xref: /linux/arch/s390/include/asm/pgtable.h (revision 8838a1a2d219a86ab05e679c73f68dd75a25aca5)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/ctlreg.h>
21 #include <asm/bug.h>
22 #include <asm/page.h>
23 #include <asm/uv.h>
24 
25 extern pgd_t swapper_pg_dir[];
26 extern pgd_t invalid_pg_dir[];
27 extern void paging_init(void);
28 extern struct ctlreg s390_invalid_asce;
29 
30 enum {
31 	PG_DIRECT_MAP_4K = 0,
32 	PG_DIRECT_MAP_1M,
33 	PG_DIRECT_MAP_2G,
34 	PG_DIRECT_MAP_MAX
35 };
36 
37 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
38 
39 static inline void update_page_count(int level, long count)
40 {
41 	if (IS_ENABLED(CONFIG_PROC_FS))
42 		atomic_long_add(count, &direct_pages_count[level]);
43 }
44 
45 /*
46  * The S390 doesn't have any external MMU info: the kernel page
47  * tables contain all the necessary information.
48  */
49 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
50 #define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
51 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
52 
53 /*
54  * ZERO_PAGE is a global shared page that is always zero; used
55  * for zero-mapped memory areas etc..
56  */
57 
58 extern unsigned long empty_zero_page;
59 extern unsigned long zero_page_mask;
60 
61 #define ZERO_PAGE(vaddr) \
62 	(virt_to_page((void *)(empty_zero_page + \
63 	 (((unsigned long)(vaddr)) &zero_page_mask))))
64 #define __HAVE_COLOR_ZERO_PAGE
65 
66 /* TODO: s390 cannot support io_remap_pfn_range... */
67 
68 #define pte_ERROR(e) \
69 	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
70 #define pmd_ERROR(e) \
71 	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
72 #define pud_ERROR(e) \
73 	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
74 #define p4d_ERROR(e) \
75 	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
76 #define pgd_ERROR(e) \
77 	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
78 
79 /*
80  * The vmalloc and module area will always be on the topmost area of the
81  * kernel mapping. 512GB are reserved for vmalloc by default.
82  * At the top of the vmalloc area a 2GB area is reserved where modules
83  * will reside. That makes sure that inter module branches always
84  * happen without trampolines and in addition the placement within a
85  * 2GB frame is branch prediction unit friendly.
86  */
87 extern unsigned long VMALLOC_START;
88 extern unsigned long VMALLOC_END;
89 #define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
90 extern struct page *vmemmap;
91 extern unsigned long vmemmap_size;
92 
93 extern unsigned long MODULES_VADDR;
94 extern unsigned long MODULES_END;
95 #define MODULES_VADDR	MODULES_VADDR
96 #define MODULES_END	MODULES_END
97 #define MODULES_LEN	(1UL << 31)
98 
99 static inline int is_module_addr(void *addr)
100 {
101 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
102 	if (addr < (void *)MODULES_VADDR)
103 		return 0;
104 	if (addr > (void *)MODULES_END)
105 		return 0;
106 	return 1;
107 }
108 
109 #ifdef CONFIG_KMSAN
110 #define KMSAN_VMALLOC_SIZE (VMALLOC_END - VMALLOC_START)
111 #define KMSAN_VMALLOC_SHADOW_START VMALLOC_END
112 #define KMSAN_VMALLOC_SHADOW_END (KMSAN_VMALLOC_SHADOW_START + KMSAN_VMALLOC_SIZE)
113 #define KMSAN_VMALLOC_ORIGIN_START KMSAN_VMALLOC_SHADOW_END
114 #define KMSAN_VMALLOC_ORIGIN_END (KMSAN_VMALLOC_ORIGIN_START + KMSAN_VMALLOC_SIZE)
115 #define KMSAN_MODULES_SHADOW_START KMSAN_VMALLOC_ORIGIN_END
116 #define KMSAN_MODULES_SHADOW_END (KMSAN_MODULES_SHADOW_START + MODULES_LEN)
117 #define KMSAN_MODULES_ORIGIN_START KMSAN_MODULES_SHADOW_END
118 #define KMSAN_MODULES_ORIGIN_END (KMSAN_MODULES_ORIGIN_START + MODULES_LEN)
119 #endif
120 
121 #ifdef CONFIG_RANDOMIZE_BASE
122 #define KASLR_LEN	(1UL << 31)
123 #else
124 #define KASLR_LEN	0UL
125 #endif
126 
127 void setup_protection_map(void);
128 
129 /*
130  * A 64 bit pagetable entry of S390 has following format:
131  * |			 PFRA			      |0IPC|  OS  |
132  * 0000000000111111111122222222223333333333444444444455555555556666
133  * 0123456789012345678901234567890123456789012345678901234567890123
134  *
135  * I Page-Invalid Bit:    Page is not available for address-translation
136  * P Page-Protection Bit: Store access not possible for page
137  * C Change-bit override: HW is not required to set change bit
138  *
139  * A 64 bit segmenttable entry of S390 has following format:
140  * |        P-table origin                              |      TT
141  * 0000000000111111111122222222223333333333444444444455555555556666
142  * 0123456789012345678901234567890123456789012345678901234567890123
143  *
144  * I Segment-Invalid Bit:    Segment is not available for address-translation
145  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
146  * P Page-Protection Bit: Store access not possible for page
147  * TT Type 00
148  *
149  * A 64 bit region table entry of S390 has following format:
150  * |        S-table origin                             |   TF  TTTL
151  * 0000000000111111111122222222223333333333444444444455555555556666
152  * 0123456789012345678901234567890123456789012345678901234567890123
153  *
154  * I Segment-Invalid Bit:    Segment is not available for address-translation
155  * TT Type 01
156  * TF
157  * TL Table length
158  *
159  * The 64 bit regiontable origin of S390 has following format:
160  * |      region table origon                          |       DTTL
161  * 0000000000111111111122222222223333333333444444444455555555556666
162  * 0123456789012345678901234567890123456789012345678901234567890123
163  *
164  * X Space-Switch event:
165  * G Segment-Invalid Bit:
166  * P Private-Space Bit:
167  * S Storage-Alteration:
168  * R Real space
169  * TL Table-Length:
170  *
171  * A storage key has the following format:
172  * | ACC |F|R|C|0|
173  *  0   3 4 5 6 7
174  * ACC: access key
175  * F  : fetch protection bit
176  * R  : referenced bit
177  * C  : changed bit
178  */
179 
180 /* Hardware bits in the page table entry */
181 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
182 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
183 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
184 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
185 
186 /* Software bits in the page table entry */
187 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
188 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
189 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
190 #define _PAGE_READ	0x010		/* SW pte read bit */
191 #define _PAGE_WRITE	0x020		/* SW pte write bit */
192 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
193 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
194 
195 #ifdef CONFIG_MEM_SOFT_DIRTY
196 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
197 #else
198 #define _PAGE_SOFT_DIRTY 0x000
199 #endif
200 
201 #define _PAGE_SW_BITS	0xffUL		/* All SW bits */
202 
203 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE	/* SW pte exclusive swap bit */
204 
205 /* Set of bits not changed in pte_modify */
206 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
207 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
208 
209 /*
210  * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
211  * HW bit and all SW bits.
212  */
213 #define _PAGE_RDP_MASK		~(_PAGE_PROTECT | _PAGE_SW_BITS)
214 
215 /*
216  * handle_pte_fault uses pte_present and pte_none to find out the pte type
217  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
218  * distinguish present from not-present ptes. It is changed only with the page
219  * table lock held.
220  *
221  * The following table gives the different possible bit combinations for
222  * the pte hardware and software bits in the last 12 bits of a pte
223  * (. unassigned bit, x don't care, t swap type):
224  *
225  *				842100000000
226  *				000084210000
227  *				000000008421
228  *				.IR.uswrdy.p
229  * empty			.10.00000000
230  * swap				.11..ttttt.0
231  * prot-none, clean, old	.11.xx0000.1
232  * prot-none, clean, young	.11.xx0001.1
233  * prot-none, dirty, old	.11.xx0010.1
234  * prot-none, dirty, young	.11.xx0011.1
235  * read-only, clean, old	.11.xx0100.1
236  * read-only, clean, young	.01.xx0101.1
237  * read-only, dirty, old	.11.xx0110.1
238  * read-only, dirty, young	.01.xx0111.1
239  * read-write, clean, old	.11.xx1100.1
240  * read-write, clean, young	.01.xx1101.1
241  * read-write, dirty, old	.10.xx1110.1
242  * read-write, dirty, young	.00.xx1111.1
243  * HW-bits: R read-only, I invalid
244  * SW-bits: p present, y young, d dirty, r read, w write, s special,
245  *	    u unused, l large
246  *
247  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
248  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
249  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
250  */
251 
252 /* Bits in the segment/region table address-space-control-element */
253 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
254 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
255 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
256 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
257 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
258 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
259 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
260 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
261 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
262 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
263 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
264 
265 /* Bits in the region table entry */
266 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
267 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
268 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
269 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
270 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
271 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
272 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
273 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
274 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
275 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
276 
277 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
278 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
279 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
280 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
281 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH | \
282 				 _REGION3_ENTRY_PRESENT)
283 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
284 
285 #define _REGION3_ENTRY_HARDWARE_BITS		0xfffffffffffff6ffUL
286 #define _REGION3_ENTRY_HARDWARE_BITS_LARGE	0xffffffff8001073cUL
287 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
288 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
289 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
290 #define _REGION3_ENTRY_COMM	0x0010	/* Common-Region, marks swap entry */
291 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
292 #define _REGION3_ENTRY_WRITE	0x8000	/* SW region write bit */
293 #define _REGION3_ENTRY_READ	0x4000	/* SW region read bit */
294 
295 #ifdef CONFIG_MEM_SOFT_DIRTY
296 #define _REGION3_ENTRY_SOFT_DIRTY 0x0002 /* SW region soft dirty bit */
297 #else
298 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
299 #endif
300 
301 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
302 
303 /*
304  * SW region present bit. For non-leaf region-third-table entries, bits 62-63
305  * indicate the TABLE LENGTH and both must be set to 1. But such entries
306  * would always be considered as present, so it is safe to use bit 63 as
307  * PRESENT bit for PUD.
308  */
309 #define _REGION3_ENTRY_PRESENT	0x0001
310 
311 /* Bits in the segment table entry */
312 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe3fUL
313 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe3cUL
314 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff1073cUL
315 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
316 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
317 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
318 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
319 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
320 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
321 
322 #define _SEGMENT_ENTRY		(_SEGMENT_ENTRY_PRESENT)
323 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
324 
325 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
326 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
327 
328 #define _SEGMENT_ENTRY_COMM	0x0010	/* Common-Segment, marks swap entry */
329 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
330 #define _SEGMENT_ENTRY_WRITE	0x8000	/* SW segment write bit */
331 #define _SEGMENT_ENTRY_READ	0x4000	/* SW segment read bit */
332 
333 #ifdef CONFIG_MEM_SOFT_DIRTY
334 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0002 /* SW segment soft dirty bit */
335 #else
336 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
337 #endif
338 
339 #define _SEGMENT_ENTRY_PRESENT	0x0001	/* SW segment present bit */
340 
341 /* Common bits in region and segment table entries, for swap entries */
342 #define _RST_ENTRY_COMM		0x0010	/* Common-Region/Segment, marks swap entry */
343 #define _RST_ENTRY_INVALID	0x0020	/* invalid region/segment table entry */
344 
345 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
346 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
347 
348 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
349 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
350 
351 #define _REGION1_SHIFT	53
352 #define _REGION2_SHIFT	42
353 #define _REGION3_SHIFT	31
354 #define _SEGMENT_SHIFT	20
355 
356 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
357 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
358 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
359 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
360 #define _PAGE_INDEX	(0xffUL  << PAGE_SHIFT)
361 
362 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
363 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
364 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
365 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
366 
367 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
368 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
369 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
370 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
371 
372 #define PMD_SHIFT	_SEGMENT_SHIFT
373 #define PUD_SHIFT	_REGION3_SHIFT
374 #define P4D_SHIFT	_REGION2_SHIFT
375 #define PGDIR_SHIFT	_REGION1_SHIFT
376 
377 #define PMD_SIZE	_SEGMENT_SIZE
378 #define PUD_SIZE	_REGION3_SIZE
379 #define P4D_SIZE	_REGION2_SIZE
380 #define PGDIR_SIZE	_REGION1_SIZE
381 
382 #define PMD_MASK	_SEGMENT_MASK
383 #define PUD_MASK	_REGION3_MASK
384 #define P4D_MASK	_REGION2_MASK
385 #define PGDIR_MASK	_REGION1_MASK
386 
387 #define PTRS_PER_PTE	_PAGE_ENTRIES
388 #define PTRS_PER_PMD	_CRST_ENTRIES
389 #define PTRS_PER_PUD	_CRST_ENTRIES
390 #define PTRS_PER_P4D	_CRST_ENTRIES
391 #define PTRS_PER_PGD	_CRST_ENTRIES
392 
393 /*
394  * Segment table and region3 table entry encoding
395  * (R = read-only, I = invalid, y = young bit):
396  *				dy..R...I...wr
397  * prot-none, clean, old	00..1...1...00
398  * prot-none, clean, young	01..1...1...00
399  * prot-none, dirty, old	10..1...1...00
400  * prot-none, dirty, young	11..1...1...00
401  * read-only, clean, old	00..1...1...01
402  * read-only, clean, young	01..1...0...01
403  * read-only, dirty, old	10..1...1...01
404  * read-only, dirty, young	11..1...0...01
405  * read-write, clean, old	00..1...1...11
406  * read-write, clean, young	01..1...0...11
407  * read-write, dirty, old	10..0...1...11
408  * read-write, dirty, young	11..0...0...11
409  * The segment table origin is used to distinguish empty (origin==0) from
410  * read-write, old segment table entries (origin!=0)
411  * HW-bits: R read-only, I invalid
412  * SW-bits: y young, d dirty, r read, w write
413  */
414 
415 /* Page status table bits for virtualization */
416 #define PGSTE_ACC_BITS	0xf000000000000000UL
417 #define PGSTE_FP_BIT	0x0800000000000000UL
418 #define PGSTE_PCL_BIT	0x0080000000000000UL
419 #define PGSTE_HR_BIT	0x0040000000000000UL
420 #define PGSTE_HC_BIT	0x0020000000000000UL
421 #define PGSTE_GR_BIT	0x0004000000000000UL
422 #define PGSTE_GC_BIT	0x0002000000000000UL
423 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
424 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
425 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
426 
427 /* Guest Page State used for virtualization */
428 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
429 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
430 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
431 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
432 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
433 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
434 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
435 
436 /*
437  * A user page table pointer has the space-switch-event bit, the
438  * private-space-control bit and the storage-alteration-event-control
439  * bit set. A kernel page table pointer doesn't need them.
440  */
441 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
442 				 _ASCE_ALT_EVENT)
443 
444 /*
445  * Page protection definitions.
446  */
447 #define __PAGE_NONE		(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
448 #define __PAGE_RO		(_PAGE_PRESENT | _PAGE_READ | \
449 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
450 #define __PAGE_RX		(_PAGE_PRESENT | _PAGE_READ | \
451 				 _PAGE_INVALID | _PAGE_PROTECT)
452 #define __PAGE_RW		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
453 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
454 #define __PAGE_RWX		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
455 				 _PAGE_INVALID | _PAGE_PROTECT)
456 #define __PAGE_SHARED		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
457 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
458 #define __PAGE_KERNEL		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
459 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
460 #define __PAGE_KERNEL_RO	(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
461 				 _PAGE_PROTECT | _PAGE_NOEXEC)
462 
463 extern unsigned long page_noexec_mask;
464 
465 #define __pgprot_page_mask(x)	__pgprot((x) & page_noexec_mask)
466 
467 #define PAGE_NONE		__pgprot_page_mask(__PAGE_NONE)
468 #define PAGE_RO			__pgprot_page_mask(__PAGE_RO)
469 #define PAGE_RX			__pgprot_page_mask(__PAGE_RX)
470 #define PAGE_RW			__pgprot_page_mask(__PAGE_RW)
471 #define PAGE_RWX		__pgprot_page_mask(__PAGE_RWX)
472 #define PAGE_SHARED		__pgprot_page_mask(__PAGE_SHARED)
473 #define PAGE_KERNEL		__pgprot_page_mask(__PAGE_KERNEL)
474 #define PAGE_KERNEL_RO		__pgprot_page_mask(__PAGE_KERNEL_RO)
475 
476 /*
477  * Segment entry (large page) protection definitions.
478  */
479 #define __SEGMENT_NONE		(_SEGMENT_ENTRY_PRESENT | \
480 				 _SEGMENT_ENTRY_INVALID | \
481 				 _SEGMENT_ENTRY_PROTECT)
482 #define __SEGMENT_RO		(_SEGMENT_ENTRY_PRESENT | \
483 				 _SEGMENT_ENTRY_PROTECT | \
484 				 _SEGMENT_ENTRY_READ | \
485 				 _SEGMENT_ENTRY_NOEXEC)
486 #define __SEGMENT_RX		(_SEGMENT_ENTRY_PRESENT | \
487 				 _SEGMENT_ENTRY_PROTECT | \
488 				 _SEGMENT_ENTRY_READ)
489 #define __SEGMENT_RW		(_SEGMENT_ENTRY_PRESENT | \
490 				 _SEGMENT_ENTRY_READ | \
491 				 _SEGMENT_ENTRY_WRITE | \
492 				 _SEGMENT_ENTRY_NOEXEC)
493 #define __SEGMENT_RWX		(_SEGMENT_ENTRY_PRESENT | \
494 				 _SEGMENT_ENTRY_READ | \
495 				 _SEGMENT_ENTRY_WRITE)
496 #define __SEGMENT_KERNEL	(_SEGMENT_ENTRY |	\
497 				 _SEGMENT_ENTRY_LARGE |	\
498 				 _SEGMENT_ENTRY_READ |	\
499 				 _SEGMENT_ENTRY_WRITE | \
500 				 _SEGMENT_ENTRY_YOUNG | \
501 				 _SEGMENT_ENTRY_DIRTY | \
502 				 _SEGMENT_ENTRY_NOEXEC)
503 #define __SEGMENT_KERNEL_RO	(_SEGMENT_ENTRY |	\
504 				 _SEGMENT_ENTRY_LARGE |	\
505 				 _SEGMENT_ENTRY_READ |	\
506 				 _SEGMENT_ENTRY_YOUNG |	\
507 				 _SEGMENT_ENTRY_PROTECT | \
508 				 _SEGMENT_ENTRY_NOEXEC)
509 
510 extern unsigned long segment_noexec_mask;
511 
512 #define __pgprot_segment_mask(x) __pgprot((x) & segment_noexec_mask)
513 
514 #define SEGMENT_NONE		__pgprot_segment_mask(__SEGMENT_NONE)
515 #define SEGMENT_RO		__pgprot_segment_mask(__SEGMENT_RO)
516 #define SEGMENT_RX		__pgprot_segment_mask(__SEGMENT_RX)
517 #define SEGMENT_RW		__pgprot_segment_mask(__SEGMENT_RW)
518 #define SEGMENT_RWX		__pgprot_segment_mask(__SEGMENT_RWX)
519 #define SEGMENT_KERNEL		__pgprot_segment_mask(__SEGMENT_KERNEL)
520 #define SEGMENT_KERNEL_RO	__pgprot_segment_mask(__SEGMENT_KERNEL_RO)
521 
522 /*
523  * Region3 entry (large page) protection definitions.
524  */
525 
526 #define __REGION3_KERNEL	(_REGION_ENTRY_TYPE_R3 | \
527 				 _REGION3_ENTRY_PRESENT | \
528 				 _REGION3_ENTRY_LARGE | \
529 				 _REGION3_ENTRY_READ | \
530 				 _REGION3_ENTRY_WRITE | \
531 				 _REGION3_ENTRY_YOUNG | \
532 				 _REGION3_ENTRY_DIRTY | \
533 				 _REGION_ENTRY_NOEXEC)
534 #define __REGION3_KERNEL_RO	(_REGION_ENTRY_TYPE_R3 | \
535 				 _REGION3_ENTRY_PRESENT | \
536 				 _REGION3_ENTRY_LARGE | \
537 				 _REGION3_ENTRY_READ | \
538 				 _REGION3_ENTRY_YOUNG | \
539 				 _REGION_ENTRY_PROTECT | \
540 				 _REGION_ENTRY_NOEXEC)
541 
542 extern unsigned long region_noexec_mask;
543 
544 #define __pgprot_region_mask(x)	__pgprot((x) & region_noexec_mask)
545 
546 #define REGION3_KERNEL		__pgprot_region_mask(__REGION3_KERNEL)
547 #define REGION3_KERNEL_RO	__pgprot_region_mask(__REGION3_KERNEL_RO)
548 
549 static inline bool mm_p4d_folded(struct mm_struct *mm)
550 {
551 	return mm->context.asce_limit <= _REGION1_SIZE;
552 }
553 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
554 
555 static inline bool mm_pud_folded(struct mm_struct *mm)
556 {
557 	return mm->context.asce_limit <= _REGION2_SIZE;
558 }
559 #define mm_pud_folded(mm) mm_pud_folded(mm)
560 
561 static inline bool mm_pmd_folded(struct mm_struct *mm)
562 {
563 	return mm->context.asce_limit <= _REGION3_SIZE;
564 }
565 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
566 
567 static inline int mm_has_pgste(struct mm_struct *mm)
568 {
569 #ifdef CONFIG_PGSTE
570 	if (unlikely(mm->context.has_pgste))
571 		return 1;
572 #endif
573 	return 0;
574 }
575 
576 static inline int mm_is_protected(struct mm_struct *mm)
577 {
578 #ifdef CONFIG_PGSTE
579 	if (unlikely(atomic_read(&mm->context.protected_count)))
580 		return 1;
581 #endif
582 	return 0;
583 }
584 
585 static inline int mm_alloc_pgste(struct mm_struct *mm)
586 {
587 #ifdef CONFIG_PGSTE
588 	if (unlikely(mm->context.alloc_pgste))
589 		return 1;
590 #endif
591 	return 0;
592 }
593 
594 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
595 {
596 	return __pte(pte_val(pte) & ~pgprot_val(prot));
597 }
598 
599 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
600 {
601 	return __pte(pte_val(pte) | pgprot_val(prot));
602 }
603 
604 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
605 {
606 	return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
607 }
608 
609 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
610 {
611 	return __pmd(pmd_val(pmd) | pgprot_val(prot));
612 }
613 
614 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
615 {
616 	return __pud(pud_val(pud) & ~pgprot_val(prot));
617 }
618 
619 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
620 {
621 	return __pud(pud_val(pud) | pgprot_val(prot));
622 }
623 
624 /*
625  * As soon as the guest uses storage keys or enables PV, we deduplicate all
626  * mapped shared zeropages and prevent new shared zeropages from getting
627  * mapped.
628  */
629 #define mm_forbids_zeropage mm_forbids_zeropage
630 static inline int mm_forbids_zeropage(struct mm_struct *mm)
631 {
632 #ifdef CONFIG_PGSTE
633 	if (!mm->context.allow_cow_sharing)
634 		return 1;
635 #endif
636 	return 0;
637 }
638 
639 static inline int mm_uses_skeys(struct mm_struct *mm)
640 {
641 #ifdef CONFIG_PGSTE
642 	if (mm->context.uses_skeys)
643 		return 1;
644 #endif
645 	return 0;
646 }
647 
648 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
649 {
650 	union register_pair r1 = { .even = old, .odd = new, };
651 	unsigned long address = (unsigned long)ptr | 1;
652 
653 	asm volatile(
654 		"	csp	%[r1],%[address]"
655 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
656 		: [address] "d" (address)
657 		: "cc");
658 }
659 
660 /**
661  * cspg() - Compare and Swap and Purge (CSPG)
662  * @ptr: Pointer to the value to be exchanged
663  * @old: The expected old value
664  * @new: The new value
665  *
666  * Return: True if compare and swap was successful, otherwise false.
667  */
668 static inline bool cspg(unsigned long *ptr, unsigned long old, unsigned long new)
669 {
670 	union register_pair r1 = { .even = old, .odd = new, };
671 	unsigned long address = (unsigned long)ptr | 1;
672 
673 	asm volatile(
674 		"	cspg	%[r1],%[address]"
675 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
676 		: [address] "d" (address)
677 		: "cc");
678 	return old == r1.even;
679 }
680 
681 #define CRDTE_DTT_PAGE		0x00UL
682 #define CRDTE_DTT_SEGMENT	0x10UL
683 #define CRDTE_DTT_REGION3	0x14UL
684 #define CRDTE_DTT_REGION2	0x18UL
685 #define CRDTE_DTT_REGION1	0x1cUL
686 
687 /**
688  * crdte() - Compare and Replace DAT Table Entry
689  * @old:     The expected old value
690  * @new:     The new value
691  * @table:   Pointer to the value to be exchanged
692  * @dtt:     Table type of the table to be exchanged
693  * @address: The address mapped by the entry to be replaced
694  * @asce:    The ASCE of this entry
695  *
696  * Return: True if compare and replace was successful, otherwise false.
697  */
698 static inline bool crdte(unsigned long old, unsigned long new,
699 			 unsigned long *table, unsigned long dtt,
700 			 unsigned long address, unsigned long asce)
701 {
702 	union register_pair r1 = { .even = old, .odd = new, };
703 	union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
704 
705 	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
706 		     : [r1] "+&d" (r1.pair)
707 		     : [r2] "d" (r2.pair), [asce] "a" (asce)
708 		     : "memory", "cc");
709 	return old == r1.even;
710 }
711 
712 /*
713  * pgd/p4d/pud/pmd/pte query functions
714  */
715 static inline int pgd_folded(pgd_t pgd)
716 {
717 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
718 }
719 
720 static inline int pgd_present(pgd_t pgd)
721 {
722 	if (pgd_folded(pgd))
723 		return 1;
724 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
725 }
726 
727 static inline int pgd_none(pgd_t pgd)
728 {
729 	if (pgd_folded(pgd))
730 		return 0;
731 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
732 }
733 
734 static inline int pgd_bad(pgd_t pgd)
735 {
736 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
737 		return 0;
738 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
739 }
740 
741 static inline unsigned long pgd_pfn(pgd_t pgd)
742 {
743 	unsigned long origin_mask;
744 
745 	origin_mask = _REGION_ENTRY_ORIGIN;
746 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
747 }
748 
749 static inline int p4d_folded(p4d_t p4d)
750 {
751 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
752 }
753 
754 static inline int p4d_present(p4d_t p4d)
755 {
756 	if (p4d_folded(p4d))
757 		return 1;
758 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
759 }
760 
761 static inline int p4d_none(p4d_t p4d)
762 {
763 	if (p4d_folded(p4d))
764 		return 0;
765 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
766 }
767 
768 static inline unsigned long p4d_pfn(p4d_t p4d)
769 {
770 	unsigned long origin_mask;
771 
772 	origin_mask = _REGION_ENTRY_ORIGIN;
773 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
774 }
775 
776 static inline int pud_folded(pud_t pud)
777 {
778 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
779 }
780 
781 static inline int pud_present(pud_t pud)
782 {
783 	if (pud_folded(pud))
784 		return 1;
785 	return (pud_val(pud) & _REGION3_ENTRY_PRESENT) != 0;
786 }
787 
788 static inline int pud_none(pud_t pud)
789 {
790 	if (pud_folded(pud))
791 		return 0;
792 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
793 }
794 
795 #define pud_leaf pud_leaf
796 static inline bool pud_leaf(pud_t pud)
797 {
798 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
799 		return 0;
800 	return (pud_present(pud) && (pud_val(pud) & _REGION3_ENTRY_LARGE) != 0);
801 }
802 
803 static inline int pmd_present(pmd_t pmd)
804 {
805 	return (pmd_val(pmd) & _SEGMENT_ENTRY_PRESENT) != 0;
806 }
807 
808 #define pmd_leaf pmd_leaf
809 static inline bool pmd_leaf(pmd_t pmd)
810 {
811 	return (pmd_present(pmd) && (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0);
812 }
813 
814 static inline int pmd_bad(pmd_t pmd)
815 {
816 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_leaf(pmd))
817 		return 1;
818 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
819 }
820 
821 static inline int pud_bad(pud_t pud)
822 {
823 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
824 
825 	if (type > _REGION_ENTRY_TYPE_R3 || pud_leaf(pud))
826 		return 1;
827 	if (type < _REGION_ENTRY_TYPE_R3)
828 		return 0;
829 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
830 }
831 
832 static inline int p4d_bad(p4d_t p4d)
833 {
834 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
835 
836 	if (type > _REGION_ENTRY_TYPE_R2)
837 		return 1;
838 	if (type < _REGION_ENTRY_TYPE_R2)
839 		return 0;
840 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
841 }
842 
843 static inline int pmd_none(pmd_t pmd)
844 {
845 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
846 }
847 
848 #define pmd_write pmd_write
849 static inline int pmd_write(pmd_t pmd)
850 {
851 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
852 }
853 
854 #define pud_write pud_write
855 static inline int pud_write(pud_t pud)
856 {
857 	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
858 }
859 
860 #define pmd_dirty pmd_dirty
861 static inline int pmd_dirty(pmd_t pmd)
862 {
863 	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
864 }
865 
866 #define pmd_young pmd_young
867 static inline int pmd_young(pmd_t pmd)
868 {
869 	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
870 }
871 
872 static inline int pte_present(pte_t pte)
873 {
874 	/* Bit pattern: (pte & 0x001) == 0x001 */
875 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
876 }
877 
878 static inline int pte_none(pte_t pte)
879 {
880 	/* Bit pattern: pte == 0x400 */
881 	return pte_val(pte) == _PAGE_INVALID;
882 }
883 
884 static inline int pte_swap(pte_t pte)
885 {
886 	/* Bit pattern: (pte & 0x201) == 0x200 */
887 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
888 		== _PAGE_PROTECT;
889 }
890 
891 static inline int pte_special(pte_t pte)
892 {
893 	return (pte_val(pte) & _PAGE_SPECIAL);
894 }
895 
896 #define __HAVE_ARCH_PTE_SAME
897 static inline int pte_same(pte_t a, pte_t b)
898 {
899 	return pte_val(a) == pte_val(b);
900 }
901 
902 #ifdef CONFIG_NUMA_BALANCING
903 static inline int pte_protnone(pte_t pte)
904 {
905 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
906 }
907 
908 static inline int pmd_protnone(pmd_t pmd)
909 {
910 	/* pmd_leaf(pmd) implies pmd_present(pmd) */
911 	return pmd_leaf(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
912 }
913 #endif
914 
915 static inline int pte_swp_exclusive(pte_t pte)
916 {
917 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
918 }
919 
920 static inline pte_t pte_swp_mkexclusive(pte_t pte)
921 {
922 	return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
923 }
924 
925 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
926 {
927 	return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
928 }
929 
930 static inline int pte_soft_dirty(pte_t pte)
931 {
932 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
933 }
934 #define pte_swp_soft_dirty pte_soft_dirty
935 
936 static inline pte_t pte_mksoft_dirty(pte_t pte)
937 {
938 	return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
939 }
940 #define pte_swp_mksoft_dirty pte_mksoft_dirty
941 
942 static inline pte_t pte_clear_soft_dirty(pte_t pte)
943 {
944 	return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
945 }
946 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
947 
948 static inline int pmd_soft_dirty(pmd_t pmd)
949 {
950 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
951 }
952 
953 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
954 {
955 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
956 }
957 
958 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
959 {
960 	return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
961 }
962 
963 /*
964  * query functions pte_write/pte_dirty/pte_young only work if
965  * pte_present() is true. Undefined behaviour if not..
966  */
967 static inline int pte_write(pte_t pte)
968 {
969 	return (pte_val(pte) & _PAGE_WRITE) != 0;
970 }
971 
972 static inline int pte_dirty(pte_t pte)
973 {
974 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
975 }
976 
977 static inline int pte_young(pte_t pte)
978 {
979 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
980 }
981 
982 #define __HAVE_ARCH_PTE_UNUSED
983 static inline int pte_unused(pte_t pte)
984 {
985 	return pte_val(pte) & _PAGE_UNUSED;
986 }
987 
988 /*
989  * Extract the pgprot value from the given pte while at the same time making it
990  * usable for kernel address space mappings where fault driven dirty and
991  * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
992  * must not be set.
993  */
994 #define pte_pgprot pte_pgprot
995 static inline pgprot_t pte_pgprot(pte_t pte)
996 {
997 	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
998 
999 	if (pte_write(pte))
1000 		pte_flags |= pgprot_val(PAGE_KERNEL);
1001 	else
1002 		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
1003 	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
1004 
1005 	return __pgprot(pte_flags);
1006 }
1007 
1008 /*
1009  * pgd/pmd/pte modification functions
1010  */
1011 
1012 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1013 {
1014 	WRITE_ONCE(*pgdp, pgd);
1015 }
1016 
1017 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
1018 {
1019 	WRITE_ONCE(*p4dp, p4d);
1020 }
1021 
1022 static inline void set_pud(pud_t *pudp, pud_t pud)
1023 {
1024 	WRITE_ONCE(*pudp, pud);
1025 }
1026 
1027 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
1028 {
1029 	WRITE_ONCE(*pmdp, pmd);
1030 }
1031 
1032 static inline void set_pte(pte_t *ptep, pte_t pte)
1033 {
1034 	WRITE_ONCE(*ptep, pte);
1035 }
1036 
1037 static inline void pgd_clear(pgd_t *pgd)
1038 {
1039 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1040 		set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
1041 }
1042 
1043 static inline void p4d_clear(p4d_t *p4d)
1044 {
1045 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1046 		set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
1047 }
1048 
1049 static inline void pud_clear(pud_t *pud)
1050 {
1051 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1052 		set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
1053 }
1054 
1055 static inline void pmd_clear(pmd_t *pmdp)
1056 {
1057 	set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1058 }
1059 
1060 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1061 {
1062 	set_pte(ptep, __pte(_PAGE_INVALID));
1063 }
1064 
1065 /*
1066  * The following pte modification functions only work if
1067  * pte_present() is true. Undefined behaviour if not..
1068  */
1069 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1070 {
1071 	pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
1072 	pte = set_pte_bit(pte, newprot);
1073 	/*
1074 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
1075 	 * has the invalid bit set, clear it again for readable, young pages
1076 	 */
1077 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
1078 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1079 	/*
1080 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
1081 	 * protection bit set, clear it again for writable, dirty pages
1082 	 */
1083 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
1084 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1085 	return pte;
1086 }
1087 
1088 static inline pte_t pte_wrprotect(pte_t pte)
1089 {
1090 	pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1091 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1092 }
1093 
1094 static inline pte_t pte_mkwrite_novma(pte_t pte)
1095 {
1096 	pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1097 	if (pte_val(pte) & _PAGE_DIRTY)
1098 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1099 	return pte;
1100 }
1101 
1102 static inline pte_t pte_mkclean(pte_t pte)
1103 {
1104 	pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1105 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1106 }
1107 
1108 static inline pte_t pte_mkdirty(pte_t pte)
1109 {
1110 	pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1111 	if (pte_val(pte) & _PAGE_WRITE)
1112 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1113 	return pte;
1114 }
1115 
1116 static inline pte_t pte_mkold(pte_t pte)
1117 {
1118 	pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1119 	return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1120 }
1121 
1122 static inline pte_t pte_mkyoung(pte_t pte)
1123 {
1124 	pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1125 	if (pte_val(pte) & _PAGE_READ)
1126 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1127 	return pte;
1128 }
1129 
1130 static inline pte_t pte_mkspecial(pte_t pte)
1131 {
1132 	return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1133 }
1134 
1135 #ifdef CONFIG_HUGETLB_PAGE
1136 static inline pte_t pte_mkhuge(pte_t pte)
1137 {
1138 	return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1139 }
1140 #endif
1141 
1142 #define IPTE_GLOBAL	0
1143 #define	IPTE_LOCAL	1
1144 
1145 #define IPTE_NODAT	0x400
1146 #define IPTE_GUEST_ASCE	0x800
1147 
1148 static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1149 				       unsigned long opt, unsigned long asce,
1150 				       int local)
1151 {
1152 	unsigned long pto;
1153 
1154 	pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1155 	asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1156 		     : "+m" (*ptep)
1157 		     : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1158 		       [asce] "a" (asce), [m4] "i" (local));
1159 }
1160 
1161 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1162 					unsigned long opt, unsigned long asce,
1163 					int local)
1164 {
1165 	unsigned long pto = __pa(ptep);
1166 
1167 	if (__builtin_constant_p(opt) && opt == 0) {
1168 		/* Invalidation + TLB flush for the pte */
1169 		asm volatile(
1170 			"	ipte	%[r1],%[r2],0,%[m4]"
1171 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1172 			  [m4] "i" (local));
1173 		return;
1174 	}
1175 
1176 	/* Invalidate ptes with options + TLB flush of the ptes */
1177 	opt = opt | (asce & _ASCE_ORIGIN);
1178 	asm volatile(
1179 		"	ipte	%[r1],%[r2],%[r3],%[m4]"
1180 		: [r2] "+a" (address), [r3] "+a" (opt)
1181 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1182 }
1183 
1184 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1185 					      pte_t *ptep, int local)
1186 {
1187 	unsigned long pto = __pa(ptep);
1188 
1189 	/* Invalidate a range of ptes + TLB flush of the ptes */
1190 	do {
1191 		asm volatile(
1192 			"	ipte %[r1],%[r2],%[r3],%[m4]"
1193 			: [r2] "+a" (address), [r3] "+a" (nr)
1194 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1195 	} while (nr != 255);
1196 }
1197 
1198 /*
1199  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1200  * both clear the TLB for the unmapped pte. The reason is that
1201  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1202  * to modify an active pte. The sequence is
1203  *   1) ptep_get_and_clear
1204  *   2) set_pte_at
1205  *   3) flush_tlb_range
1206  * On s390 the tlb needs to get flushed with the modification of the pte
1207  * if the pte is active. The only way how this can be implemented is to
1208  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1209  * is a nop.
1210  */
1211 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1212 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1213 
1214 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1215 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1216 					    unsigned long addr, pte_t *ptep)
1217 {
1218 	pte_t pte = *ptep;
1219 
1220 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1221 	return pte_young(pte);
1222 }
1223 
1224 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1225 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1226 					 unsigned long address, pte_t *ptep)
1227 {
1228 	return ptep_test_and_clear_young(vma, address, ptep);
1229 }
1230 
1231 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1232 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1233 				       unsigned long addr, pte_t *ptep)
1234 {
1235 	pte_t res;
1236 
1237 	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1238 	/* At this point the reference through the mapping is still present */
1239 	if (mm_is_protected(mm) && pte_present(res))
1240 		uv_convert_from_secure_pte(res);
1241 	return res;
1242 }
1243 
1244 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1245 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1246 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1247 			     pte_t *, pte_t, pte_t);
1248 
1249 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1250 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1251 				     unsigned long addr, pte_t *ptep)
1252 {
1253 	pte_t res;
1254 
1255 	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1256 	/* At this point the reference through the mapping is still present */
1257 	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1258 		uv_convert_from_secure_pte(res);
1259 	return res;
1260 }
1261 
1262 /*
1263  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1264  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1265  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1266  * cannot be accessed while the batched unmap is running. In this case
1267  * full==1 and a simple pte_clear is enough. See tlb.h.
1268  */
1269 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1270 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1271 					    unsigned long addr,
1272 					    pte_t *ptep, int full)
1273 {
1274 	pte_t res;
1275 
1276 	if (full) {
1277 		res = *ptep;
1278 		set_pte(ptep, __pte(_PAGE_INVALID));
1279 	} else {
1280 		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1281 	}
1282 	/* Nothing to do */
1283 	if (!mm_is_protected(mm) || !pte_present(res))
1284 		return res;
1285 	/*
1286 	 * At this point the reference through the mapping is still present.
1287 	 * The notifier should have destroyed all protected vCPUs at this
1288 	 * point, so the destroy should be successful.
1289 	 */
1290 	if (full && !uv_destroy_pte(res))
1291 		return res;
1292 	/*
1293 	 * If something went wrong and the page could not be destroyed, or
1294 	 * if this is not a mm teardown, the slower export is used as
1295 	 * fallback instead.
1296 	 */
1297 	uv_convert_from_secure_pte(res);
1298 	return res;
1299 }
1300 
1301 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1302 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1303 				      unsigned long addr, pte_t *ptep)
1304 {
1305 	pte_t pte = *ptep;
1306 
1307 	if (pte_write(pte))
1308 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1309 }
1310 
1311 /*
1312  * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1313  * bits in the comparison. Those might change e.g. because of dirty and young
1314  * tracking.
1315  */
1316 static inline int pte_allow_rdp(pte_t old, pte_t new)
1317 {
1318 	/*
1319 	 * Only allow changes from RO to RW
1320 	 */
1321 	if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1322 		return 0;
1323 
1324 	return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1325 }
1326 
1327 static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1328 						unsigned long address,
1329 						pte_t *ptep)
1330 {
1331 	/*
1332 	 * RDP might not have propagated the PTE protection reset to all CPUs,
1333 	 * so there could be spurious TLB protection faults.
1334 	 * NOTE: This will also be called when a racing pagetable update on
1335 	 * another thread already installed the correct PTE. Both cases cannot
1336 	 * really be distinguished.
1337 	 * Therefore, only do the local TLB flush when RDP can be used, and the
1338 	 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1339 	 * A local RDP can be used to do the flush.
1340 	 */
1341 	if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT))
1342 		__ptep_rdp(address, ptep, 0, 0, 1);
1343 }
1344 #define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1345 
1346 void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1347 			 pte_t new);
1348 
1349 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1350 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1351 					unsigned long addr, pte_t *ptep,
1352 					pte_t entry, int dirty)
1353 {
1354 	if (pte_same(*ptep, entry))
1355 		return 0;
1356 	if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1357 		ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1358 	else
1359 		ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1360 	return 1;
1361 }
1362 
1363 /*
1364  * Additional functions to handle KVM guest page tables
1365  */
1366 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1367 		     pte_t *ptep, pte_t entry);
1368 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1369 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1370 		 pte_t *ptep, unsigned long bits);
1371 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1372 		    pte_t *ptep, int prot, unsigned long bit);
1373 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1374 		     pte_t *ptep , int reset);
1375 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1376 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1377 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1378 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1379 
1380 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1381 			    pte_t *ptep);
1382 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1383 			  unsigned char key, bool nq);
1384 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1385 			       unsigned char key, unsigned char *oldkey,
1386 			       bool nq, bool mr, bool mc);
1387 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1388 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1389 			  unsigned char *key);
1390 
1391 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1392 				unsigned long bits, unsigned long value);
1393 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1394 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1395 			unsigned long *oldpte, unsigned long *oldpgste);
1396 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1397 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1398 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1399 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1400 
1401 #define pgprot_writecombine	pgprot_writecombine
1402 pgprot_t pgprot_writecombine(pgprot_t prot);
1403 
1404 #define pgprot_writethrough	pgprot_writethrough
1405 pgprot_t pgprot_writethrough(pgprot_t prot);
1406 
1407 #define PFN_PTE_SHIFT		PAGE_SHIFT
1408 
1409 /*
1410  * Set multiple PTEs to consecutive pages with a single call.  All PTEs
1411  * are within the same folio, PMD and VMA.
1412  */
1413 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1414 			      pte_t *ptep, pte_t entry, unsigned int nr)
1415 {
1416 	if (pte_present(entry))
1417 		entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1418 	if (mm_has_pgste(mm)) {
1419 		for (;;) {
1420 			ptep_set_pte_at(mm, addr, ptep, entry);
1421 			if (--nr == 0)
1422 				break;
1423 			ptep++;
1424 			entry = __pte(pte_val(entry) + PAGE_SIZE);
1425 			addr += PAGE_SIZE;
1426 		}
1427 	} else {
1428 		for (;;) {
1429 			set_pte(ptep, entry);
1430 			if (--nr == 0)
1431 				break;
1432 			ptep++;
1433 			entry = __pte(pte_val(entry) + PAGE_SIZE);
1434 		}
1435 	}
1436 }
1437 #define set_ptes set_ptes
1438 
1439 /*
1440  * Conversion functions: convert a page and protection to a page entry,
1441  * and a page entry and page directory to the page they refer to.
1442  */
1443 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1444 {
1445 	pte_t __pte;
1446 
1447 	__pte = __pte(physpage | pgprot_val(pgprot));
1448 	return pte_mkyoung(__pte);
1449 }
1450 
1451 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1452 {
1453 	unsigned long physpage = page_to_phys(page);
1454 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1455 
1456 	if (pte_write(__pte) && PageDirty(page))
1457 		__pte = pte_mkdirty(__pte);
1458 	return __pte;
1459 }
1460 
1461 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1462 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1463 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1464 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1465 
1466 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1467 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1468 
1469 static inline unsigned long pmd_deref(pmd_t pmd)
1470 {
1471 	unsigned long origin_mask;
1472 
1473 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1474 	if (pmd_leaf(pmd))
1475 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1476 	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1477 }
1478 
1479 static inline unsigned long pmd_pfn(pmd_t pmd)
1480 {
1481 	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1482 }
1483 
1484 static inline unsigned long pud_deref(pud_t pud)
1485 {
1486 	unsigned long origin_mask;
1487 
1488 	origin_mask = _REGION_ENTRY_ORIGIN;
1489 	if (pud_leaf(pud))
1490 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1491 	return (unsigned long)__va(pud_val(pud) & origin_mask);
1492 }
1493 
1494 #define pud_pfn pud_pfn
1495 static inline unsigned long pud_pfn(pud_t pud)
1496 {
1497 	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1498 }
1499 
1500 /*
1501  * The pgd_offset function *always* adds the index for the top-level
1502  * region/segment table. This is done to get a sequence like the
1503  * following to work:
1504  *	pgdp = pgd_offset(current->mm, addr);
1505  *	pgd = READ_ONCE(*pgdp);
1506  *	p4dp = p4d_offset(&pgd, addr);
1507  *	...
1508  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1509  * only add an index if they dereferenced the pointer.
1510  */
1511 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1512 {
1513 	unsigned long rste;
1514 	unsigned int shift;
1515 
1516 	/* Get the first entry of the top level table */
1517 	rste = pgd_val(*pgd);
1518 	/* Pick up the shift from the table type of the first entry */
1519 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1520 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1521 }
1522 
1523 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1524 
1525 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1526 {
1527 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1528 		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1529 	return (p4d_t *) pgdp;
1530 }
1531 #define p4d_offset_lockless p4d_offset_lockless
1532 
1533 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1534 {
1535 	return p4d_offset_lockless(pgdp, *pgdp, address);
1536 }
1537 
1538 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1539 {
1540 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1541 		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1542 	return (pud_t *) p4dp;
1543 }
1544 #define pud_offset_lockless pud_offset_lockless
1545 
1546 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1547 {
1548 	return pud_offset_lockless(p4dp, *p4dp, address);
1549 }
1550 #define pud_offset pud_offset
1551 
1552 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1553 {
1554 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1555 		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1556 	return (pmd_t *) pudp;
1557 }
1558 #define pmd_offset_lockless pmd_offset_lockless
1559 
1560 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1561 {
1562 	return pmd_offset_lockless(pudp, *pudp, address);
1563 }
1564 #define pmd_offset pmd_offset
1565 
1566 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1567 {
1568 	return (unsigned long) pmd_deref(pmd);
1569 }
1570 
1571 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1572 {
1573 	return end <= current->mm->context.asce_limit;
1574 }
1575 #define gup_fast_permitted gup_fast_permitted
1576 
1577 #define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1578 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1579 #define pte_page(x) pfn_to_page(pte_pfn(x))
1580 
1581 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1582 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1583 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1584 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1585 
1586 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1587 {
1588 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1589 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1590 }
1591 
1592 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
1593 {
1594 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1595 	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1596 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1597 	return pmd;
1598 }
1599 
1600 static inline pmd_t pmd_mkclean(pmd_t pmd)
1601 {
1602 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1603 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1604 }
1605 
1606 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1607 {
1608 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1609 	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1610 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1611 	return pmd;
1612 }
1613 
1614 static inline pud_t pud_wrprotect(pud_t pud)
1615 {
1616 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1617 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1618 }
1619 
1620 static inline pud_t pud_mkwrite(pud_t pud)
1621 {
1622 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1623 	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1624 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1625 	return pud;
1626 }
1627 
1628 static inline pud_t pud_mkclean(pud_t pud)
1629 {
1630 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1631 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1632 }
1633 
1634 static inline pud_t pud_mkdirty(pud_t pud)
1635 {
1636 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1637 	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1638 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1639 	return pud;
1640 }
1641 
1642 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1643 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1644 {
1645 	/*
1646 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1647 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1648 	 */
1649 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1650 		return pgprot_val(SEGMENT_NONE);
1651 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1652 		return pgprot_val(SEGMENT_RO);
1653 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1654 		return pgprot_val(SEGMENT_RX);
1655 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1656 		return pgprot_val(SEGMENT_RW);
1657 	return pgprot_val(SEGMENT_RWX);
1658 }
1659 
1660 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1661 {
1662 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1663 	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1664 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1665 	return pmd;
1666 }
1667 
1668 static inline pmd_t pmd_mkold(pmd_t pmd)
1669 {
1670 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1671 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1672 }
1673 
1674 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1675 {
1676 	unsigned long mask;
1677 
1678 	mask  = _SEGMENT_ENTRY_ORIGIN_LARGE;
1679 	mask |= _SEGMENT_ENTRY_DIRTY;
1680 	mask |= _SEGMENT_ENTRY_YOUNG;
1681 	mask |=	_SEGMENT_ENTRY_LARGE;
1682 	mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1683 	pmd = __pmd(pmd_val(pmd) & mask);
1684 	pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1685 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1686 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1687 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1688 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1689 	return pmd;
1690 }
1691 
1692 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1693 {
1694 	return __pmd(physpage + massage_pgprot_pmd(pgprot));
1695 }
1696 
1697 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1698 
1699 static inline void __pmdp_csp(pmd_t *pmdp)
1700 {
1701 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1702 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1703 }
1704 
1705 #define IDTE_GLOBAL	0
1706 #define IDTE_LOCAL	1
1707 
1708 #define IDTE_PTOA	0x0800
1709 #define IDTE_NODAT	0x1000
1710 #define IDTE_GUEST_ASCE	0x2000
1711 
1712 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1713 					unsigned long opt, unsigned long asce,
1714 					int local)
1715 {
1716 	unsigned long sto;
1717 
1718 	sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1719 	if (__builtin_constant_p(opt) && opt == 0) {
1720 		/* flush without guest asce */
1721 		asm volatile(
1722 			"	idte	%[r1],0,%[r2],%[m4]"
1723 			: "+m" (*pmdp)
1724 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1725 			  [m4] "i" (local)
1726 			: "cc" );
1727 	} else {
1728 		/* flush with guest asce */
1729 		asm volatile(
1730 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1731 			: "+m" (*pmdp)
1732 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1733 			  [r3] "a" (asce), [m4] "i" (local)
1734 			: "cc" );
1735 	}
1736 }
1737 
1738 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1739 					unsigned long opt, unsigned long asce,
1740 					int local)
1741 {
1742 	unsigned long r3o;
1743 
1744 	r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1745 	r3o |= _ASCE_TYPE_REGION3;
1746 	if (__builtin_constant_p(opt) && opt == 0) {
1747 		/* flush without guest asce */
1748 		asm volatile(
1749 			"	idte	%[r1],0,%[r2],%[m4]"
1750 			: "+m" (*pudp)
1751 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1752 			  [m4] "i" (local)
1753 			: "cc");
1754 	} else {
1755 		/* flush with guest asce */
1756 		asm volatile(
1757 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1758 			: "+m" (*pudp)
1759 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1760 			  [r3] "a" (asce), [m4] "i" (local)
1761 			: "cc" );
1762 	}
1763 }
1764 
1765 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1766 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1767 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1768 
1769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1770 
1771 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1772 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1773 				pgtable_t pgtable);
1774 
1775 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1776 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1777 
1778 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1779 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1780 					unsigned long addr, pmd_t *pmdp,
1781 					pmd_t entry, int dirty)
1782 {
1783 	VM_BUG_ON(addr & ~HPAGE_MASK);
1784 
1785 	entry = pmd_mkyoung(entry);
1786 	if (dirty)
1787 		entry = pmd_mkdirty(entry);
1788 	if (pmd_val(*pmdp) == pmd_val(entry))
1789 		return 0;
1790 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1791 	return 1;
1792 }
1793 
1794 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1795 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1796 					    unsigned long addr, pmd_t *pmdp)
1797 {
1798 	pmd_t pmd = *pmdp;
1799 
1800 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1801 	return pmd_young(pmd);
1802 }
1803 
1804 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1805 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1806 					 unsigned long addr, pmd_t *pmdp)
1807 {
1808 	VM_BUG_ON(addr & ~HPAGE_MASK);
1809 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1810 }
1811 
1812 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1813 			      pmd_t *pmdp, pmd_t entry)
1814 {
1815 	set_pmd(pmdp, entry);
1816 }
1817 
1818 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1819 {
1820 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1821 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1822 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1823 }
1824 
1825 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1826 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1827 					    unsigned long addr, pmd_t *pmdp)
1828 {
1829 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1830 }
1831 
1832 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1833 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1834 						 unsigned long addr,
1835 						 pmd_t *pmdp, int full)
1836 {
1837 	if (full) {
1838 		pmd_t pmd = *pmdp;
1839 		set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1840 		return pmd;
1841 	}
1842 	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1843 }
1844 
1845 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1846 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1847 					  unsigned long addr, pmd_t *pmdp)
1848 {
1849 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1850 }
1851 
1852 #define __HAVE_ARCH_PMDP_INVALIDATE
1853 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1854 				   unsigned long addr, pmd_t *pmdp)
1855 {
1856 	pmd_t pmd;
1857 
1858 	VM_WARN_ON_ONCE(!pmd_present(*pmdp));
1859 	pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1860 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1861 }
1862 
1863 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1864 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1865 				      unsigned long addr, pmd_t *pmdp)
1866 {
1867 	pmd_t pmd = *pmdp;
1868 
1869 	if (pmd_write(pmd))
1870 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1871 }
1872 
1873 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1874 					unsigned long address,
1875 					pmd_t *pmdp)
1876 {
1877 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1878 }
1879 #define pmdp_collapse_flush pmdp_collapse_flush
1880 
1881 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1882 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1883 
1884 static inline int pmd_trans_huge(pmd_t pmd)
1885 {
1886 	return pmd_leaf(pmd);
1887 }
1888 
1889 #define has_transparent_hugepage has_transparent_hugepage
1890 static inline int has_transparent_hugepage(void)
1891 {
1892 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1893 }
1894 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1895 
1896 /*
1897  * 64 bit swap entry format:
1898  * A page-table entry has some bits we have to treat in a special way.
1899  * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1900  * as invalid.
1901  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1902  * |			  offset			|E11XX|type |S0|
1903  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1904  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1905  *
1906  * Bits 0-51 store the offset.
1907  * Bit 52 (E) is used to remember PG_anon_exclusive.
1908  * Bits 57-61 store the type.
1909  * Bit 62 (S) is used for softdirty tracking.
1910  * Bits 55 and 56 (X) are unused.
1911  */
1912 
1913 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1914 #define __SWP_OFFSET_SHIFT	12
1915 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1916 #define __SWP_TYPE_SHIFT	2
1917 
1918 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1919 {
1920 	unsigned long pteval;
1921 
1922 	pteval = _PAGE_INVALID | _PAGE_PROTECT;
1923 	pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1924 	pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1925 	return __pte(pteval);
1926 }
1927 
1928 static inline unsigned long __swp_type(swp_entry_t entry)
1929 {
1930 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1931 }
1932 
1933 static inline unsigned long __swp_offset(swp_entry_t entry)
1934 {
1935 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1936 }
1937 
1938 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1939 {
1940 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1941 }
1942 
1943 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1944 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1945 
1946 /*
1947  * 64 bit swap entry format for REGION3 and SEGMENT table entries (RSTE)
1948  * Bits 59 and 63 are used to indicate the swap entry. Bit 58 marks the rste
1949  * as invalid.
1950  * A swap entry is indicated by bit pattern (rste & 0x011) == 0x010
1951  * |			  offset			|Xtype |11TT|S0|
1952  * |0000000000111111111122222222223333333333444444444455|555555|5566|66|
1953  * |0123456789012345678901234567890123456789012345678901|234567|8901|23|
1954  *
1955  * Bits 0-51 store the offset.
1956  * Bits 53-57 store the type.
1957  * Bit 62 (S) is used for softdirty tracking.
1958  * Bits 60-61 (TT) indicate the table type: 0x01 for REGION3 and 0x00 for SEGMENT.
1959  * Bit 52 (X) is unused.
1960  */
1961 
1962 #define __SWP_OFFSET_MASK_RSTE	((1UL << 52) - 1)
1963 #define __SWP_OFFSET_SHIFT_RSTE	12
1964 #define __SWP_TYPE_MASK_RSTE		((1UL << 5) - 1)
1965 #define __SWP_TYPE_SHIFT_RSTE	6
1966 
1967 /*
1968  * TT bits set to 0x00 == SEGMENT. For REGION3 entries, caller must add R3
1969  * bits 0x01. See also __set_huge_pte_at().
1970  */
1971 static inline unsigned long mk_swap_rste(unsigned long type, unsigned long offset)
1972 {
1973 	unsigned long rste;
1974 
1975 	rste = _RST_ENTRY_INVALID | _RST_ENTRY_COMM;
1976 	rste |= (offset & __SWP_OFFSET_MASK_RSTE) << __SWP_OFFSET_SHIFT_RSTE;
1977 	rste |= (type & __SWP_TYPE_MASK_RSTE) << __SWP_TYPE_SHIFT_RSTE;
1978 	return rste;
1979 }
1980 
1981 static inline unsigned long __swp_type_rste(swp_entry_t entry)
1982 {
1983 	return (entry.val >> __SWP_TYPE_SHIFT_RSTE) & __SWP_TYPE_MASK_RSTE;
1984 }
1985 
1986 static inline unsigned long __swp_offset_rste(swp_entry_t entry)
1987 {
1988 	return (entry.val >> __SWP_OFFSET_SHIFT_RSTE) & __SWP_OFFSET_MASK_RSTE;
1989 }
1990 
1991 #define __rste_to_swp_entry(rste)	((swp_entry_t) { rste })
1992 
1993 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1994 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1995 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1996 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1997 extern void vmem_unmap_4k_page(unsigned long addr);
1998 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1999 extern int s390_enable_sie(void);
2000 extern int s390_enable_skey(void);
2001 extern void s390_reset_cmma(struct mm_struct *mm);
2002 
2003 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
2004 #define HAVE_ARCH_UNMAPPED_AREA
2005 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2006 
2007 #define pmd_pgtable(pmd) \
2008 	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
2009 
2010 #endif /* _S390_PAGE_H */
2011