xref: /linux/arch/s390/include/asm/pgtable.h (revision 8f5b5f78113e881cb8570c961b0dc42b218a1b9e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
21 #include <asm/ctlreg.h>
22 #include <asm/bug.h>
23 #include <asm/page.h>
24 #include <asm/uv.h>
25 
26 extern pgd_t swapper_pg_dir[];
27 extern pgd_t invalid_pg_dir[];
28 extern void paging_init(void);
29 extern struct ctlreg s390_invalid_asce;
30 
31 enum {
32 	PG_DIRECT_MAP_4K = 0,
33 	PG_DIRECT_MAP_1M,
34 	PG_DIRECT_MAP_2G,
35 	PG_DIRECT_MAP_MAX
36 };
37 
38 extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]);
39 
40 static inline void update_page_count(int level, long count)
41 {
42 	if (IS_ENABLED(CONFIG_PROC_FS))
43 		atomic_long_add(count, &direct_pages_count[level]);
44 }
45 
46 /*
47  * The S390 doesn't have any external MMU info: the kernel page
48  * tables contain all the necessary information.
49  */
50 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
51 #define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53 
54 /*
55  * ZERO_PAGE is a global shared page that is always zero; used
56  * for zero-mapped memory areas etc..
57  */
58 
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61 
62 #define ZERO_PAGE(vaddr) \
63 	(virt_to_page((void *)(empty_zero_page + \
64 	 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66 
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68 
69 #define pte_ERROR(e) \
70 	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79 
80 /*
81  * The vmalloc and module area will always be on the topmost area of the
82  * kernel mapping. 512GB are reserved for vmalloc by default.
83  * At the top of the vmalloc area a 2GB area is reserved where modules
84  * will reside. That makes sure that inter module branches always
85  * happen without trampolines and in addition the placement within a
86  * 2GB frame is branch prediction unit friendly.
87  */
88 extern unsigned long __bootdata_preserved(VMALLOC_START);
89 extern unsigned long __bootdata_preserved(VMALLOC_END);
90 #define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
91 extern struct page *__bootdata_preserved(vmemmap);
92 extern unsigned long __bootdata_preserved(vmemmap_size);
93 
94 extern unsigned long __bootdata_preserved(MODULES_VADDR);
95 extern unsigned long __bootdata_preserved(MODULES_END);
96 #define MODULES_VADDR	MODULES_VADDR
97 #define MODULES_END	MODULES_END
98 #define MODULES_LEN	(1UL << 31)
99 
100 static inline int is_module_addr(void *addr)
101 {
102 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 	if (addr < (void *)MODULES_VADDR)
104 		return 0;
105 	if (addr > (void *)MODULES_END)
106 		return 0;
107 	return 1;
108 }
109 
110 #ifdef CONFIG_RANDOMIZE_BASE
111 #define KASLR_LEN	(1UL << 31)
112 #else
113 #define KASLR_LEN	0UL
114 #endif
115 
116 /*
117  * A 64 bit pagetable entry of S390 has following format:
118  * |			 PFRA			      |0IPC|  OS  |
119  * 0000000000111111111122222222223333333333444444444455555555556666
120  * 0123456789012345678901234567890123456789012345678901234567890123
121  *
122  * I Page-Invalid Bit:    Page is not available for address-translation
123  * P Page-Protection Bit: Store access not possible for page
124  * C Change-bit override: HW is not required to set change bit
125  *
126  * A 64 bit segmenttable entry of S390 has following format:
127  * |        P-table origin                              |      TT
128  * 0000000000111111111122222222223333333333444444444455555555556666
129  * 0123456789012345678901234567890123456789012345678901234567890123
130  *
131  * I Segment-Invalid Bit:    Segment is not available for address-translation
132  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
133  * P Page-Protection Bit: Store access not possible for page
134  * TT Type 00
135  *
136  * A 64 bit region table entry of S390 has following format:
137  * |        S-table origin                             |   TF  TTTL
138  * 0000000000111111111122222222223333333333444444444455555555556666
139  * 0123456789012345678901234567890123456789012345678901234567890123
140  *
141  * I Segment-Invalid Bit:    Segment is not available for address-translation
142  * TT Type 01
143  * TF
144  * TL Table length
145  *
146  * The 64 bit regiontable origin of S390 has following format:
147  * |      region table origon                          |       DTTL
148  * 0000000000111111111122222222223333333333444444444455555555556666
149  * 0123456789012345678901234567890123456789012345678901234567890123
150  *
151  * X Space-Switch event:
152  * G Segment-Invalid Bit:
153  * P Private-Space Bit:
154  * S Storage-Alteration:
155  * R Real space
156  * TL Table-Length:
157  *
158  * A storage key has the following format:
159  * | ACC |F|R|C|0|
160  *  0   3 4 5 6 7
161  * ACC: access key
162  * F  : fetch protection bit
163  * R  : referenced bit
164  * C  : changed bit
165  */
166 
167 /* Hardware bits in the page table entry */
168 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
169 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
170 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
171 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
172 
173 /* Software bits in the page table entry */
174 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
175 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
176 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
177 #define _PAGE_READ	0x010		/* SW pte read bit */
178 #define _PAGE_WRITE	0x020		/* SW pte write bit */
179 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
180 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
181 
182 #ifdef CONFIG_MEM_SOFT_DIRTY
183 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
184 #else
185 #define _PAGE_SOFT_DIRTY 0x000
186 #endif
187 
188 #define _PAGE_SW_BITS	0xffUL		/* All SW bits */
189 
190 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE	/* SW pte exclusive swap bit */
191 
192 /* Set of bits not changed in pte_modify */
193 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
194 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
195 
196 /*
197  * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
198  * HW bit and all SW bits.
199  */
200 #define _PAGE_RDP_MASK		~(_PAGE_PROTECT | _PAGE_SW_BITS)
201 
202 /*
203  * handle_pte_fault uses pte_present and pte_none to find out the pte type
204  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
205  * distinguish present from not-present ptes. It is changed only with the page
206  * table lock held.
207  *
208  * The following table gives the different possible bit combinations for
209  * the pte hardware and software bits in the last 12 bits of a pte
210  * (. unassigned bit, x don't care, t swap type):
211  *
212  *				842100000000
213  *				000084210000
214  *				000000008421
215  *				.IR.uswrdy.p
216  * empty			.10.00000000
217  * swap				.11..ttttt.0
218  * prot-none, clean, old	.11.xx0000.1
219  * prot-none, clean, young	.11.xx0001.1
220  * prot-none, dirty, old	.11.xx0010.1
221  * prot-none, dirty, young	.11.xx0011.1
222  * read-only, clean, old	.11.xx0100.1
223  * read-only, clean, young	.01.xx0101.1
224  * read-only, dirty, old	.11.xx0110.1
225  * read-only, dirty, young	.01.xx0111.1
226  * read-write, clean, old	.11.xx1100.1
227  * read-write, clean, young	.01.xx1101.1
228  * read-write, dirty, old	.10.xx1110.1
229  * read-write, dirty, young	.00.xx1111.1
230  * HW-bits: R read-only, I invalid
231  * SW-bits: p present, y young, d dirty, r read, w write, s special,
232  *	    u unused, l large
233  *
234  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
235  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
236  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
237  */
238 
239 /* Bits in the segment/region table address-space-control-element */
240 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
241 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
242 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
243 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
244 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
245 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
246 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
247 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
248 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
249 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
250 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
251 
252 /* Bits in the region table entry */
253 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
254 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
255 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
256 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
257 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
258 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
259 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
260 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
261 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
262 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
263 
264 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
265 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
266 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
267 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
268 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
269 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
270 
271 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
272 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
273 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
274 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
275 #define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
276 #define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
277 
278 #ifdef CONFIG_MEM_SOFT_DIRTY
279 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
280 #else
281 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
282 #endif
283 
284 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
285 
286 /* Bits in the segment table entry */
287 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
288 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
289 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
290 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
291 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
292 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
293 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
294 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
295 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
296 
297 #define _SEGMENT_ENTRY		(0)
298 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
299 
300 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
301 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
302 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
303 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
304 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
305 
306 #ifdef CONFIG_MEM_SOFT_DIRTY
307 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
308 #else
309 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
310 #endif
311 
312 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
313 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
314 
315 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
316 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
317 
318 #define _REGION1_SHIFT	53
319 #define _REGION2_SHIFT	42
320 #define _REGION3_SHIFT	31
321 #define _SEGMENT_SHIFT	20
322 
323 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
324 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
325 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
326 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
327 #define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
328 
329 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
330 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
331 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
332 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
333 
334 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
335 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
336 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
337 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
338 
339 #define PMD_SHIFT	_SEGMENT_SHIFT
340 #define PUD_SHIFT	_REGION3_SHIFT
341 #define P4D_SHIFT	_REGION2_SHIFT
342 #define PGDIR_SHIFT	_REGION1_SHIFT
343 
344 #define PMD_SIZE	_SEGMENT_SIZE
345 #define PUD_SIZE	_REGION3_SIZE
346 #define P4D_SIZE	_REGION2_SIZE
347 #define PGDIR_SIZE	_REGION1_SIZE
348 
349 #define PMD_MASK	_SEGMENT_MASK
350 #define PUD_MASK	_REGION3_MASK
351 #define P4D_MASK	_REGION2_MASK
352 #define PGDIR_MASK	_REGION1_MASK
353 
354 #define PTRS_PER_PTE	_PAGE_ENTRIES
355 #define PTRS_PER_PMD	_CRST_ENTRIES
356 #define PTRS_PER_PUD	_CRST_ENTRIES
357 #define PTRS_PER_P4D	_CRST_ENTRIES
358 #define PTRS_PER_PGD	_CRST_ENTRIES
359 
360 /*
361  * Segment table and region3 table entry encoding
362  * (R = read-only, I = invalid, y = young bit):
363  *				dy..R...I...wr
364  * prot-none, clean, old	00..1...1...00
365  * prot-none, clean, young	01..1...1...00
366  * prot-none, dirty, old	10..1...1...00
367  * prot-none, dirty, young	11..1...1...00
368  * read-only, clean, old	00..1...1...01
369  * read-only, clean, young	01..1...0...01
370  * read-only, dirty, old	10..1...1...01
371  * read-only, dirty, young	11..1...0...01
372  * read-write, clean, old	00..1...1...11
373  * read-write, clean, young	01..1...0...11
374  * read-write, dirty, old	10..0...1...11
375  * read-write, dirty, young	11..0...0...11
376  * The segment table origin is used to distinguish empty (origin==0) from
377  * read-write, old segment table entries (origin!=0)
378  * HW-bits: R read-only, I invalid
379  * SW-bits: y young, d dirty, r read, w write
380  */
381 
382 /* Page status table bits for virtualization */
383 #define PGSTE_ACC_BITS	0xf000000000000000UL
384 #define PGSTE_FP_BIT	0x0800000000000000UL
385 #define PGSTE_PCL_BIT	0x0080000000000000UL
386 #define PGSTE_HR_BIT	0x0040000000000000UL
387 #define PGSTE_HC_BIT	0x0020000000000000UL
388 #define PGSTE_GR_BIT	0x0004000000000000UL
389 #define PGSTE_GC_BIT	0x0002000000000000UL
390 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
391 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
392 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
393 
394 /* Guest Page State used for virtualization */
395 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
396 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
397 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
398 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
399 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
400 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
401 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
402 
403 /*
404  * A user page table pointer has the space-switch-event bit, the
405  * private-space-control bit and the storage-alteration-event-control
406  * bit set. A kernel page table pointer doesn't need them.
407  */
408 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
409 				 _ASCE_ALT_EVENT)
410 
411 /*
412  * Page protection definitions.
413  */
414 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
415 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
416 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
417 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
418 				 _PAGE_INVALID | _PAGE_PROTECT)
419 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
420 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
421 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
422 				 _PAGE_INVALID | _PAGE_PROTECT)
423 
424 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
425 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
426 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
427 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
428 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
429 				 _PAGE_PROTECT | _PAGE_NOEXEC)
430 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
431 				  _PAGE_YOUNG |	_PAGE_DIRTY)
432 
433 /*
434  * On s390 the page table entry has an invalid bit and a read-only bit.
435  * Read permission implies execute permission and write permission
436  * implies read permission.
437  */
438          /*xwr*/
439 
440 /*
441  * Segment entry (large page) protection definitions.
442  */
443 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
444 				 _SEGMENT_ENTRY_PROTECT)
445 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
446 				 _SEGMENT_ENTRY_READ | \
447 				 _SEGMENT_ENTRY_NOEXEC)
448 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
449 				 _SEGMENT_ENTRY_READ)
450 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
451 				 _SEGMENT_ENTRY_WRITE | \
452 				 _SEGMENT_ENTRY_NOEXEC)
453 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
454 				 _SEGMENT_ENTRY_WRITE)
455 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
456 				 _SEGMENT_ENTRY_LARGE |	\
457 				 _SEGMENT_ENTRY_READ |	\
458 				 _SEGMENT_ENTRY_WRITE | \
459 				 _SEGMENT_ENTRY_YOUNG | \
460 				 _SEGMENT_ENTRY_DIRTY | \
461 				 _SEGMENT_ENTRY_NOEXEC)
462 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
463 				 _SEGMENT_ENTRY_LARGE |	\
464 				 _SEGMENT_ENTRY_READ |	\
465 				 _SEGMENT_ENTRY_YOUNG |	\
466 				 _SEGMENT_ENTRY_PROTECT | \
467 				 _SEGMENT_ENTRY_NOEXEC)
468 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
469 				 _SEGMENT_ENTRY_LARGE |	\
470 				 _SEGMENT_ENTRY_READ |	\
471 				 _SEGMENT_ENTRY_WRITE | \
472 				 _SEGMENT_ENTRY_YOUNG |	\
473 				 _SEGMENT_ENTRY_DIRTY)
474 
475 /*
476  * Region3 entry (large page) protection definitions.
477  */
478 
479 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
480 				 _REGION3_ENTRY_LARGE |	 \
481 				 _REGION3_ENTRY_READ |	 \
482 				 _REGION3_ENTRY_WRITE |	 \
483 				 _REGION3_ENTRY_YOUNG |	 \
484 				 _REGION3_ENTRY_DIRTY | \
485 				 _REGION_ENTRY_NOEXEC)
486 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
487 				   _REGION3_ENTRY_LARGE |  \
488 				   _REGION3_ENTRY_READ |   \
489 				   _REGION3_ENTRY_YOUNG |  \
490 				   _REGION_ENTRY_PROTECT | \
491 				   _REGION_ENTRY_NOEXEC)
492 #define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \
493 				 _REGION3_ENTRY_LARGE |	 \
494 				 _REGION3_ENTRY_READ |	 \
495 				 _REGION3_ENTRY_WRITE |	 \
496 				 _REGION3_ENTRY_YOUNG |	 \
497 				 _REGION3_ENTRY_DIRTY)
498 
499 static inline bool mm_p4d_folded(struct mm_struct *mm)
500 {
501 	return mm->context.asce_limit <= _REGION1_SIZE;
502 }
503 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
504 
505 static inline bool mm_pud_folded(struct mm_struct *mm)
506 {
507 	return mm->context.asce_limit <= _REGION2_SIZE;
508 }
509 #define mm_pud_folded(mm) mm_pud_folded(mm)
510 
511 static inline bool mm_pmd_folded(struct mm_struct *mm)
512 {
513 	return mm->context.asce_limit <= _REGION3_SIZE;
514 }
515 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
516 
517 static inline int mm_has_pgste(struct mm_struct *mm)
518 {
519 #ifdef CONFIG_PGSTE
520 	if (unlikely(mm->context.has_pgste))
521 		return 1;
522 #endif
523 	return 0;
524 }
525 
526 static inline int mm_is_protected(struct mm_struct *mm)
527 {
528 #ifdef CONFIG_PGSTE
529 	if (unlikely(atomic_read(&mm->context.protected_count)))
530 		return 1;
531 #endif
532 	return 0;
533 }
534 
535 static inline int mm_alloc_pgste(struct mm_struct *mm)
536 {
537 #ifdef CONFIG_PGSTE
538 	if (unlikely(mm->context.alloc_pgste))
539 		return 1;
540 #endif
541 	return 0;
542 }
543 
544 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
545 {
546 	return __pte(pte_val(pte) & ~pgprot_val(prot));
547 }
548 
549 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
550 {
551 	return __pte(pte_val(pte) | pgprot_val(prot));
552 }
553 
554 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
555 {
556 	return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
557 }
558 
559 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
560 {
561 	return __pmd(pmd_val(pmd) | pgprot_val(prot));
562 }
563 
564 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
565 {
566 	return __pud(pud_val(pud) & ~pgprot_val(prot));
567 }
568 
569 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
570 {
571 	return __pud(pud_val(pud) | pgprot_val(prot));
572 }
573 
574 /*
575  * As soon as the guest uses storage keys or enables PV, we deduplicate all
576  * mapped shared zeropages and prevent new shared zeropages from getting
577  * mapped.
578  */
579 #define mm_forbids_zeropage mm_forbids_zeropage
580 static inline int mm_forbids_zeropage(struct mm_struct *mm)
581 {
582 #ifdef CONFIG_PGSTE
583 	if (!mm->context.allow_cow_sharing)
584 		return 1;
585 #endif
586 	return 0;
587 }
588 
589 static inline int mm_uses_skeys(struct mm_struct *mm)
590 {
591 #ifdef CONFIG_PGSTE
592 	if (mm->context.uses_skeys)
593 		return 1;
594 #endif
595 	return 0;
596 }
597 
598 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
599 {
600 	union register_pair r1 = { .even = old, .odd = new, };
601 	unsigned long address = (unsigned long)ptr | 1;
602 
603 	asm volatile(
604 		"	csp	%[r1],%[address]"
605 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
606 		: [address] "d" (address)
607 		: "cc");
608 }
609 
610 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
611 {
612 	union register_pair r1 = { .even = old, .odd = new, };
613 	unsigned long address = (unsigned long)ptr | 1;
614 
615 	asm volatile(
616 		"	cspg	%[r1],%[address]"
617 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
618 		: [address] "d" (address)
619 		: "cc");
620 }
621 
622 #define CRDTE_DTT_PAGE		0x00UL
623 #define CRDTE_DTT_SEGMENT	0x10UL
624 #define CRDTE_DTT_REGION3	0x14UL
625 #define CRDTE_DTT_REGION2	0x18UL
626 #define CRDTE_DTT_REGION1	0x1cUL
627 
628 static inline void crdte(unsigned long old, unsigned long new,
629 			 unsigned long *table, unsigned long dtt,
630 			 unsigned long address, unsigned long asce)
631 {
632 	union register_pair r1 = { .even = old, .odd = new, };
633 	union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
634 
635 	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
636 		     : [r1] "+&d" (r1.pair)
637 		     : [r2] "d" (r2.pair), [asce] "a" (asce)
638 		     : "memory", "cc");
639 }
640 
641 /*
642  * pgd/p4d/pud/pmd/pte query functions
643  */
644 static inline int pgd_folded(pgd_t pgd)
645 {
646 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
647 }
648 
649 static inline int pgd_present(pgd_t pgd)
650 {
651 	if (pgd_folded(pgd))
652 		return 1;
653 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
654 }
655 
656 static inline int pgd_none(pgd_t pgd)
657 {
658 	if (pgd_folded(pgd))
659 		return 0;
660 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
661 }
662 
663 static inline int pgd_bad(pgd_t pgd)
664 {
665 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
666 		return 0;
667 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
668 }
669 
670 static inline unsigned long pgd_pfn(pgd_t pgd)
671 {
672 	unsigned long origin_mask;
673 
674 	origin_mask = _REGION_ENTRY_ORIGIN;
675 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
676 }
677 
678 static inline int p4d_folded(p4d_t p4d)
679 {
680 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
681 }
682 
683 static inline int p4d_present(p4d_t p4d)
684 {
685 	if (p4d_folded(p4d))
686 		return 1;
687 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
688 }
689 
690 static inline int p4d_none(p4d_t p4d)
691 {
692 	if (p4d_folded(p4d))
693 		return 0;
694 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
695 }
696 
697 static inline unsigned long p4d_pfn(p4d_t p4d)
698 {
699 	unsigned long origin_mask;
700 
701 	origin_mask = _REGION_ENTRY_ORIGIN;
702 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
703 }
704 
705 static inline int pud_folded(pud_t pud)
706 {
707 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
708 }
709 
710 static inline int pud_present(pud_t pud)
711 {
712 	if (pud_folded(pud))
713 		return 1;
714 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
715 }
716 
717 static inline int pud_none(pud_t pud)
718 {
719 	if (pud_folded(pud))
720 		return 0;
721 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
722 }
723 
724 #define pud_leaf pud_leaf
725 static inline bool pud_leaf(pud_t pud)
726 {
727 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
728 		return 0;
729 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
730 }
731 
732 #define pmd_leaf pmd_leaf
733 static inline bool pmd_leaf(pmd_t pmd)
734 {
735 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
736 }
737 
738 static inline int pmd_bad(pmd_t pmd)
739 {
740 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_leaf(pmd))
741 		return 1;
742 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
743 }
744 
745 static inline int pud_bad(pud_t pud)
746 {
747 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
748 
749 	if (type > _REGION_ENTRY_TYPE_R3 || pud_leaf(pud))
750 		return 1;
751 	if (type < _REGION_ENTRY_TYPE_R3)
752 		return 0;
753 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
754 }
755 
756 static inline int p4d_bad(p4d_t p4d)
757 {
758 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
759 
760 	if (type > _REGION_ENTRY_TYPE_R2)
761 		return 1;
762 	if (type < _REGION_ENTRY_TYPE_R2)
763 		return 0;
764 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
765 }
766 
767 static inline int pmd_present(pmd_t pmd)
768 {
769 	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
770 }
771 
772 static inline int pmd_none(pmd_t pmd)
773 {
774 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
775 }
776 
777 #define pmd_write pmd_write
778 static inline int pmd_write(pmd_t pmd)
779 {
780 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
781 }
782 
783 #define pud_write pud_write
784 static inline int pud_write(pud_t pud)
785 {
786 	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
787 }
788 
789 #define pmd_dirty pmd_dirty
790 static inline int pmd_dirty(pmd_t pmd)
791 {
792 	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
793 }
794 
795 #define pmd_young pmd_young
796 static inline int pmd_young(pmd_t pmd)
797 {
798 	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
799 }
800 
801 static inline int pte_present(pte_t pte)
802 {
803 	/* Bit pattern: (pte & 0x001) == 0x001 */
804 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
805 }
806 
807 static inline int pte_none(pte_t pte)
808 {
809 	/* Bit pattern: pte == 0x400 */
810 	return pte_val(pte) == _PAGE_INVALID;
811 }
812 
813 static inline int pte_swap(pte_t pte)
814 {
815 	/* Bit pattern: (pte & 0x201) == 0x200 */
816 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
817 		== _PAGE_PROTECT;
818 }
819 
820 static inline int pte_special(pte_t pte)
821 {
822 	return (pte_val(pte) & _PAGE_SPECIAL);
823 }
824 
825 #define __HAVE_ARCH_PTE_SAME
826 static inline int pte_same(pte_t a, pte_t b)
827 {
828 	return pte_val(a) == pte_val(b);
829 }
830 
831 #ifdef CONFIG_NUMA_BALANCING
832 static inline int pte_protnone(pte_t pte)
833 {
834 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
835 }
836 
837 static inline int pmd_protnone(pmd_t pmd)
838 {
839 	/* pmd_leaf(pmd) implies pmd_present(pmd) */
840 	return pmd_leaf(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
841 }
842 #endif
843 
844 static inline int pte_swp_exclusive(pte_t pte)
845 {
846 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
847 }
848 
849 static inline pte_t pte_swp_mkexclusive(pte_t pte)
850 {
851 	return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
852 }
853 
854 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
855 {
856 	return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
857 }
858 
859 static inline int pte_soft_dirty(pte_t pte)
860 {
861 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
862 }
863 #define pte_swp_soft_dirty pte_soft_dirty
864 
865 static inline pte_t pte_mksoft_dirty(pte_t pte)
866 {
867 	return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
868 }
869 #define pte_swp_mksoft_dirty pte_mksoft_dirty
870 
871 static inline pte_t pte_clear_soft_dirty(pte_t pte)
872 {
873 	return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
874 }
875 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
876 
877 static inline int pmd_soft_dirty(pmd_t pmd)
878 {
879 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
880 }
881 
882 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
883 {
884 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
885 }
886 
887 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
888 {
889 	return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
890 }
891 
892 /*
893  * query functions pte_write/pte_dirty/pte_young only work if
894  * pte_present() is true. Undefined behaviour if not..
895  */
896 static inline int pte_write(pte_t pte)
897 {
898 	return (pte_val(pte) & _PAGE_WRITE) != 0;
899 }
900 
901 static inline int pte_dirty(pte_t pte)
902 {
903 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
904 }
905 
906 static inline int pte_young(pte_t pte)
907 {
908 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
909 }
910 
911 #define __HAVE_ARCH_PTE_UNUSED
912 static inline int pte_unused(pte_t pte)
913 {
914 	return pte_val(pte) & _PAGE_UNUSED;
915 }
916 
917 /*
918  * Extract the pgprot value from the given pte while at the same time making it
919  * usable for kernel address space mappings where fault driven dirty and
920  * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
921  * must not be set.
922  */
923 static inline pgprot_t pte_pgprot(pte_t pte)
924 {
925 	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
926 
927 	if (pte_write(pte))
928 		pte_flags |= pgprot_val(PAGE_KERNEL);
929 	else
930 		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
931 	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
932 
933 	return __pgprot(pte_flags);
934 }
935 
936 /*
937  * pgd/pmd/pte modification functions
938  */
939 
940 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
941 {
942 	WRITE_ONCE(*pgdp, pgd);
943 }
944 
945 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
946 {
947 	WRITE_ONCE(*p4dp, p4d);
948 }
949 
950 static inline void set_pud(pud_t *pudp, pud_t pud)
951 {
952 	WRITE_ONCE(*pudp, pud);
953 }
954 
955 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
956 {
957 	WRITE_ONCE(*pmdp, pmd);
958 }
959 
960 static inline void set_pte(pte_t *ptep, pte_t pte)
961 {
962 	WRITE_ONCE(*ptep, pte);
963 }
964 
965 static inline void pgd_clear(pgd_t *pgd)
966 {
967 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
968 		set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
969 }
970 
971 static inline void p4d_clear(p4d_t *p4d)
972 {
973 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
974 		set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
975 }
976 
977 static inline void pud_clear(pud_t *pud)
978 {
979 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
980 		set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
981 }
982 
983 static inline void pmd_clear(pmd_t *pmdp)
984 {
985 	set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
986 }
987 
988 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
989 {
990 	set_pte(ptep, __pte(_PAGE_INVALID));
991 }
992 
993 /*
994  * The following pte modification functions only work if
995  * pte_present() is true. Undefined behaviour if not..
996  */
997 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
998 {
999 	pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
1000 	pte = set_pte_bit(pte, newprot);
1001 	/*
1002 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
1003 	 * has the invalid bit set, clear it again for readable, young pages
1004 	 */
1005 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
1006 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1007 	/*
1008 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
1009 	 * protection bit set, clear it again for writable, dirty pages
1010 	 */
1011 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
1012 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1013 	return pte;
1014 }
1015 
1016 static inline pte_t pte_wrprotect(pte_t pte)
1017 {
1018 	pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1019 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1020 }
1021 
1022 static inline pte_t pte_mkwrite_novma(pte_t pte)
1023 {
1024 	pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1025 	if (pte_val(pte) & _PAGE_DIRTY)
1026 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1027 	return pte;
1028 }
1029 
1030 static inline pte_t pte_mkclean(pte_t pte)
1031 {
1032 	pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1033 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1034 }
1035 
1036 static inline pte_t pte_mkdirty(pte_t pte)
1037 {
1038 	pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1039 	if (pte_val(pte) & _PAGE_WRITE)
1040 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1041 	return pte;
1042 }
1043 
1044 static inline pte_t pte_mkold(pte_t pte)
1045 {
1046 	pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1047 	return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1048 }
1049 
1050 static inline pte_t pte_mkyoung(pte_t pte)
1051 {
1052 	pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1053 	if (pte_val(pte) & _PAGE_READ)
1054 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1055 	return pte;
1056 }
1057 
1058 static inline pte_t pte_mkspecial(pte_t pte)
1059 {
1060 	return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1061 }
1062 
1063 #ifdef CONFIG_HUGETLB_PAGE
1064 static inline pte_t pte_mkhuge(pte_t pte)
1065 {
1066 	return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1067 }
1068 #endif
1069 
1070 #define IPTE_GLOBAL	0
1071 #define	IPTE_LOCAL	1
1072 
1073 #define IPTE_NODAT	0x400
1074 #define IPTE_GUEST_ASCE	0x800
1075 
1076 static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1077 				       unsigned long opt, unsigned long asce,
1078 				       int local)
1079 {
1080 	unsigned long pto;
1081 
1082 	pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1083 	asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1084 		     : "+m" (*ptep)
1085 		     : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1086 		       [asce] "a" (asce), [m4] "i" (local));
1087 }
1088 
1089 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1090 					unsigned long opt, unsigned long asce,
1091 					int local)
1092 {
1093 	unsigned long pto = __pa(ptep);
1094 
1095 	if (__builtin_constant_p(opt) && opt == 0) {
1096 		/* Invalidation + TLB flush for the pte */
1097 		asm volatile(
1098 			"	ipte	%[r1],%[r2],0,%[m4]"
1099 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1100 			  [m4] "i" (local));
1101 		return;
1102 	}
1103 
1104 	/* Invalidate ptes with options + TLB flush of the ptes */
1105 	opt = opt | (asce & _ASCE_ORIGIN);
1106 	asm volatile(
1107 		"	ipte	%[r1],%[r2],%[r3],%[m4]"
1108 		: [r2] "+a" (address), [r3] "+a" (opt)
1109 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1110 }
1111 
1112 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1113 					      pte_t *ptep, int local)
1114 {
1115 	unsigned long pto = __pa(ptep);
1116 
1117 	/* Invalidate a range of ptes + TLB flush of the ptes */
1118 	do {
1119 		asm volatile(
1120 			"	ipte %[r1],%[r2],%[r3],%[m4]"
1121 			: [r2] "+a" (address), [r3] "+a" (nr)
1122 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1123 	} while (nr != 255);
1124 }
1125 
1126 /*
1127  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1128  * both clear the TLB for the unmapped pte. The reason is that
1129  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1130  * to modify an active pte. The sequence is
1131  *   1) ptep_get_and_clear
1132  *   2) set_pte_at
1133  *   3) flush_tlb_range
1134  * On s390 the tlb needs to get flushed with the modification of the pte
1135  * if the pte is active. The only way how this can be implemented is to
1136  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1137  * is a nop.
1138  */
1139 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1140 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1141 
1142 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1143 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1144 					    unsigned long addr, pte_t *ptep)
1145 {
1146 	pte_t pte = *ptep;
1147 
1148 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1149 	return pte_young(pte);
1150 }
1151 
1152 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1153 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1154 					 unsigned long address, pte_t *ptep)
1155 {
1156 	return ptep_test_and_clear_young(vma, address, ptep);
1157 }
1158 
1159 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1160 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1161 				       unsigned long addr, pte_t *ptep)
1162 {
1163 	pte_t res;
1164 
1165 	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1166 	/* At this point the reference through the mapping is still present */
1167 	if (mm_is_protected(mm) && pte_present(res))
1168 		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1169 	return res;
1170 }
1171 
1172 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1173 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1174 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1175 			     pte_t *, pte_t, pte_t);
1176 
1177 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1178 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1179 				     unsigned long addr, pte_t *ptep)
1180 {
1181 	pte_t res;
1182 
1183 	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1184 	/* At this point the reference through the mapping is still present */
1185 	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1186 		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1187 	return res;
1188 }
1189 
1190 /*
1191  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1192  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1193  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1194  * cannot be accessed while the batched unmap is running. In this case
1195  * full==1 and a simple pte_clear is enough. See tlb.h.
1196  */
1197 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1198 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1199 					    unsigned long addr,
1200 					    pte_t *ptep, int full)
1201 {
1202 	pte_t res;
1203 
1204 	if (full) {
1205 		res = *ptep;
1206 		set_pte(ptep, __pte(_PAGE_INVALID));
1207 	} else {
1208 		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1209 	}
1210 	/* Nothing to do */
1211 	if (!mm_is_protected(mm) || !pte_present(res))
1212 		return res;
1213 	/*
1214 	 * At this point the reference through the mapping is still present.
1215 	 * The notifier should have destroyed all protected vCPUs at this
1216 	 * point, so the destroy should be successful.
1217 	 */
1218 	if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1219 		return res;
1220 	/*
1221 	 * If something went wrong and the page could not be destroyed, or
1222 	 * if this is not a mm teardown, the slower export is used as
1223 	 * fallback instead.
1224 	 */
1225 	uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1226 	return res;
1227 }
1228 
1229 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1230 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1231 				      unsigned long addr, pte_t *ptep)
1232 {
1233 	pte_t pte = *ptep;
1234 
1235 	if (pte_write(pte))
1236 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1237 }
1238 
1239 /*
1240  * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1241  * bits in the comparison. Those might change e.g. because of dirty and young
1242  * tracking.
1243  */
1244 static inline int pte_allow_rdp(pte_t old, pte_t new)
1245 {
1246 	/*
1247 	 * Only allow changes from RO to RW
1248 	 */
1249 	if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1250 		return 0;
1251 
1252 	return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1253 }
1254 
1255 static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1256 						unsigned long address,
1257 						pte_t *ptep)
1258 {
1259 	/*
1260 	 * RDP might not have propagated the PTE protection reset to all CPUs,
1261 	 * so there could be spurious TLB protection faults.
1262 	 * NOTE: This will also be called when a racing pagetable update on
1263 	 * another thread already installed the correct PTE. Both cases cannot
1264 	 * really be distinguished.
1265 	 * Therefore, only do the local TLB flush when RDP can be used, and the
1266 	 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1267 	 * A local RDP can be used to do the flush.
1268 	 */
1269 	if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT))
1270 		__ptep_rdp(address, ptep, 0, 0, 1);
1271 }
1272 #define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1273 
1274 void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1275 			 pte_t new);
1276 
1277 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1278 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1279 					unsigned long addr, pte_t *ptep,
1280 					pte_t entry, int dirty)
1281 {
1282 	if (pte_same(*ptep, entry))
1283 		return 0;
1284 	if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1285 		ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1286 	else
1287 		ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1288 	return 1;
1289 }
1290 
1291 /*
1292  * Additional functions to handle KVM guest page tables
1293  */
1294 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1295 		     pte_t *ptep, pte_t entry);
1296 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1297 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1298 		 pte_t *ptep, unsigned long bits);
1299 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1300 		    pte_t *ptep, int prot, unsigned long bit);
1301 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1302 		     pte_t *ptep , int reset);
1303 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1304 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1305 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1306 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1307 
1308 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1309 			    pte_t *ptep);
1310 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1311 			  unsigned char key, bool nq);
1312 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1313 			       unsigned char key, unsigned char *oldkey,
1314 			       bool nq, bool mr, bool mc);
1315 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1316 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1317 			  unsigned char *key);
1318 
1319 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1320 				unsigned long bits, unsigned long value);
1321 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1322 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1323 			unsigned long *oldpte, unsigned long *oldpgste);
1324 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1325 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1326 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1327 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1328 
1329 #define pgprot_writecombine	pgprot_writecombine
1330 pgprot_t pgprot_writecombine(pgprot_t prot);
1331 
1332 #define pgprot_writethrough	pgprot_writethrough
1333 pgprot_t pgprot_writethrough(pgprot_t prot);
1334 
1335 #define PFN_PTE_SHIFT		PAGE_SHIFT
1336 
1337 /*
1338  * Set multiple PTEs to consecutive pages with a single call.  All PTEs
1339  * are within the same folio, PMD and VMA.
1340  */
1341 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1342 			      pte_t *ptep, pte_t entry, unsigned int nr)
1343 {
1344 	if (pte_present(entry))
1345 		entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1346 	if (mm_has_pgste(mm)) {
1347 		for (;;) {
1348 			ptep_set_pte_at(mm, addr, ptep, entry);
1349 			if (--nr == 0)
1350 				break;
1351 			ptep++;
1352 			entry = __pte(pte_val(entry) + PAGE_SIZE);
1353 			addr += PAGE_SIZE;
1354 		}
1355 	} else {
1356 		for (;;) {
1357 			set_pte(ptep, entry);
1358 			if (--nr == 0)
1359 				break;
1360 			ptep++;
1361 			entry = __pte(pte_val(entry) + PAGE_SIZE);
1362 		}
1363 	}
1364 }
1365 #define set_ptes set_ptes
1366 
1367 /*
1368  * Conversion functions: convert a page and protection to a page entry,
1369  * and a page entry and page directory to the page they refer to.
1370  */
1371 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1372 {
1373 	pte_t __pte;
1374 
1375 	__pte = __pte(physpage | pgprot_val(pgprot));
1376 	if (!MACHINE_HAS_NX)
1377 		__pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1378 	return pte_mkyoung(__pte);
1379 }
1380 
1381 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1382 {
1383 	unsigned long physpage = page_to_phys(page);
1384 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1385 
1386 	if (pte_write(__pte) && PageDirty(page))
1387 		__pte = pte_mkdirty(__pte);
1388 	return __pte;
1389 }
1390 
1391 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1392 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1393 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1394 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1395 
1396 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1397 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1398 
1399 static inline unsigned long pmd_deref(pmd_t pmd)
1400 {
1401 	unsigned long origin_mask;
1402 
1403 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1404 	if (pmd_leaf(pmd))
1405 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1406 	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1407 }
1408 
1409 static inline unsigned long pmd_pfn(pmd_t pmd)
1410 {
1411 	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1412 }
1413 
1414 static inline unsigned long pud_deref(pud_t pud)
1415 {
1416 	unsigned long origin_mask;
1417 
1418 	origin_mask = _REGION_ENTRY_ORIGIN;
1419 	if (pud_leaf(pud))
1420 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1421 	return (unsigned long)__va(pud_val(pud) & origin_mask);
1422 }
1423 
1424 static inline unsigned long pud_pfn(pud_t pud)
1425 {
1426 	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1427 }
1428 
1429 /*
1430  * The pgd_offset function *always* adds the index for the top-level
1431  * region/segment table. This is done to get a sequence like the
1432  * following to work:
1433  *	pgdp = pgd_offset(current->mm, addr);
1434  *	pgd = READ_ONCE(*pgdp);
1435  *	p4dp = p4d_offset(&pgd, addr);
1436  *	...
1437  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1438  * only add an index if they dereferenced the pointer.
1439  */
1440 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1441 {
1442 	unsigned long rste;
1443 	unsigned int shift;
1444 
1445 	/* Get the first entry of the top level table */
1446 	rste = pgd_val(*pgd);
1447 	/* Pick up the shift from the table type of the first entry */
1448 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1449 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1450 }
1451 
1452 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1453 
1454 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1455 {
1456 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1457 		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1458 	return (p4d_t *) pgdp;
1459 }
1460 #define p4d_offset_lockless p4d_offset_lockless
1461 
1462 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1463 {
1464 	return p4d_offset_lockless(pgdp, *pgdp, address);
1465 }
1466 
1467 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1468 {
1469 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1470 		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1471 	return (pud_t *) p4dp;
1472 }
1473 #define pud_offset_lockless pud_offset_lockless
1474 
1475 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1476 {
1477 	return pud_offset_lockless(p4dp, *p4dp, address);
1478 }
1479 #define pud_offset pud_offset
1480 
1481 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1482 {
1483 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1484 		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1485 	return (pmd_t *) pudp;
1486 }
1487 #define pmd_offset_lockless pmd_offset_lockless
1488 
1489 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1490 {
1491 	return pmd_offset_lockless(pudp, *pudp, address);
1492 }
1493 #define pmd_offset pmd_offset
1494 
1495 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1496 {
1497 	return (unsigned long) pmd_deref(pmd);
1498 }
1499 
1500 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1501 {
1502 	return end <= current->mm->context.asce_limit;
1503 }
1504 #define gup_fast_permitted gup_fast_permitted
1505 
1506 #define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1507 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1508 #define pte_page(x) pfn_to_page(pte_pfn(x))
1509 
1510 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1511 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1512 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1513 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1514 
1515 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1516 {
1517 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1518 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1519 }
1520 
1521 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
1522 {
1523 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1524 	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1525 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1526 	return pmd;
1527 }
1528 
1529 static inline pmd_t pmd_mkclean(pmd_t pmd)
1530 {
1531 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1532 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1533 }
1534 
1535 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1536 {
1537 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1538 	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1539 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1540 	return pmd;
1541 }
1542 
1543 static inline pud_t pud_wrprotect(pud_t pud)
1544 {
1545 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1546 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1547 }
1548 
1549 static inline pud_t pud_mkwrite(pud_t pud)
1550 {
1551 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1552 	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1553 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1554 	return pud;
1555 }
1556 
1557 static inline pud_t pud_mkclean(pud_t pud)
1558 {
1559 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1560 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1561 }
1562 
1563 static inline pud_t pud_mkdirty(pud_t pud)
1564 {
1565 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1566 	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1567 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1568 	return pud;
1569 }
1570 
1571 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1572 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1573 {
1574 	/*
1575 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1576 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1577 	 */
1578 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1579 		return pgprot_val(SEGMENT_NONE);
1580 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1581 		return pgprot_val(SEGMENT_RO);
1582 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1583 		return pgprot_val(SEGMENT_RX);
1584 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1585 		return pgprot_val(SEGMENT_RW);
1586 	return pgprot_val(SEGMENT_RWX);
1587 }
1588 
1589 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1590 {
1591 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1592 	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1593 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1594 	return pmd;
1595 }
1596 
1597 static inline pmd_t pmd_mkold(pmd_t pmd)
1598 {
1599 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1600 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1601 }
1602 
1603 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1604 {
1605 	unsigned long mask;
1606 
1607 	mask  = _SEGMENT_ENTRY_ORIGIN_LARGE;
1608 	mask |= _SEGMENT_ENTRY_DIRTY;
1609 	mask |= _SEGMENT_ENTRY_YOUNG;
1610 	mask |=	_SEGMENT_ENTRY_LARGE;
1611 	mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1612 	pmd = __pmd(pmd_val(pmd) & mask);
1613 	pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1614 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1615 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1616 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1617 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1618 	return pmd;
1619 }
1620 
1621 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1622 {
1623 	return __pmd(physpage + massage_pgprot_pmd(pgprot));
1624 }
1625 
1626 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1627 
1628 static inline void __pmdp_csp(pmd_t *pmdp)
1629 {
1630 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1631 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1632 }
1633 
1634 #define IDTE_GLOBAL	0
1635 #define IDTE_LOCAL	1
1636 
1637 #define IDTE_PTOA	0x0800
1638 #define IDTE_NODAT	0x1000
1639 #define IDTE_GUEST_ASCE	0x2000
1640 
1641 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1642 					unsigned long opt, unsigned long asce,
1643 					int local)
1644 {
1645 	unsigned long sto;
1646 
1647 	sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1648 	if (__builtin_constant_p(opt) && opt == 0) {
1649 		/* flush without guest asce */
1650 		asm volatile(
1651 			"	idte	%[r1],0,%[r2],%[m4]"
1652 			: "+m" (*pmdp)
1653 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1654 			  [m4] "i" (local)
1655 			: "cc" );
1656 	} else {
1657 		/* flush with guest asce */
1658 		asm volatile(
1659 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1660 			: "+m" (*pmdp)
1661 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1662 			  [r3] "a" (asce), [m4] "i" (local)
1663 			: "cc" );
1664 	}
1665 }
1666 
1667 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1668 					unsigned long opt, unsigned long asce,
1669 					int local)
1670 {
1671 	unsigned long r3o;
1672 
1673 	r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1674 	r3o |= _ASCE_TYPE_REGION3;
1675 	if (__builtin_constant_p(opt) && opt == 0) {
1676 		/* flush without guest asce */
1677 		asm volatile(
1678 			"	idte	%[r1],0,%[r2],%[m4]"
1679 			: "+m" (*pudp)
1680 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1681 			  [m4] "i" (local)
1682 			: "cc");
1683 	} else {
1684 		/* flush with guest asce */
1685 		asm volatile(
1686 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1687 			: "+m" (*pudp)
1688 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1689 			  [r3] "a" (asce), [m4] "i" (local)
1690 			: "cc" );
1691 	}
1692 }
1693 
1694 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1695 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1696 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1697 
1698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1699 
1700 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1701 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1702 				pgtable_t pgtable);
1703 
1704 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1705 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1706 
1707 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1708 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1709 					unsigned long addr, pmd_t *pmdp,
1710 					pmd_t entry, int dirty)
1711 {
1712 	VM_BUG_ON(addr & ~HPAGE_MASK);
1713 
1714 	entry = pmd_mkyoung(entry);
1715 	if (dirty)
1716 		entry = pmd_mkdirty(entry);
1717 	if (pmd_val(*pmdp) == pmd_val(entry))
1718 		return 0;
1719 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1720 	return 1;
1721 }
1722 
1723 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1724 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1725 					    unsigned long addr, pmd_t *pmdp)
1726 {
1727 	pmd_t pmd = *pmdp;
1728 
1729 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1730 	return pmd_young(pmd);
1731 }
1732 
1733 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1734 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1735 					 unsigned long addr, pmd_t *pmdp)
1736 {
1737 	VM_BUG_ON(addr & ~HPAGE_MASK);
1738 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1739 }
1740 
1741 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1742 			      pmd_t *pmdp, pmd_t entry)
1743 {
1744 	if (!MACHINE_HAS_NX)
1745 		entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1746 	set_pmd(pmdp, entry);
1747 }
1748 
1749 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1750 {
1751 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1752 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1753 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1754 }
1755 
1756 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1757 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1758 					    unsigned long addr, pmd_t *pmdp)
1759 {
1760 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1761 }
1762 
1763 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1764 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1765 						 unsigned long addr,
1766 						 pmd_t *pmdp, int full)
1767 {
1768 	if (full) {
1769 		pmd_t pmd = *pmdp;
1770 		set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1771 		return pmd;
1772 	}
1773 	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1774 }
1775 
1776 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1777 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1778 					  unsigned long addr, pmd_t *pmdp)
1779 {
1780 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1781 }
1782 
1783 #define __HAVE_ARCH_PMDP_INVALIDATE
1784 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1785 				   unsigned long addr, pmd_t *pmdp)
1786 {
1787 	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1788 
1789 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1790 }
1791 
1792 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1793 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1794 				      unsigned long addr, pmd_t *pmdp)
1795 {
1796 	pmd_t pmd = *pmdp;
1797 
1798 	if (pmd_write(pmd))
1799 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1800 }
1801 
1802 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1803 					unsigned long address,
1804 					pmd_t *pmdp)
1805 {
1806 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1807 }
1808 #define pmdp_collapse_flush pmdp_collapse_flush
1809 
1810 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1811 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1812 
1813 static inline int pmd_trans_huge(pmd_t pmd)
1814 {
1815 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1816 }
1817 
1818 #define has_transparent_hugepage has_transparent_hugepage
1819 static inline int has_transparent_hugepage(void)
1820 {
1821 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1822 }
1823 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1824 
1825 /*
1826  * 64 bit swap entry format:
1827  * A page-table entry has some bits we have to treat in a special way.
1828  * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1829  * as invalid.
1830  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1831  * |			  offset			|E11XX|type |S0|
1832  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1833  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1834  *
1835  * Bits 0-51 store the offset.
1836  * Bit 52 (E) is used to remember PG_anon_exclusive.
1837  * Bits 57-61 store the type.
1838  * Bit 62 (S) is used for softdirty tracking.
1839  * Bits 55 and 56 (X) are unused.
1840  */
1841 
1842 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1843 #define __SWP_OFFSET_SHIFT	12
1844 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1845 #define __SWP_TYPE_SHIFT	2
1846 
1847 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1848 {
1849 	unsigned long pteval;
1850 
1851 	pteval = _PAGE_INVALID | _PAGE_PROTECT;
1852 	pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1853 	pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1854 	return __pte(pteval);
1855 }
1856 
1857 static inline unsigned long __swp_type(swp_entry_t entry)
1858 {
1859 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1860 }
1861 
1862 static inline unsigned long __swp_offset(swp_entry_t entry)
1863 {
1864 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1865 }
1866 
1867 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1868 {
1869 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1870 }
1871 
1872 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1873 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1874 
1875 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1876 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1877 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1878 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1879 extern void vmem_unmap_4k_page(unsigned long addr);
1880 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1881 extern int s390_enable_sie(void);
1882 extern int s390_enable_skey(void);
1883 extern void s390_reset_cmma(struct mm_struct *mm);
1884 
1885 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1886 #define HAVE_ARCH_UNMAPPED_AREA
1887 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1888 
1889 #define pmd_pgtable(pmd) \
1890 	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1891 
1892 #endif /* _S390_PAGE_H */
1893