xref: /linux/arch/s390/include/asm/pgtable.h (revision c98d2ecae08f02bd2dccd24e7e485e9f0211db65)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
21 #include <asm/ctlreg.h>
22 #include <asm/bug.h>
23 #include <asm/page.h>
24 #include <asm/uv.h>
25 
26 extern pgd_t swapper_pg_dir[];
27 extern pgd_t invalid_pg_dir[];
28 extern void paging_init(void);
29 extern struct ctlreg s390_invalid_asce;
30 
31 enum {
32 	PG_DIRECT_MAP_4K = 0,
33 	PG_DIRECT_MAP_1M,
34 	PG_DIRECT_MAP_2G,
35 	PG_DIRECT_MAP_MAX
36 };
37 
38 extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]);
39 
40 static inline void update_page_count(int level, long count)
41 {
42 	if (IS_ENABLED(CONFIG_PROC_FS))
43 		atomic_long_add(count, &direct_pages_count[level]);
44 }
45 
46 /*
47  * The S390 doesn't have any external MMU info: the kernel page
48  * tables contain all the necessary information.
49  */
50 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
51 #define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53 
54 /*
55  * ZERO_PAGE is a global shared page that is always zero; used
56  * for zero-mapped memory areas etc..
57  */
58 
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61 
62 #define ZERO_PAGE(vaddr) \
63 	(virt_to_page((void *)(empty_zero_page + \
64 	 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66 
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68 
69 #define pte_ERROR(e) \
70 	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79 
80 /*
81  * The vmalloc and module area will always be on the topmost area of the
82  * kernel mapping. 512GB are reserved for vmalloc by default.
83  * At the top of the vmalloc area a 2GB area is reserved where modules
84  * will reside. That makes sure that inter module branches always
85  * happen without trampolines and in addition the placement within a
86  * 2GB frame is branch prediction unit friendly.
87  */
88 extern unsigned long __bootdata_preserved(VMALLOC_START);
89 extern unsigned long __bootdata_preserved(VMALLOC_END);
90 #define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
91 extern struct page *__bootdata_preserved(vmemmap);
92 extern unsigned long __bootdata_preserved(vmemmap_size);
93 
94 extern unsigned long __bootdata_preserved(MODULES_VADDR);
95 extern unsigned long __bootdata_preserved(MODULES_END);
96 #define MODULES_VADDR	MODULES_VADDR
97 #define MODULES_END	MODULES_END
98 #define MODULES_LEN	(1UL << 31)
99 
100 static inline int is_module_addr(void *addr)
101 {
102 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 	if (addr < (void *)MODULES_VADDR)
104 		return 0;
105 	if (addr > (void *)MODULES_END)
106 		return 0;
107 	return 1;
108 }
109 
110 #ifdef CONFIG_RANDOMIZE_BASE
111 #define KASLR_LEN	(1UL << 31)
112 #else
113 #define KASLR_LEN	0UL
114 #endif
115 
116 /*
117  * A 64 bit pagetable entry of S390 has following format:
118  * |			 PFRA			      |0IPC|  OS  |
119  * 0000000000111111111122222222223333333333444444444455555555556666
120  * 0123456789012345678901234567890123456789012345678901234567890123
121  *
122  * I Page-Invalid Bit:    Page is not available for address-translation
123  * P Page-Protection Bit: Store access not possible for page
124  * C Change-bit override: HW is not required to set change bit
125  *
126  * A 64 bit segmenttable entry of S390 has following format:
127  * |        P-table origin                              |      TT
128  * 0000000000111111111122222222223333333333444444444455555555556666
129  * 0123456789012345678901234567890123456789012345678901234567890123
130  *
131  * I Segment-Invalid Bit:    Segment is not available for address-translation
132  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
133  * P Page-Protection Bit: Store access not possible for page
134  * TT Type 00
135  *
136  * A 64 bit region table entry of S390 has following format:
137  * |        S-table origin                             |   TF  TTTL
138  * 0000000000111111111122222222223333333333444444444455555555556666
139  * 0123456789012345678901234567890123456789012345678901234567890123
140  *
141  * I Segment-Invalid Bit:    Segment is not available for address-translation
142  * TT Type 01
143  * TF
144  * TL Table length
145  *
146  * The 64 bit regiontable origin of S390 has following format:
147  * |      region table origon                          |       DTTL
148  * 0000000000111111111122222222223333333333444444444455555555556666
149  * 0123456789012345678901234567890123456789012345678901234567890123
150  *
151  * X Space-Switch event:
152  * G Segment-Invalid Bit:
153  * P Private-Space Bit:
154  * S Storage-Alteration:
155  * R Real space
156  * TL Table-Length:
157  *
158  * A storage key has the following format:
159  * | ACC |F|R|C|0|
160  *  0   3 4 5 6 7
161  * ACC: access key
162  * F  : fetch protection bit
163  * R  : referenced bit
164  * C  : changed bit
165  */
166 
167 /* Hardware bits in the page table entry */
168 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
169 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
170 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
171 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
172 
173 /* Software bits in the page table entry */
174 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
175 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
176 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
177 #define _PAGE_READ	0x010		/* SW pte read bit */
178 #define _PAGE_WRITE	0x020		/* SW pte write bit */
179 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
180 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
181 
182 #ifdef CONFIG_MEM_SOFT_DIRTY
183 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
184 #else
185 #define _PAGE_SOFT_DIRTY 0x000
186 #endif
187 
188 #define _PAGE_SW_BITS	0xffUL		/* All SW bits */
189 
190 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE	/* SW pte exclusive swap bit */
191 
192 /* Set of bits not changed in pte_modify */
193 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
194 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
195 
196 /*
197  * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
198  * HW bit and all SW bits.
199  */
200 #define _PAGE_RDP_MASK		~(_PAGE_PROTECT | _PAGE_SW_BITS)
201 
202 /*
203  * handle_pte_fault uses pte_present and pte_none to find out the pte type
204  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
205  * distinguish present from not-present ptes. It is changed only with the page
206  * table lock held.
207  *
208  * The following table gives the different possible bit combinations for
209  * the pte hardware and software bits in the last 12 bits of a pte
210  * (. unassigned bit, x don't care, t swap type):
211  *
212  *				842100000000
213  *				000084210000
214  *				000000008421
215  *				.IR.uswrdy.p
216  * empty			.10.00000000
217  * swap				.11..ttttt.0
218  * prot-none, clean, old	.11.xx0000.1
219  * prot-none, clean, young	.11.xx0001.1
220  * prot-none, dirty, old	.11.xx0010.1
221  * prot-none, dirty, young	.11.xx0011.1
222  * read-only, clean, old	.11.xx0100.1
223  * read-only, clean, young	.01.xx0101.1
224  * read-only, dirty, old	.11.xx0110.1
225  * read-only, dirty, young	.01.xx0111.1
226  * read-write, clean, old	.11.xx1100.1
227  * read-write, clean, young	.01.xx1101.1
228  * read-write, dirty, old	.10.xx1110.1
229  * read-write, dirty, young	.00.xx1111.1
230  * HW-bits: R read-only, I invalid
231  * SW-bits: p present, y young, d dirty, r read, w write, s special,
232  *	    u unused, l large
233  *
234  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
235  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
236  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
237  */
238 
239 /* Bits in the segment/region table address-space-control-element */
240 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
241 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
242 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
243 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
244 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
245 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
246 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
247 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
248 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
249 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
250 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
251 
252 /* Bits in the region table entry */
253 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
254 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
255 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
256 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
257 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
258 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
259 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
260 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
261 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
262 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
263 
264 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
265 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
266 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
267 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
268 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
269 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
270 
271 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
272 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
273 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
274 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
275 #define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
276 #define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
277 
278 #ifdef CONFIG_MEM_SOFT_DIRTY
279 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
280 #else
281 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
282 #endif
283 
284 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
285 
286 /* Bits in the segment table entry */
287 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
288 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
289 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
290 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
291 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
292 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
293 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
294 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
295 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
296 
297 #define _SEGMENT_ENTRY		(0)
298 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
299 
300 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
301 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
302 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
303 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
304 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
305 
306 #ifdef CONFIG_MEM_SOFT_DIRTY
307 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
308 #else
309 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
310 #endif
311 
312 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
313 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
314 
315 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
316 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
317 
318 #define _REGION1_SHIFT	53
319 #define _REGION2_SHIFT	42
320 #define _REGION3_SHIFT	31
321 #define _SEGMENT_SHIFT	20
322 
323 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
324 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
325 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
326 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
327 #define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
328 
329 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
330 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
331 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
332 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
333 
334 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
335 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
336 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
337 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
338 
339 #define PMD_SHIFT	_SEGMENT_SHIFT
340 #define PUD_SHIFT	_REGION3_SHIFT
341 #define P4D_SHIFT	_REGION2_SHIFT
342 #define PGDIR_SHIFT	_REGION1_SHIFT
343 
344 #define PMD_SIZE	_SEGMENT_SIZE
345 #define PUD_SIZE	_REGION3_SIZE
346 #define P4D_SIZE	_REGION2_SIZE
347 #define PGDIR_SIZE	_REGION1_SIZE
348 
349 #define PMD_MASK	_SEGMENT_MASK
350 #define PUD_MASK	_REGION3_MASK
351 #define P4D_MASK	_REGION2_MASK
352 #define PGDIR_MASK	_REGION1_MASK
353 
354 #define PTRS_PER_PTE	_PAGE_ENTRIES
355 #define PTRS_PER_PMD	_CRST_ENTRIES
356 #define PTRS_PER_PUD	_CRST_ENTRIES
357 #define PTRS_PER_P4D	_CRST_ENTRIES
358 #define PTRS_PER_PGD	_CRST_ENTRIES
359 
360 /*
361  * Segment table and region3 table entry encoding
362  * (R = read-only, I = invalid, y = young bit):
363  *				dy..R...I...wr
364  * prot-none, clean, old	00..1...1...00
365  * prot-none, clean, young	01..1...1...00
366  * prot-none, dirty, old	10..1...1...00
367  * prot-none, dirty, young	11..1...1...00
368  * read-only, clean, old	00..1...1...01
369  * read-only, clean, young	01..1...0...01
370  * read-only, dirty, old	10..1...1...01
371  * read-only, dirty, young	11..1...0...01
372  * read-write, clean, old	00..1...1...11
373  * read-write, clean, young	01..1...0...11
374  * read-write, dirty, old	10..0...1...11
375  * read-write, dirty, young	11..0...0...11
376  * The segment table origin is used to distinguish empty (origin==0) from
377  * read-write, old segment table entries (origin!=0)
378  * HW-bits: R read-only, I invalid
379  * SW-bits: y young, d dirty, r read, w write
380  */
381 
382 /* Page status table bits for virtualization */
383 #define PGSTE_ACC_BITS	0xf000000000000000UL
384 #define PGSTE_FP_BIT	0x0800000000000000UL
385 #define PGSTE_PCL_BIT	0x0080000000000000UL
386 #define PGSTE_HR_BIT	0x0040000000000000UL
387 #define PGSTE_HC_BIT	0x0020000000000000UL
388 #define PGSTE_GR_BIT	0x0004000000000000UL
389 #define PGSTE_GC_BIT	0x0002000000000000UL
390 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
391 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
392 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
393 
394 /* Guest Page State used for virtualization */
395 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
396 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
397 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
398 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
399 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
400 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
401 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
402 
403 /*
404  * A user page table pointer has the space-switch-event bit, the
405  * private-space-control bit and the storage-alteration-event-control
406  * bit set. A kernel page table pointer doesn't need them.
407  */
408 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
409 				 _ASCE_ALT_EVENT)
410 
411 /*
412  * Page protection definitions.
413  */
414 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
415 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
416 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
417 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
418 				 _PAGE_INVALID | _PAGE_PROTECT)
419 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
420 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
421 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
422 				 _PAGE_INVALID | _PAGE_PROTECT)
423 
424 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
425 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
426 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
427 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
428 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
429 				 _PAGE_PROTECT | _PAGE_NOEXEC)
430 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
431 				  _PAGE_YOUNG |	_PAGE_DIRTY)
432 
433 /*
434  * On s390 the page table entry has an invalid bit and a read-only bit.
435  * Read permission implies execute permission and write permission
436  * implies read permission.
437  */
438          /*xwr*/
439 
440 /*
441  * Segment entry (large page) protection definitions.
442  */
443 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
444 				 _SEGMENT_ENTRY_PROTECT)
445 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
446 				 _SEGMENT_ENTRY_READ | \
447 				 _SEGMENT_ENTRY_NOEXEC)
448 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
449 				 _SEGMENT_ENTRY_READ)
450 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
451 				 _SEGMENT_ENTRY_WRITE | \
452 				 _SEGMENT_ENTRY_NOEXEC)
453 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
454 				 _SEGMENT_ENTRY_WRITE)
455 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
456 				 _SEGMENT_ENTRY_LARGE |	\
457 				 _SEGMENT_ENTRY_READ |	\
458 				 _SEGMENT_ENTRY_WRITE | \
459 				 _SEGMENT_ENTRY_YOUNG | \
460 				 _SEGMENT_ENTRY_DIRTY | \
461 				 _SEGMENT_ENTRY_NOEXEC)
462 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
463 				 _SEGMENT_ENTRY_LARGE |	\
464 				 _SEGMENT_ENTRY_READ |	\
465 				 _SEGMENT_ENTRY_YOUNG |	\
466 				 _SEGMENT_ENTRY_PROTECT | \
467 				 _SEGMENT_ENTRY_NOEXEC)
468 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
469 				 _SEGMENT_ENTRY_LARGE |	\
470 				 _SEGMENT_ENTRY_READ |	\
471 				 _SEGMENT_ENTRY_WRITE | \
472 				 _SEGMENT_ENTRY_YOUNG |	\
473 				 _SEGMENT_ENTRY_DIRTY)
474 
475 /*
476  * Region3 entry (large page) protection definitions.
477  */
478 
479 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
480 				 _REGION3_ENTRY_LARGE |	 \
481 				 _REGION3_ENTRY_READ |	 \
482 				 _REGION3_ENTRY_WRITE |	 \
483 				 _REGION3_ENTRY_YOUNG |	 \
484 				 _REGION3_ENTRY_DIRTY | \
485 				 _REGION_ENTRY_NOEXEC)
486 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
487 				   _REGION3_ENTRY_LARGE |  \
488 				   _REGION3_ENTRY_READ |   \
489 				   _REGION3_ENTRY_YOUNG |  \
490 				   _REGION_ENTRY_PROTECT | \
491 				   _REGION_ENTRY_NOEXEC)
492 #define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \
493 				 _REGION3_ENTRY_LARGE |	 \
494 				 _REGION3_ENTRY_READ |	 \
495 				 _REGION3_ENTRY_WRITE |	 \
496 				 _REGION3_ENTRY_YOUNG |	 \
497 				 _REGION3_ENTRY_DIRTY)
498 
499 static inline bool mm_p4d_folded(struct mm_struct *mm)
500 {
501 	return mm->context.asce_limit <= _REGION1_SIZE;
502 }
503 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
504 
505 static inline bool mm_pud_folded(struct mm_struct *mm)
506 {
507 	return mm->context.asce_limit <= _REGION2_SIZE;
508 }
509 #define mm_pud_folded(mm) mm_pud_folded(mm)
510 
511 static inline bool mm_pmd_folded(struct mm_struct *mm)
512 {
513 	return mm->context.asce_limit <= _REGION3_SIZE;
514 }
515 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
516 
517 static inline int mm_has_pgste(struct mm_struct *mm)
518 {
519 #ifdef CONFIG_PGSTE
520 	if (unlikely(mm->context.has_pgste))
521 		return 1;
522 #endif
523 	return 0;
524 }
525 
526 static inline int mm_is_protected(struct mm_struct *mm)
527 {
528 #ifdef CONFIG_PGSTE
529 	if (unlikely(atomic_read(&mm->context.protected_count)))
530 		return 1;
531 #endif
532 	return 0;
533 }
534 
535 static inline int mm_alloc_pgste(struct mm_struct *mm)
536 {
537 #ifdef CONFIG_PGSTE
538 	if (unlikely(mm->context.alloc_pgste))
539 		return 1;
540 #endif
541 	return 0;
542 }
543 
544 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
545 {
546 	return __pte(pte_val(pte) & ~pgprot_val(prot));
547 }
548 
549 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
550 {
551 	return __pte(pte_val(pte) | pgprot_val(prot));
552 }
553 
554 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
555 {
556 	return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
557 }
558 
559 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
560 {
561 	return __pmd(pmd_val(pmd) | pgprot_val(prot));
562 }
563 
564 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
565 {
566 	return __pud(pud_val(pud) & ~pgprot_val(prot));
567 }
568 
569 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
570 {
571 	return __pud(pud_val(pud) | pgprot_val(prot));
572 }
573 
574 /*
575  * In the case that a guest uses storage keys
576  * faults should no longer be backed by zero pages
577  */
578 #define mm_forbids_zeropage mm_has_pgste
579 static inline int mm_uses_skeys(struct mm_struct *mm)
580 {
581 #ifdef CONFIG_PGSTE
582 	if (mm->context.uses_skeys)
583 		return 1;
584 #endif
585 	return 0;
586 }
587 
588 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
589 {
590 	union register_pair r1 = { .even = old, .odd = new, };
591 	unsigned long address = (unsigned long)ptr | 1;
592 
593 	asm volatile(
594 		"	csp	%[r1],%[address]"
595 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
596 		: [address] "d" (address)
597 		: "cc");
598 }
599 
600 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
601 {
602 	union register_pair r1 = { .even = old, .odd = new, };
603 	unsigned long address = (unsigned long)ptr | 1;
604 
605 	asm volatile(
606 		"	cspg	%[r1],%[address]"
607 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
608 		: [address] "d" (address)
609 		: "cc");
610 }
611 
612 #define CRDTE_DTT_PAGE		0x00UL
613 #define CRDTE_DTT_SEGMENT	0x10UL
614 #define CRDTE_DTT_REGION3	0x14UL
615 #define CRDTE_DTT_REGION2	0x18UL
616 #define CRDTE_DTT_REGION1	0x1cUL
617 
618 static inline void crdte(unsigned long old, unsigned long new,
619 			 unsigned long *table, unsigned long dtt,
620 			 unsigned long address, unsigned long asce)
621 {
622 	union register_pair r1 = { .even = old, .odd = new, };
623 	union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
624 
625 	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
626 		     : [r1] "+&d" (r1.pair)
627 		     : [r2] "d" (r2.pair), [asce] "a" (asce)
628 		     : "memory", "cc");
629 }
630 
631 /*
632  * pgd/p4d/pud/pmd/pte query functions
633  */
634 static inline int pgd_folded(pgd_t pgd)
635 {
636 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
637 }
638 
639 static inline int pgd_present(pgd_t pgd)
640 {
641 	if (pgd_folded(pgd))
642 		return 1;
643 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
644 }
645 
646 static inline int pgd_none(pgd_t pgd)
647 {
648 	if (pgd_folded(pgd))
649 		return 0;
650 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
651 }
652 
653 static inline int pgd_bad(pgd_t pgd)
654 {
655 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
656 		return 0;
657 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
658 }
659 
660 static inline unsigned long pgd_pfn(pgd_t pgd)
661 {
662 	unsigned long origin_mask;
663 
664 	origin_mask = _REGION_ENTRY_ORIGIN;
665 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
666 }
667 
668 static inline int p4d_folded(p4d_t p4d)
669 {
670 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
671 }
672 
673 static inline int p4d_present(p4d_t p4d)
674 {
675 	if (p4d_folded(p4d))
676 		return 1;
677 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
678 }
679 
680 static inline int p4d_none(p4d_t p4d)
681 {
682 	if (p4d_folded(p4d))
683 		return 0;
684 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
685 }
686 
687 static inline unsigned long p4d_pfn(p4d_t p4d)
688 {
689 	unsigned long origin_mask;
690 
691 	origin_mask = _REGION_ENTRY_ORIGIN;
692 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
693 }
694 
695 static inline int pud_folded(pud_t pud)
696 {
697 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
698 }
699 
700 static inline int pud_present(pud_t pud)
701 {
702 	if (pud_folded(pud))
703 		return 1;
704 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
705 }
706 
707 static inline int pud_none(pud_t pud)
708 {
709 	if (pud_folded(pud))
710 		return 0;
711 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
712 }
713 
714 #define pud_leaf pud_leaf
715 static inline bool pud_leaf(pud_t pud)
716 {
717 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
718 		return 0;
719 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
720 }
721 
722 #define pmd_leaf pmd_leaf
723 static inline bool pmd_leaf(pmd_t pmd)
724 {
725 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
726 }
727 
728 static inline int pmd_bad(pmd_t pmd)
729 {
730 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_leaf(pmd))
731 		return 1;
732 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
733 }
734 
735 static inline int pud_bad(pud_t pud)
736 {
737 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
738 
739 	if (type > _REGION_ENTRY_TYPE_R3 || pud_leaf(pud))
740 		return 1;
741 	if (type < _REGION_ENTRY_TYPE_R3)
742 		return 0;
743 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
744 }
745 
746 static inline int p4d_bad(p4d_t p4d)
747 {
748 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
749 
750 	if (type > _REGION_ENTRY_TYPE_R2)
751 		return 1;
752 	if (type < _REGION_ENTRY_TYPE_R2)
753 		return 0;
754 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
755 }
756 
757 static inline int pmd_present(pmd_t pmd)
758 {
759 	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
760 }
761 
762 static inline int pmd_none(pmd_t pmd)
763 {
764 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
765 }
766 
767 #define pmd_write pmd_write
768 static inline int pmd_write(pmd_t pmd)
769 {
770 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
771 }
772 
773 #define pud_write pud_write
774 static inline int pud_write(pud_t pud)
775 {
776 	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
777 }
778 
779 #define pmd_dirty pmd_dirty
780 static inline int pmd_dirty(pmd_t pmd)
781 {
782 	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
783 }
784 
785 #define pmd_young pmd_young
786 static inline int pmd_young(pmd_t pmd)
787 {
788 	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
789 }
790 
791 static inline int pte_present(pte_t pte)
792 {
793 	/* Bit pattern: (pte & 0x001) == 0x001 */
794 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
795 }
796 
797 static inline int pte_none(pte_t pte)
798 {
799 	/* Bit pattern: pte == 0x400 */
800 	return pte_val(pte) == _PAGE_INVALID;
801 }
802 
803 static inline int pte_swap(pte_t pte)
804 {
805 	/* Bit pattern: (pte & 0x201) == 0x200 */
806 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
807 		== _PAGE_PROTECT;
808 }
809 
810 static inline int pte_special(pte_t pte)
811 {
812 	return (pte_val(pte) & _PAGE_SPECIAL);
813 }
814 
815 #define __HAVE_ARCH_PTE_SAME
816 static inline int pte_same(pte_t a, pte_t b)
817 {
818 	return pte_val(a) == pte_val(b);
819 }
820 
821 #ifdef CONFIG_NUMA_BALANCING
822 static inline int pte_protnone(pte_t pte)
823 {
824 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
825 }
826 
827 static inline int pmd_protnone(pmd_t pmd)
828 {
829 	/* pmd_leaf(pmd) implies pmd_present(pmd) */
830 	return pmd_leaf(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
831 }
832 #endif
833 
834 static inline int pte_swp_exclusive(pte_t pte)
835 {
836 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
837 }
838 
839 static inline pte_t pte_swp_mkexclusive(pte_t pte)
840 {
841 	return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
842 }
843 
844 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
845 {
846 	return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
847 }
848 
849 static inline int pte_soft_dirty(pte_t pte)
850 {
851 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
852 }
853 #define pte_swp_soft_dirty pte_soft_dirty
854 
855 static inline pte_t pte_mksoft_dirty(pte_t pte)
856 {
857 	return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
858 }
859 #define pte_swp_mksoft_dirty pte_mksoft_dirty
860 
861 static inline pte_t pte_clear_soft_dirty(pte_t pte)
862 {
863 	return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
864 }
865 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
866 
867 static inline int pmd_soft_dirty(pmd_t pmd)
868 {
869 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
870 }
871 
872 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
873 {
874 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
875 }
876 
877 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
878 {
879 	return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
880 }
881 
882 /*
883  * query functions pte_write/pte_dirty/pte_young only work if
884  * pte_present() is true. Undefined behaviour if not..
885  */
886 static inline int pte_write(pte_t pte)
887 {
888 	return (pte_val(pte) & _PAGE_WRITE) != 0;
889 }
890 
891 static inline int pte_dirty(pte_t pte)
892 {
893 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
894 }
895 
896 static inline int pte_young(pte_t pte)
897 {
898 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
899 }
900 
901 #define __HAVE_ARCH_PTE_UNUSED
902 static inline int pte_unused(pte_t pte)
903 {
904 	return pte_val(pte) & _PAGE_UNUSED;
905 }
906 
907 /*
908  * Extract the pgprot value from the given pte while at the same time making it
909  * usable for kernel address space mappings where fault driven dirty and
910  * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
911  * must not be set.
912  */
913 static inline pgprot_t pte_pgprot(pte_t pte)
914 {
915 	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
916 
917 	if (pte_write(pte))
918 		pte_flags |= pgprot_val(PAGE_KERNEL);
919 	else
920 		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
921 	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
922 
923 	return __pgprot(pte_flags);
924 }
925 
926 /*
927  * pgd/pmd/pte modification functions
928  */
929 
930 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
931 {
932 	WRITE_ONCE(*pgdp, pgd);
933 }
934 
935 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
936 {
937 	WRITE_ONCE(*p4dp, p4d);
938 }
939 
940 static inline void set_pud(pud_t *pudp, pud_t pud)
941 {
942 	WRITE_ONCE(*pudp, pud);
943 }
944 
945 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
946 {
947 	WRITE_ONCE(*pmdp, pmd);
948 }
949 
950 static inline void set_pte(pte_t *ptep, pte_t pte)
951 {
952 	WRITE_ONCE(*ptep, pte);
953 }
954 
955 static inline void pgd_clear(pgd_t *pgd)
956 {
957 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
958 		set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
959 }
960 
961 static inline void p4d_clear(p4d_t *p4d)
962 {
963 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
964 		set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
965 }
966 
967 static inline void pud_clear(pud_t *pud)
968 {
969 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
970 		set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
971 }
972 
973 static inline void pmd_clear(pmd_t *pmdp)
974 {
975 	set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
976 }
977 
978 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
979 {
980 	set_pte(ptep, __pte(_PAGE_INVALID));
981 }
982 
983 /*
984  * The following pte modification functions only work if
985  * pte_present() is true. Undefined behaviour if not..
986  */
987 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
988 {
989 	pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
990 	pte = set_pte_bit(pte, newprot);
991 	/*
992 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
993 	 * has the invalid bit set, clear it again for readable, young pages
994 	 */
995 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
996 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
997 	/*
998 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
999 	 * protection bit set, clear it again for writable, dirty pages
1000 	 */
1001 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
1002 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1003 	return pte;
1004 }
1005 
1006 static inline pte_t pte_wrprotect(pte_t pte)
1007 {
1008 	pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1009 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1010 }
1011 
1012 static inline pte_t pte_mkwrite_novma(pte_t pte)
1013 {
1014 	pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1015 	if (pte_val(pte) & _PAGE_DIRTY)
1016 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1017 	return pte;
1018 }
1019 
1020 static inline pte_t pte_mkclean(pte_t pte)
1021 {
1022 	pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1023 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1024 }
1025 
1026 static inline pte_t pte_mkdirty(pte_t pte)
1027 {
1028 	pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1029 	if (pte_val(pte) & _PAGE_WRITE)
1030 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1031 	return pte;
1032 }
1033 
1034 static inline pte_t pte_mkold(pte_t pte)
1035 {
1036 	pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1037 	return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1038 }
1039 
1040 static inline pte_t pte_mkyoung(pte_t pte)
1041 {
1042 	pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1043 	if (pte_val(pte) & _PAGE_READ)
1044 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1045 	return pte;
1046 }
1047 
1048 static inline pte_t pte_mkspecial(pte_t pte)
1049 {
1050 	return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1051 }
1052 
1053 #ifdef CONFIG_HUGETLB_PAGE
1054 static inline pte_t pte_mkhuge(pte_t pte)
1055 {
1056 	return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1057 }
1058 #endif
1059 
1060 #define IPTE_GLOBAL	0
1061 #define	IPTE_LOCAL	1
1062 
1063 #define IPTE_NODAT	0x400
1064 #define IPTE_GUEST_ASCE	0x800
1065 
1066 static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1067 				       unsigned long opt, unsigned long asce,
1068 				       int local)
1069 {
1070 	unsigned long pto;
1071 
1072 	pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1073 	asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1074 		     : "+m" (*ptep)
1075 		     : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1076 		       [asce] "a" (asce), [m4] "i" (local));
1077 }
1078 
1079 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1080 					unsigned long opt, unsigned long asce,
1081 					int local)
1082 {
1083 	unsigned long pto = __pa(ptep);
1084 
1085 	if (__builtin_constant_p(opt) && opt == 0) {
1086 		/* Invalidation + TLB flush for the pte */
1087 		asm volatile(
1088 			"	ipte	%[r1],%[r2],0,%[m4]"
1089 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1090 			  [m4] "i" (local));
1091 		return;
1092 	}
1093 
1094 	/* Invalidate ptes with options + TLB flush of the ptes */
1095 	opt = opt | (asce & _ASCE_ORIGIN);
1096 	asm volatile(
1097 		"	ipte	%[r1],%[r2],%[r3],%[m4]"
1098 		: [r2] "+a" (address), [r3] "+a" (opt)
1099 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1100 }
1101 
1102 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1103 					      pte_t *ptep, int local)
1104 {
1105 	unsigned long pto = __pa(ptep);
1106 
1107 	/* Invalidate a range of ptes + TLB flush of the ptes */
1108 	do {
1109 		asm volatile(
1110 			"	ipte %[r1],%[r2],%[r3],%[m4]"
1111 			: [r2] "+a" (address), [r3] "+a" (nr)
1112 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1113 	} while (nr != 255);
1114 }
1115 
1116 /*
1117  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1118  * both clear the TLB for the unmapped pte. The reason is that
1119  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1120  * to modify an active pte. The sequence is
1121  *   1) ptep_get_and_clear
1122  *   2) set_pte_at
1123  *   3) flush_tlb_range
1124  * On s390 the tlb needs to get flushed with the modification of the pte
1125  * if the pte is active. The only way how this can be implemented is to
1126  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1127  * is a nop.
1128  */
1129 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1130 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1131 
1132 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1133 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1134 					    unsigned long addr, pte_t *ptep)
1135 {
1136 	pte_t pte = *ptep;
1137 
1138 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1139 	return pte_young(pte);
1140 }
1141 
1142 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1143 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1144 					 unsigned long address, pte_t *ptep)
1145 {
1146 	return ptep_test_and_clear_young(vma, address, ptep);
1147 }
1148 
1149 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1150 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1151 				       unsigned long addr, pte_t *ptep)
1152 {
1153 	pte_t res;
1154 
1155 	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1156 	/* At this point the reference through the mapping is still present */
1157 	if (mm_is_protected(mm) && pte_present(res))
1158 		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1159 	return res;
1160 }
1161 
1162 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1163 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1164 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1165 			     pte_t *, pte_t, pte_t);
1166 
1167 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1168 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1169 				     unsigned long addr, pte_t *ptep)
1170 {
1171 	pte_t res;
1172 
1173 	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1174 	/* At this point the reference through the mapping is still present */
1175 	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1176 		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1177 	return res;
1178 }
1179 
1180 /*
1181  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1182  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1183  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1184  * cannot be accessed while the batched unmap is running. In this case
1185  * full==1 and a simple pte_clear is enough. See tlb.h.
1186  */
1187 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1188 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1189 					    unsigned long addr,
1190 					    pte_t *ptep, int full)
1191 {
1192 	pte_t res;
1193 
1194 	if (full) {
1195 		res = *ptep;
1196 		set_pte(ptep, __pte(_PAGE_INVALID));
1197 	} else {
1198 		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1199 	}
1200 	/* Nothing to do */
1201 	if (!mm_is_protected(mm) || !pte_present(res))
1202 		return res;
1203 	/*
1204 	 * At this point the reference through the mapping is still present.
1205 	 * The notifier should have destroyed all protected vCPUs at this
1206 	 * point, so the destroy should be successful.
1207 	 */
1208 	if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1209 		return res;
1210 	/*
1211 	 * If something went wrong and the page could not be destroyed, or
1212 	 * if this is not a mm teardown, the slower export is used as
1213 	 * fallback instead.
1214 	 */
1215 	uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1216 	return res;
1217 }
1218 
1219 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1220 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1221 				      unsigned long addr, pte_t *ptep)
1222 {
1223 	pte_t pte = *ptep;
1224 
1225 	if (pte_write(pte))
1226 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1227 }
1228 
1229 /*
1230  * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1231  * bits in the comparison. Those might change e.g. because of dirty and young
1232  * tracking.
1233  */
1234 static inline int pte_allow_rdp(pte_t old, pte_t new)
1235 {
1236 	/*
1237 	 * Only allow changes from RO to RW
1238 	 */
1239 	if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1240 		return 0;
1241 
1242 	return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1243 }
1244 
1245 static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1246 						unsigned long address,
1247 						pte_t *ptep)
1248 {
1249 	/*
1250 	 * RDP might not have propagated the PTE protection reset to all CPUs,
1251 	 * so there could be spurious TLB protection faults.
1252 	 * NOTE: This will also be called when a racing pagetable update on
1253 	 * another thread already installed the correct PTE. Both cases cannot
1254 	 * really be distinguished.
1255 	 * Therefore, only do the local TLB flush when RDP can be used, and the
1256 	 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1257 	 * A local RDP can be used to do the flush.
1258 	 */
1259 	if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT))
1260 		__ptep_rdp(address, ptep, 0, 0, 1);
1261 }
1262 #define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1263 
1264 void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1265 			 pte_t new);
1266 
1267 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1268 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1269 					unsigned long addr, pte_t *ptep,
1270 					pte_t entry, int dirty)
1271 {
1272 	if (pte_same(*ptep, entry))
1273 		return 0;
1274 	if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1275 		ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1276 	else
1277 		ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1278 	return 1;
1279 }
1280 
1281 /*
1282  * Additional functions to handle KVM guest page tables
1283  */
1284 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1285 		     pte_t *ptep, pte_t entry);
1286 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1287 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1288 		 pte_t *ptep, unsigned long bits);
1289 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1290 		    pte_t *ptep, int prot, unsigned long bit);
1291 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1292 		     pte_t *ptep , int reset);
1293 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1294 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1295 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1296 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1297 
1298 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1299 			    pte_t *ptep);
1300 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1301 			  unsigned char key, bool nq);
1302 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1303 			       unsigned char key, unsigned char *oldkey,
1304 			       bool nq, bool mr, bool mc);
1305 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1306 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1307 			  unsigned char *key);
1308 
1309 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1310 				unsigned long bits, unsigned long value);
1311 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1312 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1313 			unsigned long *oldpte, unsigned long *oldpgste);
1314 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1315 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1316 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1317 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1318 
1319 #define pgprot_writecombine	pgprot_writecombine
1320 pgprot_t pgprot_writecombine(pgprot_t prot);
1321 
1322 #define pgprot_writethrough	pgprot_writethrough
1323 pgprot_t pgprot_writethrough(pgprot_t prot);
1324 
1325 #define PFN_PTE_SHIFT		PAGE_SHIFT
1326 
1327 /*
1328  * Set multiple PTEs to consecutive pages with a single call.  All PTEs
1329  * are within the same folio, PMD and VMA.
1330  */
1331 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1332 			      pte_t *ptep, pte_t entry, unsigned int nr)
1333 {
1334 	if (pte_present(entry))
1335 		entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1336 	if (mm_has_pgste(mm)) {
1337 		for (;;) {
1338 			ptep_set_pte_at(mm, addr, ptep, entry);
1339 			if (--nr == 0)
1340 				break;
1341 			ptep++;
1342 			entry = __pte(pte_val(entry) + PAGE_SIZE);
1343 			addr += PAGE_SIZE;
1344 		}
1345 	} else {
1346 		for (;;) {
1347 			set_pte(ptep, entry);
1348 			if (--nr == 0)
1349 				break;
1350 			ptep++;
1351 			entry = __pte(pte_val(entry) + PAGE_SIZE);
1352 		}
1353 	}
1354 }
1355 #define set_ptes set_ptes
1356 
1357 /*
1358  * Conversion functions: convert a page and protection to a page entry,
1359  * and a page entry and page directory to the page they refer to.
1360  */
1361 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1362 {
1363 	pte_t __pte;
1364 
1365 	__pte = __pte(physpage | pgprot_val(pgprot));
1366 	if (!MACHINE_HAS_NX)
1367 		__pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1368 	return pte_mkyoung(__pte);
1369 }
1370 
1371 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1372 {
1373 	unsigned long physpage = page_to_phys(page);
1374 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1375 
1376 	if (pte_write(__pte) && PageDirty(page))
1377 		__pte = pte_mkdirty(__pte);
1378 	return __pte;
1379 }
1380 
1381 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1382 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1383 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1384 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1385 
1386 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1387 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1388 
1389 static inline unsigned long pmd_deref(pmd_t pmd)
1390 {
1391 	unsigned long origin_mask;
1392 
1393 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1394 	if (pmd_leaf(pmd))
1395 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1396 	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1397 }
1398 
1399 static inline unsigned long pmd_pfn(pmd_t pmd)
1400 {
1401 	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1402 }
1403 
1404 static inline unsigned long pud_deref(pud_t pud)
1405 {
1406 	unsigned long origin_mask;
1407 
1408 	origin_mask = _REGION_ENTRY_ORIGIN;
1409 	if (pud_leaf(pud))
1410 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1411 	return (unsigned long)__va(pud_val(pud) & origin_mask);
1412 }
1413 
1414 static inline unsigned long pud_pfn(pud_t pud)
1415 {
1416 	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1417 }
1418 
1419 /*
1420  * The pgd_offset function *always* adds the index for the top-level
1421  * region/segment table. This is done to get a sequence like the
1422  * following to work:
1423  *	pgdp = pgd_offset(current->mm, addr);
1424  *	pgd = READ_ONCE(*pgdp);
1425  *	p4dp = p4d_offset(&pgd, addr);
1426  *	...
1427  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1428  * only add an index if they dereferenced the pointer.
1429  */
1430 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1431 {
1432 	unsigned long rste;
1433 	unsigned int shift;
1434 
1435 	/* Get the first entry of the top level table */
1436 	rste = pgd_val(*pgd);
1437 	/* Pick up the shift from the table type of the first entry */
1438 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1439 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1440 }
1441 
1442 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1443 
1444 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1445 {
1446 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1447 		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1448 	return (p4d_t *) pgdp;
1449 }
1450 #define p4d_offset_lockless p4d_offset_lockless
1451 
1452 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1453 {
1454 	return p4d_offset_lockless(pgdp, *pgdp, address);
1455 }
1456 
1457 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1458 {
1459 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1460 		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1461 	return (pud_t *) p4dp;
1462 }
1463 #define pud_offset_lockless pud_offset_lockless
1464 
1465 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1466 {
1467 	return pud_offset_lockless(p4dp, *p4dp, address);
1468 }
1469 #define pud_offset pud_offset
1470 
1471 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1472 {
1473 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1474 		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1475 	return (pmd_t *) pudp;
1476 }
1477 #define pmd_offset_lockless pmd_offset_lockless
1478 
1479 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1480 {
1481 	return pmd_offset_lockless(pudp, *pudp, address);
1482 }
1483 #define pmd_offset pmd_offset
1484 
1485 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1486 {
1487 	return (unsigned long) pmd_deref(pmd);
1488 }
1489 
1490 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1491 {
1492 	return end <= current->mm->context.asce_limit;
1493 }
1494 #define gup_fast_permitted gup_fast_permitted
1495 
1496 #define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1497 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1498 #define pte_page(x) pfn_to_page(pte_pfn(x))
1499 
1500 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1501 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1502 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1503 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1504 
1505 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1506 {
1507 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1508 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1509 }
1510 
1511 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
1512 {
1513 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1514 	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1515 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1516 	return pmd;
1517 }
1518 
1519 static inline pmd_t pmd_mkclean(pmd_t pmd)
1520 {
1521 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1522 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1523 }
1524 
1525 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1526 {
1527 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1528 	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1529 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1530 	return pmd;
1531 }
1532 
1533 static inline pud_t pud_wrprotect(pud_t pud)
1534 {
1535 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1536 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1537 }
1538 
1539 static inline pud_t pud_mkwrite(pud_t pud)
1540 {
1541 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1542 	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1543 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1544 	return pud;
1545 }
1546 
1547 static inline pud_t pud_mkclean(pud_t pud)
1548 {
1549 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1550 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1551 }
1552 
1553 static inline pud_t pud_mkdirty(pud_t pud)
1554 {
1555 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1556 	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1557 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1558 	return pud;
1559 }
1560 
1561 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1562 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1563 {
1564 	/*
1565 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1566 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1567 	 */
1568 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1569 		return pgprot_val(SEGMENT_NONE);
1570 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1571 		return pgprot_val(SEGMENT_RO);
1572 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1573 		return pgprot_val(SEGMENT_RX);
1574 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1575 		return pgprot_val(SEGMENT_RW);
1576 	return pgprot_val(SEGMENT_RWX);
1577 }
1578 
1579 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1580 {
1581 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1582 	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1583 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1584 	return pmd;
1585 }
1586 
1587 static inline pmd_t pmd_mkold(pmd_t pmd)
1588 {
1589 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1590 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1591 }
1592 
1593 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1594 {
1595 	unsigned long mask;
1596 
1597 	mask  = _SEGMENT_ENTRY_ORIGIN_LARGE;
1598 	mask |= _SEGMENT_ENTRY_DIRTY;
1599 	mask |= _SEGMENT_ENTRY_YOUNG;
1600 	mask |=	_SEGMENT_ENTRY_LARGE;
1601 	mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1602 	pmd = __pmd(pmd_val(pmd) & mask);
1603 	pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1604 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1605 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1606 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1607 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1608 	return pmd;
1609 }
1610 
1611 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1612 {
1613 	return __pmd(physpage + massage_pgprot_pmd(pgprot));
1614 }
1615 
1616 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1617 
1618 static inline void __pmdp_csp(pmd_t *pmdp)
1619 {
1620 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1621 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1622 }
1623 
1624 #define IDTE_GLOBAL	0
1625 #define IDTE_LOCAL	1
1626 
1627 #define IDTE_PTOA	0x0800
1628 #define IDTE_NODAT	0x1000
1629 #define IDTE_GUEST_ASCE	0x2000
1630 
1631 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1632 					unsigned long opt, unsigned long asce,
1633 					int local)
1634 {
1635 	unsigned long sto;
1636 
1637 	sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1638 	if (__builtin_constant_p(opt) && opt == 0) {
1639 		/* flush without guest asce */
1640 		asm volatile(
1641 			"	idte	%[r1],0,%[r2],%[m4]"
1642 			: "+m" (*pmdp)
1643 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1644 			  [m4] "i" (local)
1645 			: "cc" );
1646 	} else {
1647 		/* flush with guest asce */
1648 		asm volatile(
1649 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1650 			: "+m" (*pmdp)
1651 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1652 			  [r3] "a" (asce), [m4] "i" (local)
1653 			: "cc" );
1654 	}
1655 }
1656 
1657 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1658 					unsigned long opt, unsigned long asce,
1659 					int local)
1660 {
1661 	unsigned long r3o;
1662 
1663 	r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1664 	r3o |= _ASCE_TYPE_REGION3;
1665 	if (__builtin_constant_p(opt) && opt == 0) {
1666 		/* flush without guest asce */
1667 		asm volatile(
1668 			"	idte	%[r1],0,%[r2],%[m4]"
1669 			: "+m" (*pudp)
1670 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1671 			  [m4] "i" (local)
1672 			: "cc");
1673 	} else {
1674 		/* flush with guest asce */
1675 		asm volatile(
1676 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1677 			: "+m" (*pudp)
1678 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1679 			  [r3] "a" (asce), [m4] "i" (local)
1680 			: "cc" );
1681 	}
1682 }
1683 
1684 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1685 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1686 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1687 
1688 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1689 
1690 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1691 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1692 				pgtable_t pgtable);
1693 
1694 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1695 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1696 
1697 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1698 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1699 					unsigned long addr, pmd_t *pmdp,
1700 					pmd_t entry, int dirty)
1701 {
1702 	VM_BUG_ON(addr & ~HPAGE_MASK);
1703 
1704 	entry = pmd_mkyoung(entry);
1705 	if (dirty)
1706 		entry = pmd_mkdirty(entry);
1707 	if (pmd_val(*pmdp) == pmd_val(entry))
1708 		return 0;
1709 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1710 	return 1;
1711 }
1712 
1713 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1714 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1715 					    unsigned long addr, pmd_t *pmdp)
1716 {
1717 	pmd_t pmd = *pmdp;
1718 
1719 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1720 	return pmd_young(pmd);
1721 }
1722 
1723 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1724 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1725 					 unsigned long addr, pmd_t *pmdp)
1726 {
1727 	VM_BUG_ON(addr & ~HPAGE_MASK);
1728 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1729 }
1730 
1731 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1732 			      pmd_t *pmdp, pmd_t entry)
1733 {
1734 	if (!MACHINE_HAS_NX)
1735 		entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1736 	set_pmd(pmdp, entry);
1737 }
1738 
1739 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1740 {
1741 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1742 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1743 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1744 }
1745 
1746 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1747 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1748 					    unsigned long addr, pmd_t *pmdp)
1749 {
1750 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1751 }
1752 
1753 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1754 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1755 						 unsigned long addr,
1756 						 pmd_t *pmdp, int full)
1757 {
1758 	if (full) {
1759 		pmd_t pmd = *pmdp;
1760 		set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1761 		return pmd;
1762 	}
1763 	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1764 }
1765 
1766 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1767 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1768 					  unsigned long addr, pmd_t *pmdp)
1769 {
1770 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1771 }
1772 
1773 #define __HAVE_ARCH_PMDP_INVALIDATE
1774 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1775 				   unsigned long addr, pmd_t *pmdp)
1776 {
1777 	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1778 
1779 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1780 }
1781 
1782 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1783 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1784 				      unsigned long addr, pmd_t *pmdp)
1785 {
1786 	pmd_t pmd = *pmdp;
1787 
1788 	if (pmd_write(pmd))
1789 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1790 }
1791 
1792 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1793 					unsigned long address,
1794 					pmd_t *pmdp)
1795 {
1796 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1797 }
1798 #define pmdp_collapse_flush pmdp_collapse_flush
1799 
1800 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1801 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1802 
1803 static inline int pmd_trans_huge(pmd_t pmd)
1804 {
1805 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1806 }
1807 
1808 #define has_transparent_hugepage has_transparent_hugepage
1809 static inline int has_transparent_hugepage(void)
1810 {
1811 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1812 }
1813 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1814 
1815 /*
1816  * 64 bit swap entry format:
1817  * A page-table entry has some bits we have to treat in a special way.
1818  * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1819  * as invalid.
1820  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1821  * |			  offset			|E11XX|type |S0|
1822  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1823  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1824  *
1825  * Bits 0-51 store the offset.
1826  * Bit 52 (E) is used to remember PG_anon_exclusive.
1827  * Bits 57-61 store the type.
1828  * Bit 62 (S) is used for softdirty tracking.
1829  * Bits 55 and 56 (X) are unused.
1830  */
1831 
1832 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1833 #define __SWP_OFFSET_SHIFT	12
1834 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1835 #define __SWP_TYPE_SHIFT	2
1836 
1837 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1838 {
1839 	unsigned long pteval;
1840 
1841 	pteval = _PAGE_INVALID | _PAGE_PROTECT;
1842 	pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1843 	pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1844 	return __pte(pteval);
1845 }
1846 
1847 static inline unsigned long __swp_type(swp_entry_t entry)
1848 {
1849 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1850 }
1851 
1852 static inline unsigned long __swp_offset(swp_entry_t entry)
1853 {
1854 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1855 }
1856 
1857 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1858 {
1859 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1860 }
1861 
1862 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1863 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1864 
1865 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1866 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1867 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1868 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1869 extern void vmem_unmap_4k_page(unsigned long addr);
1870 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1871 extern int s390_enable_sie(void);
1872 extern int s390_enable_skey(void);
1873 extern void s390_reset_cmma(struct mm_struct *mm);
1874 
1875 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1876 #define HAVE_ARCH_UNMAPPED_AREA
1877 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1878 
1879 #define pmd_pgtable(pmd) \
1880 	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1881 
1882 #endif /* _S390_PAGE_H */
1883