 1621 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW)) 1622 return pgprot_val(SEGMENT_RW); 1623 return pgprot_val(SEGMENT_RWX); 1624 } 1625 1626 static inline pmd_t pmd_mkyoung(pmd_t pmd) 1627 { 1628 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1629 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) 1630 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1631 return pmd; 1632 } 1633 1634 static inline pmd_t pmd_mkold(pmd_t pmd) 1635 { 1636 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1637 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1638 } 1639 1640 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1641 { 1642 unsigned long mask; 1643 1644 mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 1645 mask |= _SEGMENT_ENTRY_DIRTY; 1646 mask |= _SEGMENT_ENTRY_YOUNG; 1647 mask |= _SEGMENT_ENTRY_LARGE; 1648 mask |= _SEGMENT_ENTRY_SOFT_DIRTY; 1649 pmd = __pmd(pmd_val(pmd) & mask); 1650 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot))); 1651 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1652 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1653 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) 1654 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1655 return pmd; 1656 } 1657 1658 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1659 { 1660 return __pmd(physpage + massage_pgprot_pmd(pgprot)); 1661 } 1662 1663 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1664 1665 static inline void __pmdp_csp(pmd_t *pmdp) 1666 { 1667 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp), 1668 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1669 } 1670 1671 #define IDTE_GLOBAL 0 1672 #define IDTE_LOCAL 1 1673 1674 #define IDTE_PTOA 0x0800 1675 #define IDTE_NODAT 0x1000 1676 #define IDTE_GUEST_ASCE 0x2000 1677 1678 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp, 1679 unsigned long opt, unsigned long asce, 1680 int local) 1681 { 1682 unsigned long sto; 1683 1684 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t); 1685 if (__builtin_constant_p(opt) && opt == 0) { 1686 /* flush without guest asce */ 1687 asm volatile( 1688 " idte %[r1],0,%[r2],%[m4]" 1689 : "+m" (*pmdp) 1690 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)), 1691 [m4] "i" (local) 1692 : "cc" ); 1693 } else { 1694 /* flush with guest asce */ 1695 asm volatile( 1696 " idte %[r1],%[r3],%[r2],%[m4]" 1697 : "+m" (*pmdp) 1698 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt), 1699 [r3] "a" (asce), [m4] "i" (local) 1700 : "cc" ); 1701 } 1702 } 1703 1704 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp, 1705 unsigned long opt, unsigned long asce, 1706 int local) 1707 { 1708 unsigned long r3o; 1709 1710 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t); 1711 r3o |= _ASCE_TYPE_REGION3; 1712 if (__builtin_constant_p(opt) && opt == 0) { 1713 /* flush without guest asce */ 1714 asm volatile( 1715 " idte %[r1],0,%[r2],%[m4]" 1716 : "+m" (*pudp) 1717 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)), 1718 [m4] "i" (local) 1719 : "cc"); 1720 } else { 1721 /* flush with guest asce */ 1722 asm volatile( 1723 " idte %[r1],%[r3],%[r2],%[m4]" 1724 : "+m" (*pudp) 1725 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt), 1726 [r3] "a" (asce), [m4] "i" (local) 1727 : "cc" ); 1728 } 1729 } 1730 1731 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1732 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1733 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t); 1734 1735 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1736 1737 #define __HAVE_ARCH_PGTABLE_DEPOSIT 1738 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1739 pgtable_t pgtable); 1740 1741 #define __HAVE_ARCH_PGTABLE_WITHDRAW 1742 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1743 1744 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1745 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1746 unsigned long addr, pmd_t *pmdp, 1747 pmd_t entry, int dirty) 1748 { 1749 VM_BUG_ON(addr & ~HPAGE_MASK); 1750 1751 entry = pmd_mkyoung(entry); 1752 if (dirty) 1753 entry = pmd_mkdirty(entry); 1754 if (pmd_val(*pmdp) == pmd_val(entry)) 1755 return 0; 1756 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry); 1757 return 1; 1758 } 1759 1760 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1761 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1762 unsigned long addr, pmd_t *pmdp) 1763 { 1764 pmd_t pmd = *pmdp; 1765 1766 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd)); 1767 return pmd_young(pmd); 1768 } 1769 1770 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1771 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 1772 unsigned long addr, pmd_t *pmdp) 1773 { 1774 VM_BUG_ON(addr & ~HPAGE_MASK); 1775 return pmdp_test_and_clear_young(vma, addr, pmdp); 1776 } 1777 1778 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1779 pmd_t *pmdp, pmd_t entry) 1780 { 1781 if (!MACHINE_HAS_NX) 1782 entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC)); 1783 set_pmd(pmdp, entry); 1784 } 1785 1786 static inline pmd_t pmd_mkhuge(pmd_t pmd) 1787 { 1788 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE)); 1789 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1790 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1791 } 1792 1793 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1794 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1795 unsigned long addr, pmd_t *pmdp) 1796 { 1797 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1798 } 1799 1800 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1801 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 1802 unsigned long addr, 1803 pmd_t *pmdp, int full) 1804 { 1805 if (full) { 1806 pmd_t pmd = *pmdp; 1807 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1808 return pmd; 1809 } 1810 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1811 } 1812 1813 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 1814 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 1815 unsigned long addr, pmd_t *pmdp) 1816 { 1817 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 1818 } 1819 1820 #define __HAVE_ARCH_PMDP_INVALIDATE 1821 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma, 1822 unsigned long addr, pmd_t *pmdp) 1823 { 1824 pmd_t pmd; 1825 1826 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); 1827 pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1828 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd); 1829 } 1830 1831 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1832 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1833 unsigned long addr, pmd_t *pmdp) 1834 { 1835 pmd_t pmd = *pmdp; 1836 1837 if (pmd_write(pmd)) 1838 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd)); 1839 } 1840 1841 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1842 unsigned long address, 1843 pmd_t *pmdp) 1844 { 1845 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 1846 } 1847 #define pmdp_collapse_flush pmdp_collapse_flush 1848 1849 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot)) 1850 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1851 1852 static inline int pmd_trans_huge(pmd_t pmd) 1853 { 1854 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1855 } 1856 1857 #define has_transparent_hugepage has_transparent_hugepage 1858 static inline int has_transparent_hugepage(void) 1859 { 1860 return MACHINE_HAS_EDAT1 ? 1 : 0; 1861 } 1862 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1863 1864 /* 1865 * 64 bit swap entry format: 1866 * A page-table entry has some bits we have to treat in a special way. 1867 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte 1868 * as invalid. 1869 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 1870 * | offset |E11XX|type |S0| 1871 * |0000000000111111111122222222223333333333444444444455|55555|55566|66| 1872 * |0123456789012345678901234567890123456789012345678901|23456|78901|23| 1873 * 1874 * Bits 0-51 store the offset. 1875 * Bit 52 (E) is used to remember PG_anon_exclusive. 1876 * Bits 57-61 store the type. 1877 * Bit 62 (S) is used for softdirty tracking. 1878 * Bits 55 and 56 (X) are unused. 1879 */ 1880 1881 #define __SWP_OFFSET_MASK ((1UL << 52) - 1) 1882 #define __SWP_OFFSET_SHIFT 12 1883 #define __SWP_TYPE_MASK ((1UL << 5) - 1) 1884 #define __SWP_TYPE_SHIFT 2 1885 1886 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1887 { 1888 unsigned long pteval; 1889 1890 pteval = _PAGE_INVALID | _PAGE_PROTECT; 1891 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; 1892 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; 1893 return __pte(pteval); 1894 } 1895 1896 static inline unsigned long __swp_type(swp_entry_t entry) 1897 { 1898 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; 1899 } 1900 1901 static inline unsigned long __swp_offset(swp_entry_t entry) 1902 { 1903 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; 1904 } 1905 1906 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) 1907 { 1908 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; 1909 } 1910 1911 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1912 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1913 1914 extern int vmem_add_mapping(unsigned long start, unsigned long size); 1915 extern void vmem_remove_mapping(unsigned long start, unsigned long size); 1916 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc); 1917 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot); 1918 extern void vmem_unmap_4k_page(unsigned long addr); 1919 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc); 1920 extern int s390_enable_sie(void); 1921 extern int s390_enable_skey(void); 1922 extern void s390_reset_cmma(struct mm_struct *mm); 1923 1924 /* s390 has a private copy of get unmapped area to deal with cache synonyms */ 1925 #define HAVE_ARCH_UNMAPPED_AREA 1926 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1927 1928 #define pmd_pgtable(pmd) \ 1929 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE)) 1930 1931 #endif /* _S390_PAGE_H */ 1932