xref: /linux/arch/s390/include/asm/pgtable.h (revision c434e25b62f8efcfbb6bf1f7ce55960206c1137e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
21 #include <asm/ctlreg.h>
22 #include <asm/bug.h>
23 #include <asm/page.h>
24 #include <asm/uv.h>
25 
26 extern pgd_t swapper_pg_dir[];
27 extern pgd_t invalid_pg_dir[];
28 extern void paging_init(void);
29 extern struct ctlreg s390_invalid_asce;
30 
31 enum {
32 	PG_DIRECT_MAP_4K = 0,
33 	PG_DIRECT_MAP_1M,
34 	PG_DIRECT_MAP_2G,
35 	PG_DIRECT_MAP_MAX
36 };
37 
38 extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]);
39 
40 static inline void update_page_count(int level, long count)
41 {
42 	if (IS_ENABLED(CONFIG_PROC_FS))
43 		atomic_long_add(count, &direct_pages_count[level]);
44 }
45 
46 /*
47  * The S390 doesn't have any external MMU info: the kernel page
48  * tables contain all the necessary information.
49  */
50 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
51 #define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53 
54 /*
55  * ZERO_PAGE is a global shared page that is always zero; used
56  * for zero-mapped memory areas etc..
57  */
58 
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61 
62 #define ZERO_PAGE(vaddr) \
63 	(virt_to_page((void *)(empty_zero_page + \
64 	 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66 
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68 
69 #define pte_ERROR(e) \
70 	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79 
80 /*
81  * The vmalloc and module area will always be on the topmost area of the
82  * kernel mapping. 512GB are reserved for vmalloc by default.
83  * At the top of the vmalloc area a 2GB area is reserved where modules
84  * will reside. That makes sure that inter module branches always
85  * happen without trampolines and in addition the placement within a
86  * 2GB frame is branch prediction unit friendly.
87  */
88 extern unsigned long __bootdata_preserved(VMALLOC_START);
89 extern unsigned long __bootdata_preserved(VMALLOC_END);
90 #define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
91 extern struct page *__bootdata_preserved(vmemmap);
92 extern unsigned long __bootdata_preserved(vmemmap_size);
93 
94 extern unsigned long __bootdata_preserved(MODULES_VADDR);
95 extern unsigned long __bootdata_preserved(MODULES_END);
96 #define MODULES_VADDR	MODULES_VADDR
97 #define MODULES_END	MODULES_END
98 #define MODULES_LEN	(1UL << 31)
99 
100 static inline int is_module_addr(void *addr)
101 {
102 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 	if (addr < (void *)MODULES_VADDR)
104 		return 0;
105 	if (addr > (void *)MODULES_END)
106 		return 0;
107 	return 1;
108 }
109 
110 #ifdef CONFIG_RANDOMIZE_BASE
111 #define KASLR_LEN	(1UL << 31)
112 #else
113 #define KASLR_LEN	0UL
114 #endif
115 
116 /*
117  * A 64 bit pagetable entry of S390 has following format:
118  * |			 PFRA			      |0IPC|  OS  |
119  * 0000000000111111111122222222223333333333444444444455555555556666
120  * 0123456789012345678901234567890123456789012345678901234567890123
121  *
122  * I Page-Invalid Bit:    Page is not available for address-translation
123  * P Page-Protection Bit: Store access not possible for page
124  * C Change-bit override: HW is not required to set change bit
125  *
126  * A 64 bit segmenttable entry of S390 has following format:
127  * |        P-table origin                              |      TT
128  * 0000000000111111111122222222223333333333444444444455555555556666
129  * 0123456789012345678901234567890123456789012345678901234567890123
130  *
131  * I Segment-Invalid Bit:    Segment is not available for address-translation
132  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
133  * P Page-Protection Bit: Store access not possible for page
134  * TT Type 00
135  *
136  * A 64 bit region table entry of S390 has following format:
137  * |        S-table origin                             |   TF  TTTL
138  * 0000000000111111111122222222223333333333444444444455555555556666
139  * 0123456789012345678901234567890123456789012345678901234567890123
140  *
141  * I Segment-Invalid Bit:    Segment is not available for address-translation
142  * TT Type 01
143  * TF
144  * TL Table length
145  *
146  * The 64 bit regiontable origin of S390 has following format:
147  * |      region table origon                          |       DTTL
148  * 0000000000111111111122222222223333333333444444444455555555556666
149  * 0123456789012345678901234567890123456789012345678901234567890123
150  *
151  * X Space-Switch event:
152  * G Segment-Invalid Bit:
153  * P Private-Space Bit:
154  * S Storage-Alteration:
155  * R Real space
156  * TL Table-Length:
157  *
158  * A storage key has the following format:
159  * | ACC |F|R|C|0|
160  *  0   3 4 5 6 7
161  * ACC: access key
162  * F  : fetch protection bit
163  * R  : referenced bit
164  * C  : changed bit
165  */
166 
167 /* Hardware bits in the page table entry */
168 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
169 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
170 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
171 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
172 
173 /* Software bits in the page table entry */
174 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
175 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
176 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
177 #define _PAGE_READ	0x010		/* SW pte read bit */
178 #define _PAGE_WRITE	0x020		/* SW pte write bit */
179 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
180 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
181 
182 #ifdef CONFIG_MEM_SOFT_DIRTY
183 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
184 #else
185 #define _PAGE_SOFT_DIRTY 0x000
186 #endif
187 
188 #define _PAGE_SW_BITS	0xffUL		/* All SW bits */
189 
190 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE	/* SW pte exclusive swap bit */
191 
192 /* Set of bits not changed in pte_modify */
193 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
194 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
195 
196 /*
197  * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
198  * HW bit and all SW bits.
199  */
200 #define _PAGE_RDP_MASK		~(_PAGE_PROTECT | _PAGE_SW_BITS)
201 
202 /*
203  * handle_pte_fault uses pte_present and pte_none to find out the pte type
204  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
205  * distinguish present from not-present ptes. It is changed only with the page
206  * table lock held.
207  *
208  * The following table gives the different possible bit combinations for
209  * the pte hardware and software bits in the last 12 bits of a pte
210  * (. unassigned bit, x don't care, t swap type):
211  *
212  *				842100000000
213  *				000084210000
214  *				000000008421
215  *				.IR.uswrdy.p
216  * empty			.10.00000000
217  * swap				.11..ttttt.0
218  * prot-none, clean, old	.11.xx0000.1
219  * prot-none, clean, young	.11.xx0001.1
220  * prot-none, dirty, old	.11.xx0010.1
221  * prot-none, dirty, young	.11.xx0011.1
222  * read-only, clean, old	.11.xx0100.1
223  * read-only, clean, young	.01.xx0101.1
224  * read-only, dirty, old	.11.xx0110.1
225  * read-only, dirty, young	.01.xx0111.1
226  * read-write, clean, old	.11.xx1100.1
227  * read-write, clean, young	.01.xx1101.1
228  * read-write, dirty, old	.10.xx1110.1
229  * read-write, dirty, young	.00.xx1111.1
230  * HW-bits: R read-only, I invalid
231  * SW-bits: p present, y young, d dirty, r read, w write, s special,
232  *	    u unused, l large
233  *
234  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
235  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
236  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
237  */
238 
239 /* Bits in the segment/region table address-space-control-element */
240 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
241 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
242 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
243 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
244 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
245 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
246 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
247 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
248 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
249 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
250 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
251 
252 /* Bits in the region table entry */
253 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
254 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
255 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
256 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
257 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
258 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
259 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
260 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
261 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
262 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
263 
264 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
265 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
266 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
267 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
268 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
269 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
270 
271 #define _REGION3_ENTRY_HARDWARE_BITS		0xfffffffffffff6ffUL
272 #define _REGION3_ENTRY_HARDWARE_BITS_LARGE	0xffffffff8001073cUL
273 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
274 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
275 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
276 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
277 #define _REGION3_ENTRY_WRITE	0x0002	/* SW region write bit */
278 #define _REGION3_ENTRY_READ	0x0001	/* SW region read bit */
279 
280 #ifdef CONFIG_MEM_SOFT_DIRTY
281 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
282 #else
283 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
284 #endif
285 
286 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
287 
288 /* Bits in the segment table entry */
289 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe3fUL
290 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe3cUL
291 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff1073cUL
292 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
293 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
294 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
295 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
296 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
297 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
298 
299 #define _SEGMENT_ENTRY		(0)
300 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
301 
302 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
303 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
304 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
305 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
306 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
307 
308 #ifdef CONFIG_MEM_SOFT_DIRTY
309 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
310 #else
311 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
312 #endif
313 
314 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
315 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
316 
317 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
318 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
319 
320 #define _REGION1_SHIFT	53
321 #define _REGION2_SHIFT	42
322 #define _REGION3_SHIFT	31
323 #define _SEGMENT_SHIFT	20
324 
325 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
326 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
327 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
328 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
329 #define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
330 
331 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
332 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
333 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
334 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
335 
336 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
337 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
338 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
339 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
340 
341 #define PMD_SHIFT	_SEGMENT_SHIFT
342 #define PUD_SHIFT	_REGION3_SHIFT
343 #define P4D_SHIFT	_REGION2_SHIFT
344 #define PGDIR_SHIFT	_REGION1_SHIFT
345 
346 #define PMD_SIZE	_SEGMENT_SIZE
347 #define PUD_SIZE	_REGION3_SIZE
348 #define P4D_SIZE	_REGION2_SIZE
349 #define PGDIR_SIZE	_REGION1_SIZE
350 
351 #define PMD_MASK	_SEGMENT_MASK
352 #define PUD_MASK	_REGION3_MASK
353 #define P4D_MASK	_REGION2_MASK
354 #define PGDIR_MASK	_REGION1_MASK
355 
356 #define PTRS_PER_PTE	_PAGE_ENTRIES
357 #define PTRS_PER_PMD	_CRST_ENTRIES
358 #define PTRS_PER_PUD	_CRST_ENTRIES
359 #define PTRS_PER_P4D	_CRST_ENTRIES
360 #define PTRS_PER_PGD	_CRST_ENTRIES
361 
362 /*
363  * Segment table and region3 table entry encoding
364  * (R = read-only, I = invalid, y = young bit):
365  *				dy..R...I...wr
366  * prot-none, clean, old	00..1...1...00
367  * prot-none, clean, young	01..1...1...00
368  * prot-none, dirty, old	10..1...1...00
369  * prot-none, dirty, young	11..1...1...00
370  * read-only, clean, old	00..1...1...01
371  * read-only, clean, young	01..1...0...01
372  * read-only, dirty, old	10..1...1...01
373  * read-only, dirty, young	11..1...0...01
374  * read-write, clean, old	00..1...1...11
375  * read-write, clean, young	01..1...0...11
376  * read-write, dirty, old	10..0...1...11
377  * read-write, dirty, young	11..0...0...11
378  * The segment table origin is used to distinguish empty (origin==0) from
379  * read-write, old segment table entries (origin!=0)
380  * HW-bits: R read-only, I invalid
381  * SW-bits: y young, d dirty, r read, w write
382  */
383 
384 /* Page status table bits for virtualization */
385 #define PGSTE_ACC_BITS	0xf000000000000000UL
386 #define PGSTE_FP_BIT	0x0800000000000000UL
387 #define PGSTE_PCL_BIT	0x0080000000000000UL
388 #define PGSTE_HR_BIT	0x0040000000000000UL
389 #define PGSTE_HC_BIT	0x0020000000000000UL
390 #define PGSTE_GR_BIT	0x0004000000000000UL
391 #define PGSTE_GC_BIT	0x0002000000000000UL
392 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
393 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
394 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
395 
396 /* Guest Page State used for virtualization */
397 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
398 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
399 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
400 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
401 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
402 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
403 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
404 
405 /*
406  * A user page table pointer has the space-switch-event bit, the
407  * private-space-control bit and the storage-alteration-event-control
408  * bit set. A kernel page table pointer doesn't need them.
409  */
410 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
411 				 _ASCE_ALT_EVENT)
412 
413 /*
414  * Page protection definitions.
415  */
416 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
417 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
418 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
419 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
420 				 _PAGE_INVALID | _PAGE_PROTECT)
421 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
422 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
423 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
424 				 _PAGE_INVALID | _PAGE_PROTECT)
425 
426 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
427 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
428 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
429 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
430 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
431 				 _PAGE_PROTECT | _PAGE_NOEXEC)
432 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
433 				  _PAGE_YOUNG |	_PAGE_DIRTY)
434 
435 /*
436  * On s390 the page table entry has an invalid bit and a read-only bit.
437  * Read permission implies execute permission and write permission
438  * implies read permission.
439  */
440          /*xwr*/
441 
442 /*
443  * Segment entry (large page) protection definitions.
444  */
445 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
446 				 _SEGMENT_ENTRY_PROTECT)
447 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
448 				 _SEGMENT_ENTRY_READ | \
449 				 _SEGMENT_ENTRY_NOEXEC)
450 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
451 				 _SEGMENT_ENTRY_READ)
452 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
453 				 _SEGMENT_ENTRY_WRITE | \
454 				 _SEGMENT_ENTRY_NOEXEC)
455 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
456 				 _SEGMENT_ENTRY_WRITE)
457 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
458 				 _SEGMENT_ENTRY_LARGE |	\
459 				 _SEGMENT_ENTRY_READ |	\
460 				 _SEGMENT_ENTRY_WRITE | \
461 				 _SEGMENT_ENTRY_YOUNG | \
462 				 _SEGMENT_ENTRY_DIRTY | \
463 				 _SEGMENT_ENTRY_NOEXEC)
464 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
465 				 _SEGMENT_ENTRY_LARGE |	\
466 				 _SEGMENT_ENTRY_READ |	\
467 				 _SEGMENT_ENTRY_YOUNG |	\
468 				 _SEGMENT_ENTRY_PROTECT | \
469 				 _SEGMENT_ENTRY_NOEXEC)
470 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
471 				 _SEGMENT_ENTRY_LARGE |	\
472 				 _SEGMENT_ENTRY_READ |	\
473 				 _SEGMENT_ENTRY_WRITE | \
474 				 _SEGMENT_ENTRY_YOUNG |	\
475 				 _SEGMENT_ENTRY_DIRTY)
476 
477 /*
478  * Region3 entry (large page) protection definitions.
479  */
480 
481 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
482 				 _REGION3_ENTRY_LARGE |	 \
483 				 _REGION3_ENTRY_READ |	 \
484 				 _REGION3_ENTRY_WRITE |	 \
485 				 _REGION3_ENTRY_YOUNG |	 \
486 				 _REGION3_ENTRY_DIRTY | \
487 				 _REGION_ENTRY_NOEXEC)
488 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
489 				   _REGION3_ENTRY_LARGE |  \
490 				   _REGION3_ENTRY_READ |   \
491 				   _REGION3_ENTRY_YOUNG |  \
492 				   _REGION_ENTRY_PROTECT | \
493 				   _REGION_ENTRY_NOEXEC)
494 #define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \
495 				 _REGION3_ENTRY_LARGE |	 \
496 				 _REGION3_ENTRY_READ |	 \
497 				 _REGION3_ENTRY_WRITE |	 \
498 				 _REGION3_ENTRY_YOUNG |	 \
499 				 _REGION3_ENTRY_DIRTY)
500 
501 static inline bool mm_p4d_folded(struct mm_struct *mm)
502 {
503 	return mm->context.asce_limit <= _REGION1_SIZE;
504 }
505 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
506 
507 static inline bool mm_pud_folded(struct mm_struct *mm)
508 {
509 	return mm->context.asce_limit <= _REGION2_SIZE;
510 }
511 #define mm_pud_folded(mm) mm_pud_folded(mm)
512 
513 static inline bool mm_pmd_folded(struct mm_struct *mm)
514 {
515 	return mm->context.asce_limit <= _REGION3_SIZE;
516 }
517 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
518 
519 static inline int mm_has_pgste(struct mm_struct *mm)
520 {
521 #ifdef CONFIG_PGSTE
522 	if (unlikely(mm->context.has_pgste))
523 		return 1;
524 #endif
525 	return 0;
526 }
527 
528 static inline int mm_is_protected(struct mm_struct *mm)
529 {
530 #ifdef CONFIG_PGSTE
531 	if (unlikely(atomic_read(&mm->context.protected_count)))
532 		return 1;
533 #endif
534 	return 0;
535 }
536 
537 static inline int mm_alloc_pgste(struct mm_struct *mm)
538 {
539 #ifdef CONFIG_PGSTE
540 	if (unlikely(mm->context.alloc_pgste))
541 		return 1;
542 #endif
543 	return 0;
544 }
545 
546 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
547 {
548 	return __pte(pte_val(pte) & ~pgprot_val(prot));
549 }
550 
551 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
552 {
553 	return __pte(pte_val(pte) | pgprot_val(prot));
554 }
555 
556 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
557 {
558 	return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
559 }
560 
561 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
562 {
563 	return __pmd(pmd_val(pmd) | pgprot_val(prot));
564 }
565 
566 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
567 {
568 	return __pud(pud_val(pud) & ~pgprot_val(prot));
569 }
570 
571 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
572 {
573 	return __pud(pud_val(pud) | pgprot_val(prot));
574 }
575 
576 /*
577  * As soon as the guest uses storage keys or enables PV, we deduplicate all
578  * mapped shared zeropages and prevent new shared zeropages from getting
579  * mapped.
580  */
581 #define mm_forbids_zeropage mm_forbids_zeropage
582 static inline int mm_forbids_zeropage(struct mm_struct *mm)
583 {
584 #ifdef CONFIG_PGSTE
585 	if (!mm->context.allow_cow_sharing)
586 		return 1;
587 #endif
588 	return 0;
589 }
590 
591 static inline int mm_uses_skeys(struct mm_struct *mm)
592 {
593 #ifdef CONFIG_PGSTE
594 	if (mm->context.uses_skeys)
595 		return 1;
596 #endif
597 	return 0;
598 }
599 
600 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
601 {
602 	union register_pair r1 = { .even = old, .odd = new, };
603 	unsigned long address = (unsigned long)ptr | 1;
604 
605 	asm volatile(
606 		"	csp	%[r1],%[address]"
607 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
608 		: [address] "d" (address)
609 		: "cc");
610 }
611 
612 /**
613  * cspg() - Compare and Swap and Purge (CSPG)
614  * @ptr: Pointer to the value to be exchanged
615  * @old: The expected old value
616  * @new: The new value
617  *
618  * Return: True if compare and swap was successful, otherwise false.
619  */
620 static inline bool cspg(unsigned long *ptr, unsigned long old, unsigned long new)
621 {
622 	union register_pair r1 = { .even = old, .odd = new, };
623 	unsigned long address = (unsigned long)ptr | 1;
624 
625 	asm volatile(
626 		"	cspg	%[r1],%[address]"
627 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
628 		: [address] "d" (address)
629 		: "cc");
630 	return old == r1.even;
631 }
632 
633 #define CRDTE_DTT_PAGE		0x00UL
634 #define CRDTE_DTT_SEGMENT	0x10UL
635 #define CRDTE_DTT_REGION3	0x14UL
636 #define CRDTE_DTT_REGION2	0x18UL
637 #define CRDTE_DTT_REGION1	0x1cUL
638 
639 /**
640  * crdte() - Compare and Replace DAT Table Entry
641  * @old:     The expected old value
642  * @new:     The new value
643  * @table:   Pointer to the value to be exchanged
644  * @dtt:     Table type of the table to be exchanged
645  * @address: The address mapped by the entry to be replaced
646  * @asce:    The ASCE of this entry
647  *
648  * Return: True if compare and replace was successful, otherwise false.
649  */
650 static inline bool crdte(unsigned long old, unsigned long new,
651 			 unsigned long *table, unsigned long dtt,
652 			 unsigned long address, unsigned long asce)
653 {
654 	union register_pair r1 = { .even = old, .odd = new, };
655 	union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
656 
657 	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
658 		     : [r1] "+&d" (r1.pair)
659 		     : [r2] "d" (r2.pair), [asce] "a" (asce)
660 		     : "memory", "cc");
661 	return old == r1.even;
662 }
663 
664 /*
665  * pgd/p4d/pud/pmd/pte query functions
666  */
667 static inline int pgd_folded(pgd_t pgd)
668 {
669 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
670 }
671 
672 static inline int pgd_present(pgd_t pgd)
673 {
674 	if (pgd_folded(pgd))
675 		return 1;
676 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
677 }
678 
679 static inline int pgd_none(pgd_t pgd)
680 {
681 	if (pgd_folded(pgd))
682 		return 0;
683 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
684 }
685 
686 static inline int pgd_bad(pgd_t pgd)
687 {
688 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
689 		return 0;
690 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
691 }
692 
693 static inline unsigned long pgd_pfn(pgd_t pgd)
694 {
695 	unsigned long origin_mask;
696 
697 	origin_mask = _REGION_ENTRY_ORIGIN;
698 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
699 }
700 
701 static inline int p4d_folded(p4d_t p4d)
702 {
703 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
704 }
705 
706 static inline int p4d_present(p4d_t p4d)
707 {
708 	if (p4d_folded(p4d))
709 		return 1;
710 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
711 }
712 
713 static inline int p4d_none(p4d_t p4d)
714 {
715 	if (p4d_folded(p4d))
716 		return 0;
717 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
718 }
719 
720 static inline unsigned long p4d_pfn(p4d_t p4d)
721 {
722 	unsigned long origin_mask;
723 
724 	origin_mask = _REGION_ENTRY_ORIGIN;
725 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
726 }
727 
728 static inline int pud_folded(pud_t pud)
729 {
730 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
731 }
732 
733 static inline int pud_present(pud_t pud)
734 {
735 	if (pud_folded(pud))
736 		return 1;
737 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
738 }
739 
740 static inline int pud_none(pud_t pud)
741 {
742 	if (pud_folded(pud))
743 		return 0;
744 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
745 }
746 
747 #define pud_leaf pud_leaf
748 static inline bool pud_leaf(pud_t pud)
749 {
750 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
751 		return 0;
752 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
753 }
754 
755 #define pmd_leaf pmd_leaf
756 static inline bool pmd_leaf(pmd_t pmd)
757 {
758 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
759 }
760 
761 static inline int pmd_bad(pmd_t pmd)
762 {
763 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_leaf(pmd))
764 		return 1;
765 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
766 }
767 
768 static inline int pud_bad(pud_t pud)
769 {
770 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
771 
772 	if (type > _REGION_ENTRY_TYPE_R3 || pud_leaf(pud))
773 		return 1;
774 	if (type < _REGION_ENTRY_TYPE_R3)
775 		return 0;
776 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
777 }
778 
779 static inline int p4d_bad(p4d_t p4d)
780 {
781 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
782 
783 	if (type > _REGION_ENTRY_TYPE_R2)
784 		return 1;
785 	if (type < _REGION_ENTRY_TYPE_R2)
786 		return 0;
787 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
788 }
789 
790 static inline int pmd_present(pmd_t pmd)
791 {
792 	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
793 }
794 
795 static inline int pmd_none(pmd_t pmd)
796 {
797 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
798 }
799 
800 #define pmd_write pmd_write
801 static inline int pmd_write(pmd_t pmd)
802 {
803 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
804 }
805 
806 #define pud_write pud_write
807 static inline int pud_write(pud_t pud)
808 {
809 	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
810 }
811 
812 #define pmd_dirty pmd_dirty
813 static inline int pmd_dirty(pmd_t pmd)
814 {
815 	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
816 }
817 
818 #define pmd_young pmd_young
819 static inline int pmd_young(pmd_t pmd)
820 {
821 	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
822 }
823 
824 static inline int pte_present(pte_t pte)
825 {
826 	/* Bit pattern: (pte & 0x001) == 0x001 */
827 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
828 }
829 
830 static inline int pte_none(pte_t pte)
831 {
832 	/* Bit pattern: pte == 0x400 */
833 	return pte_val(pte) == _PAGE_INVALID;
834 }
835 
836 static inline int pte_swap(pte_t pte)
837 {
838 	/* Bit pattern: (pte & 0x201) == 0x200 */
839 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
840 		== _PAGE_PROTECT;
841 }
842 
843 static inline int pte_special(pte_t pte)
844 {
845 	return (pte_val(pte) & _PAGE_SPECIAL);
846 }
847 
848 #define __HAVE_ARCH_PTE_SAME
849 static inline int pte_same(pte_t a, pte_t b)
850 {
851 	return pte_val(a) == pte_val(b);
852 }
853 
854 #ifdef CONFIG_NUMA_BALANCING
855 static inline int pte_protnone(pte_t pte)
856 {
857 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
858 }
859 
860 static inline int pmd_protnone(pmd_t pmd)
861 {
862 	/* pmd_leaf(pmd) implies pmd_present(pmd) */
863 	return pmd_leaf(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
864 }
865 #endif
866 
867 static inline int pte_swp_exclusive(pte_t pte)
868 {
869 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
870 }
871 
872 static inline pte_t pte_swp_mkexclusive(pte_t pte)
873 {
874 	return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
875 }
876 
877 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
878 {
879 	return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
880 }
881 
882 static inline int pte_soft_dirty(pte_t pte)
883 {
884 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
885 }
886 #define pte_swp_soft_dirty pte_soft_dirty
887 
888 static inline pte_t pte_mksoft_dirty(pte_t pte)
889 {
890 	return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
891 }
892 #define pte_swp_mksoft_dirty pte_mksoft_dirty
893 
894 static inline pte_t pte_clear_soft_dirty(pte_t pte)
895 {
896 	return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
897 }
898 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
899 
900 static inline int pmd_soft_dirty(pmd_t pmd)
901 {
902 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
903 }
904 
905 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
906 {
907 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
908 }
909 
910 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
911 {
912 	return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
913 }
914 
915 /*
916  * query functions pte_write/pte_dirty/pte_young only work if
917  * pte_present() is true. Undefined behaviour if not..
918  */
919 static inline int pte_write(pte_t pte)
920 {
921 	return (pte_val(pte) & _PAGE_WRITE) != 0;
922 }
923 
924 static inline int pte_dirty(pte_t pte)
925 {
926 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
927 }
928 
929 static inline int pte_young(pte_t pte)
930 {
931 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
932 }
933 
934 #define __HAVE_ARCH_PTE_UNUSED
935 static inline int pte_unused(pte_t pte)
936 {
937 	return pte_val(pte) & _PAGE_UNUSED;
938 }
939 
940 /*
941  * Extract the pgprot value from the given pte while at the same time making it
942  * usable for kernel address space mappings where fault driven dirty and
943  * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
944  * must not be set.
945  */
946 static inline pgprot_t pte_pgprot(pte_t pte)
947 {
948 	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
949 
950 	if (pte_write(pte))
951 		pte_flags |= pgprot_val(PAGE_KERNEL);
952 	else
953 		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
954 	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
955 
956 	return __pgprot(pte_flags);
957 }
958 
959 /*
960  * pgd/pmd/pte modification functions
961  */
962 
963 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
964 {
965 	WRITE_ONCE(*pgdp, pgd);
966 }
967 
968 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
969 {
970 	WRITE_ONCE(*p4dp, p4d);
971 }
972 
973 static inline void set_pud(pud_t *pudp, pud_t pud)
974 {
975 	WRITE_ONCE(*pudp, pud);
976 }
977 
978 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
979 {
980 	WRITE_ONCE(*pmdp, pmd);
981 }
982 
983 static inline void set_pte(pte_t *ptep, pte_t pte)
984 {
985 	WRITE_ONCE(*ptep, pte);
986 }
987 
988 static inline void pgd_clear(pgd_t *pgd)
989 {
990 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
991 		set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
992 }
993 
994 static inline void p4d_clear(p4d_t *p4d)
995 {
996 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
997 		set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
998 }
999 
1000 static inline void pud_clear(pud_t *pud)
1001 {
1002 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1003 		set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
1004 }
1005 
1006 static inline void pmd_clear(pmd_t *pmdp)
1007 {
1008 	set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1009 }
1010 
1011 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1012 {
1013 	set_pte(ptep, __pte(_PAGE_INVALID));
1014 }
1015 
1016 /*
1017  * The following pte modification functions only work if
1018  * pte_present() is true. Undefined behaviour if not..
1019  */
1020 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1021 {
1022 	pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
1023 	pte = set_pte_bit(pte, newprot);
1024 	/*
1025 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
1026 	 * has the invalid bit set, clear it again for readable, young pages
1027 	 */
1028 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
1029 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1030 	/*
1031 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
1032 	 * protection bit set, clear it again for writable, dirty pages
1033 	 */
1034 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
1035 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1036 	return pte;
1037 }
1038 
1039 static inline pte_t pte_wrprotect(pte_t pte)
1040 {
1041 	pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1042 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1043 }
1044 
1045 static inline pte_t pte_mkwrite_novma(pte_t pte)
1046 {
1047 	pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1048 	if (pte_val(pte) & _PAGE_DIRTY)
1049 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1050 	return pte;
1051 }
1052 
1053 static inline pte_t pte_mkclean(pte_t pte)
1054 {
1055 	pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1056 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1057 }
1058 
1059 static inline pte_t pte_mkdirty(pte_t pte)
1060 {
1061 	pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1062 	if (pte_val(pte) & _PAGE_WRITE)
1063 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1064 	return pte;
1065 }
1066 
1067 static inline pte_t pte_mkold(pte_t pte)
1068 {
1069 	pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1070 	return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1071 }
1072 
1073 static inline pte_t pte_mkyoung(pte_t pte)
1074 {
1075 	pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1076 	if (pte_val(pte) & _PAGE_READ)
1077 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1078 	return pte;
1079 }
1080 
1081 static inline pte_t pte_mkspecial(pte_t pte)
1082 {
1083 	return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1084 }
1085 
1086 #ifdef CONFIG_HUGETLB_PAGE
1087 static inline pte_t pte_mkhuge(pte_t pte)
1088 {
1089 	return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1090 }
1091 #endif
1092 
1093 #define IPTE_GLOBAL	0
1094 #define	IPTE_LOCAL	1
1095 
1096 #define IPTE_NODAT	0x400
1097 #define IPTE_GUEST_ASCE	0x800
1098 
1099 static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1100 				       unsigned long opt, unsigned long asce,
1101 				       int local)
1102 {
1103 	unsigned long pto;
1104 
1105 	pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1106 	asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1107 		     : "+m" (*ptep)
1108 		     : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1109 		       [asce] "a" (asce), [m4] "i" (local));
1110 }
1111 
1112 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1113 					unsigned long opt, unsigned long asce,
1114 					int local)
1115 {
1116 	unsigned long pto = __pa(ptep);
1117 
1118 	if (__builtin_constant_p(opt) && opt == 0) {
1119 		/* Invalidation + TLB flush for the pte */
1120 		asm volatile(
1121 			"	ipte	%[r1],%[r2],0,%[m4]"
1122 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1123 			  [m4] "i" (local));
1124 		return;
1125 	}
1126 
1127 	/* Invalidate ptes with options + TLB flush of the ptes */
1128 	opt = opt | (asce & _ASCE_ORIGIN);
1129 	asm volatile(
1130 		"	ipte	%[r1],%[r2],%[r3],%[m4]"
1131 		: [r2] "+a" (address), [r3] "+a" (opt)
1132 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1133 }
1134 
1135 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1136 					      pte_t *ptep, int local)
1137 {
1138 	unsigned long pto = __pa(ptep);
1139 
1140 	/* Invalidate a range of ptes + TLB flush of the ptes */
1141 	do {
1142 		asm volatile(
1143 			"	ipte %[r1],%[r2],%[r3],%[m4]"
1144 			: [r2] "+a" (address), [r3] "+a" (nr)
1145 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1146 	} while (nr != 255);
1147 }
1148 
1149 /*
1150  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1151  * both clear the TLB for the unmapped pte. The reason is that
1152  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1153  * to modify an active pte. The sequence is
1154  *   1) ptep_get_and_clear
1155  *   2) set_pte_at
1156  *   3) flush_tlb_range
1157  * On s390 the tlb needs to get flushed with the modification of the pte
1158  * if the pte is active. The only way how this can be implemented is to
1159  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1160  * is a nop.
1161  */
1162 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1163 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1164 
1165 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1166 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1167 					    unsigned long addr, pte_t *ptep)
1168 {
1169 	pte_t pte = *ptep;
1170 
1171 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1172 	return pte_young(pte);
1173 }
1174 
1175 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1176 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1177 					 unsigned long address, pte_t *ptep)
1178 {
1179 	return ptep_test_and_clear_young(vma, address, ptep);
1180 }
1181 
1182 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1183 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1184 				       unsigned long addr, pte_t *ptep)
1185 {
1186 	pte_t res;
1187 
1188 	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1189 	/* At this point the reference through the mapping is still present */
1190 	if (mm_is_protected(mm) && pte_present(res))
1191 		uv_convert_from_secure_pte(res);
1192 	return res;
1193 }
1194 
1195 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1196 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1197 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1198 			     pte_t *, pte_t, pte_t);
1199 
1200 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1201 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1202 				     unsigned long addr, pte_t *ptep)
1203 {
1204 	pte_t res;
1205 
1206 	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1207 	/* At this point the reference through the mapping is still present */
1208 	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1209 		uv_convert_from_secure_pte(res);
1210 	return res;
1211 }
1212 
1213 /*
1214  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1215  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1216  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1217  * cannot be accessed while the batched unmap is running. In this case
1218  * full==1 and a simple pte_clear is enough. See tlb.h.
1219  */
1220 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1221 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1222 					    unsigned long addr,
1223 					    pte_t *ptep, int full)
1224 {
1225 	pte_t res;
1226 
1227 	if (full) {
1228 		res = *ptep;
1229 		set_pte(ptep, __pte(_PAGE_INVALID));
1230 	} else {
1231 		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1232 	}
1233 	/* Nothing to do */
1234 	if (!mm_is_protected(mm) || !pte_present(res))
1235 		return res;
1236 	/*
1237 	 * At this point the reference through the mapping is still present.
1238 	 * The notifier should have destroyed all protected vCPUs at this
1239 	 * point, so the destroy should be successful.
1240 	 */
1241 	if (full && !uv_destroy_pte(res))
1242 		return res;
1243 	/*
1244 	 * If something went wrong and the page could not be destroyed, or
1245 	 * if this is not a mm teardown, the slower export is used as
1246 	 * fallback instead.
1247 	 */
1248 	uv_convert_from_secure_pte(res);
1249 	return res;
1250 }
1251 
1252 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1253 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1254 				      unsigned long addr, pte_t *ptep)
1255 {
1256 	pte_t pte = *ptep;
1257 
1258 	if (pte_write(pte))
1259 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1260 }
1261 
1262 /*
1263  * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1264  * bits in the comparison. Those might change e.g. because of dirty and young
1265  * tracking.
1266  */
1267 static inline int pte_allow_rdp(pte_t old, pte_t new)
1268 {
1269 	/*
1270 	 * Only allow changes from RO to RW
1271 	 */
1272 	if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1273 		return 0;
1274 
1275 	return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1276 }
1277 
1278 static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1279 						unsigned long address,
1280 						pte_t *ptep)
1281 {
1282 	/*
1283 	 * RDP might not have propagated the PTE protection reset to all CPUs,
1284 	 * so there could be spurious TLB protection faults.
1285 	 * NOTE: This will also be called when a racing pagetable update on
1286 	 * another thread already installed the correct PTE. Both cases cannot
1287 	 * really be distinguished.
1288 	 * Therefore, only do the local TLB flush when RDP can be used, and the
1289 	 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1290 	 * A local RDP can be used to do the flush.
1291 	 */
1292 	if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT))
1293 		__ptep_rdp(address, ptep, 0, 0, 1);
1294 }
1295 #define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1296 
1297 void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1298 			 pte_t new);
1299 
1300 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1301 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1302 					unsigned long addr, pte_t *ptep,
1303 					pte_t entry, int dirty)
1304 {
1305 	if (pte_same(*ptep, entry))
1306 		return 0;
1307 	if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1308 		ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1309 	else
1310 		ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1311 	return 1;
1312 }
1313 
1314 /*
1315  * Additional functions to handle KVM guest page tables
1316  */
1317 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1318 		     pte_t *ptep, pte_t entry);
1319 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1320 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1321 		 pte_t *ptep, unsigned long bits);
1322 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1323 		    pte_t *ptep, int prot, unsigned long bit);
1324 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1325 		     pte_t *ptep , int reset);
1326 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1327 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1328 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1329 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1330 
1331 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1332 			    pte_t *ptep);
1333 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1334 			  unsigned char key, bool nq);
1335 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1336 			       unsigned char key, unsigned char *oldkey,
1337 			       bool nq, bool mr, bool mc);
1338 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1339 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1340 			  unsigned char *key);
1341 
1342 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1343 				unsigned long bits, unsigned long value);
1344 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1345 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1346 			unsigned long *oldpte, unsigned long *oldpgste);
1347 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1348 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1349 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1350 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1351 
1352 #define pgprot_writecombine	pgprot_writecombine
1353 pgprot_t pgprot_writecombine(pgprot_t prot);
1354 
1355 #define pgprot_writethrough	pgprot_writethrough
1356 pgprot_t pgprot_writethrough(pgprot_t prot);
1357 
1358 #define PFN_PTE_SHIFT		PAGE_SHIFT
1359 
1360 /*
1361  * Set multiple PTEs to consecutive pages with a single call.  All PTEs
1362  * are within the same folio, PMD and VMA.
1363  */
1364 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1365 			      pte_t *ptep, pte_t entry, unsigned int nr)
1366 {
1367 	if (pte_present(entry))
1368 		entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1369 	if (mm_has_pgste(mm)) {
1370 		for (;;) {
1371 			ptep_set_pte_at(mm, addr, ptep, entry);
1372 			if (--nr == 0)
1373 				break;
1374 			ptep++;
1375 			entry = __pte(pte_val(entry) + PAGE_SIZE);
1376 			addr += PAGE_SIZE;
1377 		}
1378 	} else {
1379 		for (;;) {
1380 			set_pte(ptep, entry);
1381 			if (--nr == 0)
1382 				break;
1383 			ptep++;
1384 			entry = __pte(pte_val(entry) + PAGE_SIZE);
1385 		}
1386 	}
1387 }
1388 #define set_ptes set_ptes
1389 
1390 /*
1391  * Conversion functions: convert a page and protection to a page entry,
1392  * and a page entry and page directory to the page they refer to.
1393  */
1394 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1395 {
1396 	pte_t __pte;
1397 
1398 	__pte = __pte(physpage | pgprot_val(pgprot));
1399 	if (!MACHINE_HAS_NX)
1400 		__pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1401 	return pte_mkyoung(__pte);
1402 }
1403 
1404 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1405 {
1406 	unsigned long physpage = page_to_phys(page);
1407 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1408 
1409 	if (pte_write(__pte) && PageDirty(page))
1410 		__pte = pte_mkdirty(__pte);
1411 	return __pte;
1412 }
1413 
1414 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1415 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1416 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1417 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1418 
1419 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1420 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1421 
1422 static inline unsigned long pmd_deref(pmd_t pmd)
1423 {
1424 	unsigned long origin_mask;
1425 
1426 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1427 	if (pmd_leaf(pmd))
1428 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1429 	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1430 }
1431 
1432 static inline unsigned long pmd_pfn(pmd_t pmd)
1433 {
1434 	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1435 }
1436 
1437 static inline unsigned long pud_deref(pud_t pud)
1438 {
1439 	unsigned long origin_mask;
1440 
1441 	origin_mask = _REGION_ENTRY_ORIGIN;
1442 	if (pud_leaf(pud))
1443 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1444 	return (unsigned long)__va(pud_val(pud) & origin_mask);
1445 }
1446 
1447 #define pud_pfn pud_pfn
1448 static inline unsigned long pud_pfn(pud_t pud)
1449 {
1450 	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1451 }
1452 
1453 /*
1454  * The pgd_offset function *always* adds the index for the top-level
1455  * region/segment table. This is done to get a sequence like the
1456  * following to work:
1457  *	pgdp = pgd_offset(current->mm, addr);
1458  *	pgd = READ_ONCE(*pgdp);
1459  *	p4dp = p4d_offset(&pgd, addr);
1460  *	...
1461  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1462  * only add an index if they dereferenced the pointer.
1463  */
1464 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1465 {
1466 	unsigned long rste;
1467 	unsigned int shift;
1468 
1469 	/* Get the first entry of the top level table */
1470 	rste = pgd_val(*pgd);
1471 	/* Pick up the shift from the table type of the first entry */
1472 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1473 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1474 }
1475 
1476 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1477 
1478 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1479 {
1480 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1481 		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1482 	return (p4d_t *) pgdp;
1483 }
1484 #define p4d_offset_lockless p4d_offset_lockless
1485 
1486 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1487 {
1488 	return p4d_offset_lockless(pgdp, *pgdp, address);
1489 }
1490 
1491 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1492 {
1493 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1494 		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1495 	return (pud_t *) p4dp;
1496 }
1497 #define pud_offset_lockless pud_offset_lockless
1498 
1499 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1500 {
1501 	return pud_offset_lockless(p4dp, *p4dp, address);
1502 }
1503 #define pud_offset pud_offset
1504 
1505 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1506 {
1507 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1508 		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1509 	return (pmd_t *) pudp;
1510 }
1511 #define pmd_offset_lockless pmd_offset_lockless
1512 
1513 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1514 {
1515 	return pmd_offset_lockless(pudp, *pudp, address);
1516 }
1517 #define pmd_offset pmd_offset
1518 
1519 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1520 {
1521 	return (unsigned long) pmd_deref(pmd);
1522 }
1523 
1524 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1525 {
1526 	return end <= current->mm->context.asce_limit;
1527 }
1528 #define gup_fast_permitted gup_fast_permitted
1529 
1530 #define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1531 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1532 #define pte_page(x) pfn_to_page(pte_pfn(x))
1533 
1534 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1535 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1536 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1537 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1538 
1539 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1540 {
1541 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1542 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1543 }
1544 
1545 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
1546 {
1547 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1548 	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1549 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1550 	return pmd;
1551 }
1552 
1553 static inline pmd_t pmd_mkclean(pmd_t pmd)
1554 {
1555 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1556 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1557 }
1558 
1559 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1560 {
1561 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1562 	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1563 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1564 	return pmd;
1565 }
1566 
1567 static inline pud_t pud_wrprotect(pud_t pud)
1568 {
1569 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1570 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1571 }
1572 
1573 static inline pud_t pud_mkwrite(pud_t pud)
1574 {
1575 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1576 	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1577 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1578 	return pud;
1579 }
1580 
1581 static inline pud_t pud_mkclean(pud_t pud)
1582 {
1583 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1584 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1585 }
1586 
1587 static inline pud_t pud_mkdirty(pud_t pud)
1588 {
1589 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1590 	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1591 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1592 	return pud;
1593 }
1594 
1595 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1596 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1597 {
1598 	/*
1599 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1600 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1601 	 */
1602 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1603 		return pgprot_val(SEGMENT_NONE);
1604 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1605 		return pgprot_val(SEGMENT_RO);
1606 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1607 		return pgprot_val(SEGMENT_RX);
1608 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1609 		return pgprot_val(SEGMENT_RW);
1610 	return pgprot_val(SEGMENT_RWX);
1611 }
1612 
1613 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1614 {
1615 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1616 	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1617 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1618 	return pmd;
1619 }
1620 
1621 static inline pmd_t pmd_mkold(pmd_t pmd)
1622 {
1623 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1624 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1625 }
1626 
1627 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1628 {
1629 	unsigned long mask;
1630 
1631 	mask  = _SEGMENT_ENTRY_ORIGIN_LARGE;
1632 	mask |= _SEGMENT_ENTRY_DIRTY;
1633 	mask |= _SEGMENT_ENTRY_YOUNG;
1634 	mask |=	_SEGMENT_ENTRY_LARGE;
1635 	mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1636 	pmd = __pmd(pmd_val(pmd) & mask);
1637 	pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1638 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1639 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1640 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1641 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1642 	return pmd;
1643 }
1644 
1645 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1646 {
1647 	return __pmd(physpage + massage_pgprot_pmd(pgprot));
1648 }
1649 
1650 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1651 
1652 static inline void __pmdp_csp(pmd_t *pmdp)
1653 {
1654 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1655 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1656 }
1657 
1658 #define IDTE_GLOBAL	0
1659 #define IDTE_LOCAL	1
1660 
1661 #define IDTE_PTOA	0x0800
1662 #define IDTE_NODAT	0x1000
1663 #define IDTE_GUEST_ASCE	0x2000
1664 
1665 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1666 					unsigned long opt, unsigned long asce,
1667 					int local)
1668 {
1669 	unsigned long sto;
1670 
1671 	sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1672 	if (__builtin_constant_p(opt) && opt == 0) {
1673 		/* flush without guest asce */
1674 		asm volatile(
1675 			"	idte	%[r1],0,%[r2],%[m4]"
1676 			: "+m" (*pmdp)
1677 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1678 			  [m4] "i" (local)
1679 			: "cc" );
1680 	} else {
1681 		/* flush with guest asce */
1682 		asm volatile(
1683 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1684 			: "+m" (*pmdp)
1685 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1686 			  [r3] "a" (asce), [m4] "i" (local)
1687 			: "cc" );
1688 	}
1689 }
1690 
1691 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1692 					unsigned long opt, unsigned long asce,
1693 					int local)
1694 {
1695 	unsigned long r3o;
1696 
1697 	r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1698 	r3o |= _ASCE_TYPE_REGION3;
1699 	if (__builtin_constant_p(opt) && opt == 0) {
1700 		/* flush without guest asce */
1701 		asm volatile(
1702 			"	idte	%[r1],0,%[r2],%[m4]"
1703 			: "+m" (*pudp)
1704 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1705 			  [m4] "i" (local)
1706 			: "cc");
1707 	} else {
1708 		/* flush with guest asce */
1709 		asm volatile(
1710 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1711 			: "+m" (*pudp)
1712 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1713 			  [r3] "a" (asce), [m4] "i" (local)
1714 			: "cc" );
1715 	}
1716 }
1717 
1718 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1719 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1720 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1721 
1722 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1723 
1724 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1725 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1726 				pgtable_t pgtable);
1727 
1728 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1729 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1730 
1731 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1732 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1733 					unsigned long addr, pmd_t *pmdp,
1734 					pmd_t entry, int dirty)
1735 {
1736 	VM_BUG_ON(addr & ~HPAGE_MASK);
1737 
1738 	entry = pmd_mkyoung(entry);
1739 	if (dirty)
1740 		entry = pmd_mkdirty(entry);
1741 	if (pmd_val(*pmdp) == pmd_val(entry))
1742 		return 0;
1743 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1744 	return 1;
1745 }
1746 
1747 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1748 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1749 					    unsigned long addr, pmd_t *pmdp)
1750 {
1751 	pmd_t pmd = *pmdp;
1752 
1753 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1754 	return pmd_young(pmd);
1755 }
1756 
1757 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1758 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1759 					 unsigned long addr, pmd_t *pmdp)
1760 {
1761 	VM_BUG_ON(addr & ~HPAGE_MASK);
1762 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1763 }
1764 
1765 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1766 			      pmd_t *pmdp, pmd_t entry)
1767 {
1768 	if (!MACHINE_HAS_NX)
1769 		entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1770 	set_pmd(pmdp, entry);
1771 }
1772 
1773 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1774 {
1775 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1776 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1777 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1778 }
1779 
1780 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1781 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1782 					    unsigned long addr, pmd_t *pmdp)
1783 {
1784 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1785 }
1786 
1787 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1788 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1789 						 unsigned long addr,
1790 						 pmd_t *pmdp, int full)
1791 {
1792 	if (full) {
1793 		pmd_t pmd = *pmdp;
1794 		set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1795 		return pmd;
1796 	}
1797 	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1798 }
1799 
1800 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1801 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1802 					  unsigned long addr, pmd_t *pmdp)
1803 {
1804 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1805 }
1806 
1807 #define __HAVE_ARCH_PMDP_INVALIDATE
1808 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1809 				   unsigned long addr, pmd_t *pmdp)
1810 {
1811 	pmd_t pmd;
1812 
1813 	VM_WARN_ON_ONCE(!pmd_present(*pmdp));
1814 	pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1815 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1816 }
1817 
1818 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1819 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1820 				      unsigned long addr, pmd_t *pmdp)
1821 {
1822 	pmd_t pmd = *pmdp;
1823 
1824 	if (pmd_write(pmd))
1825 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1826 }
1827 
1828 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1829 					unsigned long address,
1830 					pmd_t *pmdp)
1831 {
1832 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1833 }
1834 #define pmdp_collapse_flush pmdp_collapse_flush
1835 
1836 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1837 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1838 
1839 static inline int pmd_trans_huge(pmd_t pmd)
1840 {
1841 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1842 }
1843 
1844 #define has_transparent_hugepage has_transparent_hugepage
1845 static inline int has_transparent_hugepage(void)
1846 {
1847 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1848 }
1849 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1850 
1851 /*
1852  * 64 bit swap entry format:
1853  * A page-table entry has some bits we have to treat in a special way.
1854  * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1855  * as invalid.
1856  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1857  * |			  offset			|E11XX|type |S0|
1858  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1859  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1860  *
1861  * Bits 0-51 store the offset.
1862  * Bit 52 (E) is used to remember PG_anon_exclusive.
1863  * Bits 57-61 store the type.
1864  * Bit 62 (S) is used for softdirty tracking.
1865  * Bits 55 and 56 (X) are unused.
1866  */
1867 
1868 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1869 #define __SWP_OFFSET_SHIFT	12
1870 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1871 #define __SWP_TYPE_SHIFT	2
1872 
1873 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1874 {
1875 	unsigned long pteval;
1876 
1877 	pteval = _PAGE_INVALID | _PAGE_PROTECT;
1878 	pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1879 	pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1880 	return __pte(pteval);
1881 }
1882 
1883 static inline unsigned long __swp_type(swp_entry_t entry)
1884 {
1885 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1886 }
1887 
1888 static inline unsigned long __swp_offset(swp_entry_t entry)
1889 {
1890 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1891 }
1892 
1893 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1894 {
1895 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1896 }
1897 
1898 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1899 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1900 
1901 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1902 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1903 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1904 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1905 extern void vmem_unmap_4k_page(unsigned long addr);
1906 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1907 extern int s390_enable_sie(void);
1908 extern int s390_enable_skey(void);
1909 extern void s390_reset_cmma(struct mm_struct *mm);
1910 
1911 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1912 #define HAVE_ARCH_UNMAPPED_AREA
1913 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1914 
1915 #define pmd_pgtable(pmd) \
1916 	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1917 
1918 #endif /* _S390_PAGE_H */
1919