xref: /linux/arch/s390/include/asm/pgtable.h (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/cpufeature.h>
18 #include <linux/page-flags.h>
19 #include <linux/radix-tree.h>
20 #include <linux/atomic.h>
21 #include <asm/ctlreg.h>
22 #include <asm/bug.h>
23 #include <asm/page.h>
24 #include <asm/uv.h>
25 
26 extern pgd_t swapper_pg_dir[];
27 extern pgd_t invalid_pg_dir[];
28 extern void paging_init(void);
29 extern struct ctlreg s390_invalid_asce;
30 
31 enum {
32 	PG_DIRECT_MAP_4K = 0,
33 	PG_DIRECT_MAP_1M,
34 	PG_DIRECT_MAP_2G,
35 	PG_DIRECT_MAP_MAX
36 };
37 
38 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
39 
40 static inline void update_page_count(int level, long count)
41 {
42 	if (IS_ENABLED(CONFIG_PROC_FS))
43 		atomic_long_add(count, &direct_pages_count[level]);
44 }
45 
46 /*
47  * The S390 doesn't have any external MMU info: the kernel page
48  * tables contain all the necessary information.
49  */
50 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
51 #define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53 
54 /*
55  * ZERO_PAGE is a global shared page that is always zero; used
56  * for zero-mapped memory areas etc..
57  */
58 
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61 
62 #define ZERO_PAGE(vaddr) \
63 	(virt_to_page((void *)(empty_zero_page + \
64 	 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66 
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68 
69 #define pte_ERROR(e) \
70 	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79 
80 /*
81  * The vmalloc and module area will always be on the topmost area of the
82  * kernel mapping. 512GB are reserved for vmalloc by default.
83  * At the top of the vmalloc area a 2GB area is reserved where modules
84  * will reside. That makes sure that inter module branches always
85  * happen without trampolines and in addition the placement within a
86  * 2GB frame is branch prediction unit friendly.
87  */
88 extern unsigned long VMALLOC_START;
89 extern unsigned long VMALLOC_END;
90 #define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
91 extern struct page *vmemmap;
92 extern unsigned long vmemmap_size;
93 
94 extern unsigned long MODULES_VADDR;
95 extern unsigned long MODULES_END;
96 #define MODULES_VADDR	MODULES_VADDR
97 #define MODULES_END	MODULES_END
98 #define MODULES_LEN	(1UL << 31)
99 
100 static inline int is_module_addr(void *addr)
101 {
102 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 	if (addr < (void *)MODULES_VADDR)
104 		return 0;
105 	if (addr > (void *)MODULES_END)
106 		return 0;
107 	return 1;
108 }
109 
110 #ifdef CONFIG_KMSAN
111 #define KMSAN_VMALLOC_SIZE (VMALLOC_END - VMALLOC_START)
112 #define KMSAN_VMALLOC_SHADOW_START VMALLOC_END
113 #define KMSAN_VMALLOC_SHADOW_END (KMSAN_VMALLOC_SHADOW_START + KMSAN_VMALLOC_SIZE)
114 #define KMSAN_VMALLOC_ORIGIN_START KMSAN_VMALLOC_SHADOW_END
115 #define KMSAN_VMALLOC_ORIGIN_END (KMSAN_VMALLOC_ORIGIN_START + KMSAN_VMALLOC_SIZE)
116 #define KMSAN_MODULES_SHADOW_START KMSAN_VMALLOC_ORIGIN_END
117 #define KMSAN_MODULES_SHADOW_END (KMSAN_MODULES_SHADOW_START + MODULES_LEN)
118 #define KMSAN_MODULES_ORIGIN_START KMSAN_MODULES_SHADOW_END
119 #define KMSAN_MODULES_ORIGIN_END (KMSAN_MODULES_ORIGIN_START + MODULES_LEN)
120 #endif
121 
122 #ifdef CONFIG_RANDOMIZE_BASE
123 #define KASLR_LEN	(1UL << 31)
124 #else
125 #define KASLR_LEN	0UL
126 #endif
127 
128 void setup_protection_map(void);
129 
130 /*
131  * A 64 bit pagetable entry of S390 has following format:
132  * |			 PFRA			      |0IPC|  OS  |
133  * 0000000000111111111122222222223333333333444444444455555555556666
134  * 0123456789012345678901234567890123456789012345678901234567890123
135  *
136  * I Page-Invalid Bit:    Page is not available for address-translation
137  * P Page-Protection Bit: Store access not possible for page
138  * C Change-bit override: HW is not required to set change bit
139  *
140  * A 64 bit segmenttable entry of S390 has following format:
141  * |        P-table origin                              |      TT
142  * 0000000000111111111122222222223333333333444444444455555555556666
143  * 0123456789012345678901234567890123456789012345678901234567890123
144  *
145  * I Segment-Invalid Bit:    Segment is not available for address-translation
146  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
147  * P Page-Protection Bit: Store access not possible for page
148  * TT Type 00
149  *
150  * A 64 bit region table entry of S390 has following format:
151  * |        S-table origin                             |   TF  TTTL
152  * 0000000000111111111122222222223333333333444444444455555555556666
153  * 0123456789012345678901234567890123456789012345678901234567890123
154  *
155  * I Segment-Invalid Bit:    Segment is not available for address-translation
156  * TT Type 01
157  * TF
158  * TL Table length
159  *
160  * The 64 bit regiontable origin of S390 has following format:
161  * |      region table origon                          |       DTTL
162  * 0000000000111111111122222222223333333333444444444455555555556666
163  * 0123456789012345678901234567890123456789012345678901234567890123
164  *
165  * X Space-Switch event:
166  * G Segment-Invalid Bit:
167  * P Private-Space Bit:
168  * S Storage-Alteration:
169  * R Real space
170  * TL Table-Length:
171  *
172  * A storage key has the following format:
173  * | ACC |F|R|C|0|
174  *  0   3 4 5 6 7
175  * ACC: access key
176  * F  : fetch protection bit
177  * R  : referenced bit
178  * C  : changed bit
179  */
180 
181 /* Hardware bits in the page table entry */
182 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
183 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
184 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
185 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
186 
187 /* Software bits in the page table entry */
188 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
189 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
190 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
191 #define _PAGE_READ	0x010		/* SW pte read bit */
192 #define _PAGE_WRITE	0x020		/* SW pte write bit */
193 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
194 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
195 
196 #ifdef CONFIG_MEM_SOFT_DIRTY
197 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
198 #else
199 #define _PAGE_SOFT_DIRTY 0x000
200 #endif
201 
202 #define _PAGE_SW_BITS	0xffUL		/* All SW bits */
203 
204 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE	/* SW pte exclusive swap bit */
205 
206 /* Set of bits not changed in pte_modify */
207 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
208 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
209 
210 /*
211  * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
212  * HW bit and all SW bits.
213  */
214 #define _PAGE_RDP_MASK		~(_PAGE_PROTECT | _PAGE_SW_BITS)
215 
216 /*
217  * handle_pte_fault uses pte_present and pte_none to find out the pte type
218  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
219  * distinguish present from not-present ptes. It is changed only with the page
220  * table lock held.
221  *
222  * The following table gives the different possible bit combinations for
223  * the pte hardware and software bits in the last 12 bits of a pte
224  * (. unassigned bit, x don't care, t swap type):
225  *
226  *				842100000000
227  *				000084210000
228  *				000000008421
229  *				.IR.uswrdy.p
230  * empty			.10.00000000
231  * swap				.11..ttttt.0
232  * prot-none, clean, old	.11.xx0000.1
233  * prot-none, clean, young	.11.xx0001.1
234  * prot-none, dirty, old	.11.xx0010.1
235  * prot-none, dirty, young	.11.xx0011.1
236  * read-only, clean, old	.11.xx0100.1
237  * read-only, clean, young	.01.xx0101.1
238  * read-only, dirty, old	.11.xx0110.1
239  * read-only, dirty, young	.01.xx0111.1
240  * read-write, clean, old	.11.xx1100.1
241  * read-write, clean, young	.01.xx1101.1
242  * read-write, dirty, old	.10.xx1110.1
243  * read-write, dirty, young	.00.xx1111.1
244  * HW-bits: R read-only, I invalid
245  * SW-bits: p present, y young, d dirty, r read, w write, s special,
246  *	    u unused, l large
247  *
248  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
249  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
250  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
251  */
252 
253 /* Bits in the segment/region table address-space-control-element */
254 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
255 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
256 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
257 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
258 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
259 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
260 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
261 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
262 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
263 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
264 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
265 
266 /* Bits in the region table entry */
267 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
268 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
269 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
270 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
271 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
272 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
273 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
274 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
275 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
276 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
277 
278 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
279 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
280 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
281 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
282 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH | \
283 				 _REGION3_ENTRY_PRESENT)
284 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
285 
286 #define _REGION3_ENTRY_HARDWARE_BITS		0xfffffffffffff6ffUL
287 #define _REGION3_ENTRY_HARDWARE_BITS_LARGE	0xffffffff8001073cUL
288 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
289 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
290 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
291 #define _REGION3_ENTRY_COMM	0x0010	/* Common-Region, marks swap entry */
292 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
293 #define _REGION3_ENTRY_WRITE	0x8000	/* SW region write bit */
294 #define _REGION3_ENTRY_READ	0x4000	/* SW region read bit */
295 
296 #ifdef CONFIG_MEM_SOFT_DIRTY
297 #define _REGION3_ENTRY_SOFT_DIRTY 0x0002 /* SW region soft dirty bit */
298 #else
299 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
300 #endif
301 
302 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
303 
304 /*
305  * SW region present bit. For non-leaf region-third-table entries, bits 62-63
306  * indicate the TABLE LENGTH and both must be set to 1. But such entries
307  * would always be considered as present, so it is safe to use bit 63 as
308  * PRESENT bit for PUD.
309  */
310 #define _REGION3_ENTRY_PRESENT	0x0001
311 
312 /* Bits in the segment table entry */
313 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe3fUL
314 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe3cUL
315 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff1073cUL
316 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
317 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
318 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
319 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
320 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
321 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
322 
323 #define _SEGMENT_ENTRY		(_SEGMENT_ENTRY_PRESENT)
324 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
325 
326 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
327 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
328 
329 #define _SEGMENT_ENTRY_COMM	0x0010	/* Common-Segment, marks swap entry */
330 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
331 #define _SEGMENT_ENTRY_WRITE	0x8000	/* SW segment write bit */
332 #define _SEGMENT_ENTRY_READ	0x4000	/* SW segment read bit */
333 
334 #ifdef CONFIG_MEM_SOFT_DIRTY
335 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0002 /* SW segment soft dirty bit */
336 #else
337 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
338 #endif
339 
340 #define _SEGMENT_ENTRY_PRESENT	0x0001	/* SW segment present bit */
341 
342 /* Common bits in region and segment table entries, for swap entries */
343 #define _RST_ENTRY_COMM		0x0010	/* Common-Region/Segment, marks swap entry */
344 #define _RST_ENTRY_INVALID	0x0020	/* invalid region/segment table entry */
345 
346 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
347 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
348 
349 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
350 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
351 
352 #define _REGION1_SHIFT	53
353 #define _REGION2_SHIFT	42
354 #define _REGION3_SHIFT	31
355 #define _SEGMENT_SHIFT	20
356 
357 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
358 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
359 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
360 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
361 #define _PAGE_INDEX	(0xffUL  << PAGE_SHIFT)
362 
363 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
364 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
365 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
366 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
367 
368 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
369 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
370 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
371 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
372 
373 #define PMD_SHIFT	_SEGMENT_SHIFT
374 #define PUD_SHIFT	_REGION3_SHIFT
375 #define P4D_SHIFT	_REGION2_SHIFT
376 #define PGDIR_SHIFT	_REGION1_SHIFT
377 
378 #define PMD_SIZE	_SEGMENT_SIZE
379 #define PUD_SIZE	_REGION3_SIZE
380 #define P4D_SIZE	_REGION2_SIZE
381 #define PGDIR_SIZE	_REGION1_SIZE
382 
383 #define PMD_MASK	_SEGMENT_MASK
384 #define PUD_MASK	_REGION3_MASK
385 #define P4D_MASK	_REGION2_MASK
386 #define PGDIR_MASK	_REGION1_MASK
387 
388 #define PTRS_PER_PTE	_PAGE_ENTRIES
389 #define PTRS_PER_PMD	_CRST_ENTRIES
390 #define PTRS_PER_PUD	_CRST_ENTRIES
391 #define PTRS_PER_P4D	_CRST_ENTRIES
392 #define PTRS_PER_PGD	_CRST_ENTRIES
393 
394 /*
395  * Segment table and region3 table entry encoding
396  * (R = read-only, I = invalid, y = young bit):
397  *				dy..R...I...wr
398  * prot-none, clean, old	00..1...1...00
399  * prot-none, clean, young	01..1...1...00
400  * prot-none, dirty, old	10..1...1...00
401  * prot-none, dirty, young	11..1...1...00
402  * read-only, clean, old	00..1...1...01
403  * read-only, clean, young	01..1...0...01
404  * read-only, dirty, old	10..1...1...01
405  * read-only, dirty, young	11..1...0...01
406  * read-write, clean, old	00..1...1...11
407  * read-write, clean, young	01..1...0...11
408  * read-write, dirty, old	10..0...1...11
409  * read-write, dirty, young	11..0...0...11
410  * The segment table origin is used to distinguish empty (origin==0) from
411  * read-write, old segment table entries (origin!=0)
412  * HW-bits: R read-only, I invalid
413  * SW-bits: y young, d dirty, r read, w write
414  */
415 
416 /* Page status table bits for virtualization */
417 #define PGSTE_ACC_BITS	0xf000000000000000UL
418 #define PGSTE_FP_BIT	0x0800000000000000UL
419 #define PGSTE_PCL_BIT	0x0080000000000000UL
420 #define PGSTE_HR_BIT	0x0040000000000000UL
421 #define PGSTE_HC_BIT	0x0020000000000000UL
422 #define PGSTE_GR_BIT	0x0004000000000000UL
423 #define PGSTE_GC_BIT	0x0002000000000000UL
424 #define PGSTE_ST2_MASK	0x0000ffff00000000UL
425 #define PGSTE_UC_BIT	0x0000000000008000UL	/* user dirty (migration) */
426 #define PGSTE_IN_BIT	0x0000000000004000UL	/* IPTE notify bit */
427 #define PGSTE_VSIE_BIT	0x0000000000002000UL	/* ref'd in a shadow table */
428 
429 /* Guest Page State used for virtualization */
430 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
431 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
432 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
433 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
434 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
435 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
436 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
437 
438 /*
439  * A user page table pointer has the space-switch-event bit, the
440  * private-space-control bit and the storage-alteration-event-control
441  * bit set. A kernel page table pointer doesn't need them.
442  */
443 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
444 				 _ASCE_ALT_EVENT)
445 
446 /*
447  * Page protection definitions.
448  */
449 #define __PAGE_NONE		(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
450 #define __PAGE_RO		(_PAGE_PRESENT | _PAGE_READ | \
451 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
452 #define __PAGE_RX		(_PAGE_PRESENT | _PAGE_READ | \
453 				 _PAGE_INVALID | _PAGE_PROTECT)
454 #define __PAGE_RW		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
455 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
456 #define __PAGE_RWX		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
457 				 _PAGE_INVALID | _PAGE_PROTECT)
458 #define __PAGE_SHARED		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
459 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
460 #define __PAGE_KERNEL		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
461 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
462 #define __PAGE_KERNEL_RO	(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
463 				 _PAGE_PROTECT | _PAGE_NOEXEC)
464 
465 extern unsigned long page_noexec_mask;
466 
467 #define __pgprot_page_mask(x)	__pgprot((x) & page_noexec_mask)
468 
469 #define PAGE_NONE		__pgprot_page_mask(__PAGE_NONE)
470 #define PAGE_RO			__pgprot_page_mask(__PAGE_RO)
471 #define PAGE_RX			__pgprot_page_mask(__PAGE_RX)
472 #define PAGE_RW			__pgprot_page_mask(__PAGE_RW)
473 #define PAGE_RWX		__pgprot_page_mask(__PAGE_RWX)
474 #define PAGE_SHARED		__pgprot_page_mask(__PAGE_SHARED)
475 #define PAGE_KERNEL		__pgprot_page_mask(__PAGE_KERNEL)
476 #define PAGE_KERNEL_RO		__pgprot_page_mask(__PAGE_KERNEL_RO)
477 
478 /*
479  * Segment entry (large page) protection definitions.
480  */
481 #define __SEGMENT_NONE		(_SEGMENT_ENTRY_PRESENT | \
482 				 _SEGMENT_ENTRY_INVALID | \
483 				 _SEGMENT_ENTRY_PROTECT)
484 #define __SEGMENT_RO		(_SEGMENT_ENTRY_PRESENT | \
485 				 _SEGMENT_ENTRY_PROTECT | \
486 				 _SEGMENT_ENTRY_READ | \
487 				 _SEGMENT_ENTRY_NOEXEC)
488 #define __SEGMENT_RX		(_SEGMENT_ENTRY_PRESENT | \
489 				 _SEGMENT_ENTRY_PROTECT | \
490 				 _SEGMENT_ENTRY_READ)
491 #define __SEGMENT_RW		(_SEGMENT_ENTRY_PRESENT | \
492 				 _SEGMENT_ENTRY_READ | \
493 				 _SEGMENT_ENTRY_WRITE | \
494 				 _SEGMENT_ENTRY_NOEXEC)
495 #define __SEGMENT_RWX		(_SEGMENT_ENTRY_PRESENT | \
496 				 _SEGMENT_ENTRY_READ | \
497 				 _SEGMENT_ENTRY_WRITE)
498 #define __SEGMENT_KERNEL	(_SEGMENT_ENTRY |	\
499 				 _SEGMENT_ENTRY_LARGE |	\
500 				 _SEGMENT_ENTRY_READ |	\
501 				 _SEGMENT_ENTRY_WRITE | \
502 				 _SEGMENT_ENTRY_YOUNG | \
503 				 _SEGMENT_ENTRY_DIRTY | \
504 				 _SEGMENT_ENTRY_NOEXEC)
505 #define __SEGMENT_KERNEL_RO	(_SEGMENT_ENTRY |	\
506 				 _SEGMENT_ENTRY_LARGE |	\
507 				 _SEGMENT_ENTRY_READ |	\
508 				 _SEGMENT_ENTRY_YOUNG |	\
509 				 _SEGMENT_ENTRY_PROTECT | \
510 				 _SEGMENT_ENTRY_NOEXEC)
511 
512 extern unsigned long segment_noexec_mask;
513 
514 #define __pgprot_segment_mask(x) __pgprot((x) & segment_noexec_mask)
515 
516 #define SEGMENT_NONE		__pgprot_segment_mask(__SEGMENT_NONE)
517 #define SEGMENT_RO		__pgprot_segment_mask(__SEGMENT_RO)
518 #define SEGMENT_RX		__pgprot_segment_mask(__SEGMENT_RX)
519 #define SEGMENT_RW		__pgprot_segment_mask(__SEGMENT_RW)
520 #define SEGMENT_RWX		__pgprot_segment_mask(__SEGMENT_RWX)
521 #define SEGMENT_KERNEL		__pgprot_segment_mask(__SEGMENT_KERNEL)
522 #define SEGMENT_KERNEL_RO	__pgprot_segment_mask(__SEGMENT_KERNEL_RO)
523 
524 /*
525  * Region3 entry (large page) protection definitions.
526  */
527 
528 #define __REGION3_KERNEL	(_REGION_ENTRY_TYPE_R3 | \
529 				 _REGION3_ENTRY_PRESENT | \
530 				 _REGION3_ENTRY_LARGE | \
531 				 _REGION3_ENTRY_READ | \
532 				 _REGION3_ENTRY_WRITE | \
533 				 _REGION3_ENTRY_YOUNG | \
534 				 _REGION3_ENTRY_DIRTY | \
535 				 _REGION_ENTRY_NOEXEC)
536 #define __REGION3_KERNEL_RO	(_REGION_ENTRY_TYPE_R3 | \
537 				 _REGION3_ENTRY_PRESENT | \
538 				 _REGION3_ENTRY_LARGE | \
539 				 _REGION3_ENTRY_READ | \
540 				 _REGION3_ENTRY_YOUNG | \
541 				 _REGION_ENTRY_PROTECT | \
542 				 _REGION_ENTRY_NOEXEC)
543 
544 extern unsigned long region_noexec_mask;
545 
546 #define __pgprot_region_mask(x)	__pgprot((x) & region_noexec_mask)
547 
548 #define REGION3_KERNEL		__pgprot_region_mask(__REGION3_KERNEL)
549 #define REGION3_KERNEL_RO	__pgprot_region_mask(__REGION3_KERNEL_RO)
550 
551 static inline bool mm_p4d_folded(struct mm_struct *mm)
552 {
553 	return mm->context.asce_limit <= _REGION1_SIZE;
554 }
555 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
556 
557 static inline bool mm_pud_folded(struct mm_struct *mm)
558 {
559 	return mm->context.asce_limit <= _REGION2_SIZE;
560 }
561 #define mm_pud_folded(mm) mm_pud_folded(mm)
562 
563 static inline bool mm_pmd_folded(struct mm_struct *mm)
564 {
565 	return mm->context.asce_limit <= _REGION3_SIZE;
566 }
567 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
568 
569 static inline int mm_has_pgste(struct mm_struct *mm)
570 {
571 #ifdef CONFIG_PGSTE
572 	if (unlikely(mm->context.has_pgste))
573 		return 1;
574 #endif
575 	return 0;
576 }
577 
578 static inline int mm_is_protected(struct mm_struct *mm)
579 {
580 #ifdef CONFIG_PGSTE
581 	if (unlikely(atomic_read(&mm->context.protected_count)))
582 		return 1;
583 #endif
584 	return 0;
585 }
586 
587 static inline pgste_t clear_pgste_bit(pgste_t pgste, unsigned long mask)
588 {
589 	return __pgste(pgste_val(pgste) & ~mask);
590 }
591 
592 static inline pgste_t set_pgste_bit(pgste_t pgste, unsigned long mask)
593 {
594 	return __pgste(pgste_val(pgste) | mask);
595 }
596 
597 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
598 {
599 	return __pte(pte_val(pte) & ~pgprot_val(prot));
600 }
601 
602 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
603 {
604 	return __pte(pte_val(pte) | pgprot_val(prot));
605 }
606 
607 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
608 {
609 	return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
610 }
611 
612 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
613 {
614 	return __pmd(pmd_val(pmd) | pgprot_val(prot));
615 }
616 
617 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
618 {
619 	return __pud(pud_val(pud) & ~pgprot_val(prot));
620 }
621 
622 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
623 {
624 	return __pud(pud_val(pud) | pgprot_val(prot));
625 }
626 
627 /*
628  * As soon as the guest uses storage keys or enables PV, we deduplicate all
629  * mapped shared zeropages and prevent new shared zeropages from getting
630  * mapped.
631  */
632 #define mm_forbids_zeropage mm_forbids_zeropage
633 static inline int mm_forbids_zeropage(struct mm_struct *mm)
634 {
635 #ifdef CONFIG_PGSTE
636 	if (!mm->context.allow_cow_sharing)
637 		return 1;
638 #endif
639 	return 0;
640 }
641 
642 static inline int mm_uses_skeys(struct mm_struct *mm)
643 {
644 #ifdef CONFIG_PGSTE
645 	if (mm->context.uses_skeys)
646 		return 1;
647 #endif
648 	return 0;
649 }
650 
651 /**
652  * cspg() - Compare and Swap and Purge (CSPG)
653  * @ptr: Pointer to the value to be exchanged
654  * @old: The expected old value
655  * @new: The new value
656  *
657  * Return: True if compare and swap was successful, otherwise false.
658  */
659 static inline bool cspg(unsigned long *ptr, unsigned long old, unsigned long new)
660 {
661 	union register_pair r1 = { .even = old, .odd = new, };
662 	unsigned long address = (unsigned long)ptr | 1;
663 
664 	asm volatile(
665 		"	cspg	%[r1],%[address]"
666 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
667 		: [address] "d" (address)
668 		: "cc");
669 	return old == r1.even;
670 }
671 
672 #define CRDTE_DTT_PAGE		0x00UL
673 #define CRDTE_DTT_SEGMENT	0x10UL
674 #define CRDTE_DTT_REGION3	0x14UL
675 #define CRDTE_DTT_REGION2	0x18UL
676 #define CRDTE_DTT_REGION1	0x1cUL
677 
678 /**
679  * crdte() - Compare and Replace DAT Table Entry
680  * @old:     The expected old value
681  * @new:     The new value
682  * @table:   Pointer to the value to be exchanged
683  * @dtt:     Table type of the table to be exchanged
684  * @address: The address mapped by the entry to be replaced
685  * @asce:    The ASCE of this entry
686  *
687  * Return: True if compare and replace was successful, otherwise false.
688  */
689 static inline bool crdte(unsigned long old, unsigned long new,
690 			 unsigned long *table, unsigned long dtt,
691 			 unsigned long address, unsigned long asce)
692 {
693 	union register_pair r1 = { .even = old, .odd = new, };
694 	union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
695 
696 	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
697 		     : [r1] "+&d" (r1.pair)
698 		     : [r2] "d" (r2.pair), [asce] "a" (asce)
699 		     : "memory", "cc");
700 	return old == r1.even;
701 }
702 
703 /*
704  * pgd/p4d/pud/pmd/pte query functions
705  */
706 static inline int pgd_folded(pgd_t pgd)
707 {
708 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
709 }
710 
711 static inline int pgd_present(pgd_t pgd)
712 {
713 	if (pgd_folded(pgd))
714 		return 1;
715 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
716 }
717 
718 static inline int pgd_none(pgd_t pgd)
719 {
720 	if (pgd_folded(pgd))
721 		return 0;
722 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
723 }
724 
725 static inline int pgd_bad(pgd_t pgd)
726 {
727 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
728 		return 0;
729 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
730 }
731 
732 static inline unsigned long pgd_pfn(pgd_t pgd)
733 {
734 	unsigned long origin_mask;
735 
736 	origin_mask = _REGION_ENTRY_ORIGIN;
737 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
738 }
739 
740 static inline int p4d_folded(p4d_t p4d)
741 {
742 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
743 }
744 
745 static inline int p4d_present(p4d_t p4d)
746 {
747 	if (p4d_folded(p4d))
748 		return 1;
749 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
750 }
751 
752 static inline int p4d_none(p4d_t p4d)
753 {
754 	if (p4d_folded(p4d))
755 		return 0;
756 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
757 }
758 
759 static inline unsigned long p4d_pfn(p4d_t p4d)
760 {
761 	unsigned long origin_mask;
762 
763 	origin_mask = _REGION_ENTRY_ORIGIN;
764 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
765 }
766 
767 static inline int pud_folded(pud_t pud)
768 {
769 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
770 }
771 
772 static inline int pud_present(pud_t pud)
773 {
774 	if (pud_folded(pud))
775 		return 1;
776 	return (pud_val(pud) & _REGION3_ENTRY_PRESENT) != 0;
777 }
778 
779 static inline int pud_none(pud_t pud)
780 {
781 	if (pud_folded(pud))
782 		return 0;
783 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
784 }
785 
786 #define pud_leaf pud_leaf
787 static inline bool pud_leaf(pud_t pud)
788 {
789 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
790 		return 0;
791 	return (pud_present(pud) && (pud_val(pud) & _REGION3_ENTRY_LARGE) != 0);
792 }
793 
794 static inline int pmd_present(pmd_t pmd)
795 {
796 	return (pmd_val(pmd) & _SEGMENT_ENTRY_PRESENT) != 0;
797 }
798 
799 #define pmd_leaf pmd_leaf
800 static inline bool pmd_leaf(pmd_t pmd)
801 {
802 	return (pmd_present(pmd) && (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0);
803 }
804 
805 static inline int pmd_bad(pmd_t pmd)
806 {
807 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_leaf(pmd))
808 		return 1;
809 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
810 }
811 
812 static inline int pud_bad(pud_t pud)
813 {
814 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
815 
816 	if (type > _REGION_ENTRY_TYPE_R3 || pud_leaf(pud))
817 		return 1;
818 	if (type < _REGION_ENTRY_TYPE_R3)
819 		return 0;
820 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
821 }
822 
823 static inline int p4d_bad(p4d_t p4d)
824 {
825 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
826 
827 	if (type > _REGION_ENTRY_TYPE_R2)
828 		return 1;
829 	if (type < _REGION_ENTRY_TYPE_R2)
830 		return 0;
831 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
832 }
833 
834 static inline int pmd_none(pmd_t pmd)
835 {
836 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
837 }
838 
839 #define pmd_write pmd_write
840 static inline int pmd_write(pmd_t pmd)
841 {
842 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
843 }
844 
845 #define pud_write pud_write
846 static inline int pud_write(pud_t pud)
847 {
848 	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
849 }
850 
851 #define pmd_dirty pmd_dirty
852 static inline int pmd_dirty(pmd_t pmd)
853 {
854 	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
855 }
856 
857 #define pmd_young pmd_young
858 static inline int pmd_young(pmd_t pmd)
859 {
860 	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
861 }
862 
863 static inline int pte_present(pte_t pte)
864 {
865 	/* Bit pattern: (pte & 0x001) == 0x001 */
866 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
867 }
868 
869 static inline int pte_none(pte_t pte)
870 {
871 	/* Bit pattern: pte == 0x400 */
872 	return pte_val(pte) == _PAGE_INVALID;
873 }
874 
875 static inline int pte_swap(pte_t pte)
876 {
877 	/* Bit pattern: (pte & 0x201) == 0x200 */
878 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
879 		== _PAGE_PROTECT;
880 }
881 
882 static inline int pte_special(pte_t pte)
883 {
884 	return (pte_val(pte) & _PAGE_SPECIAL);
885 }
886 
887 #define __HAVE_ARCH_PTE_SAME
888 static inline int pte_same(pte_t a, pte_t b)
889 {
890 	return pte_val(a) == pte_val(b);
891 }
892 
893 #ifdef CONFIG_NUMA_BALANCING
894 static inline int pte_protnone(pte_t pte)
895 {
896 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
897 }
898 
899 static inline int pmd_protnone(pmd_t pmd)
900 {
901 	/* pmd_leaf(pmd) implies pmd_present(pmd) */
902 	return pmd_leaf(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
903 }
904 #endif
905 
906 static inline bool pte_swp_exclusive(pte_t pte)
907 {
908 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
909 }
910 
911 static inline pte_t pte_swp_mkexclusive(pte_t pte)
912 {
913 	return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
914 }
915 
916 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
917 {
918 	return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
919 }
920 
921 static inline int pte_soft_dirty(pte_t pte)
922 {
923 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
924 }
925 #define pte_swp_soft_dirty pte_soft_dirty
926 
927 static inline pte_t pte_mksoft_dirty(pte_t pte)
928 {
929 	return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
930 }
931 #define pte_swp_mksoft_dirty pte_mksoft_dirty
932 
933 static inline pte_t pte_clear_soft_dirty(pte_t pte)
934 {
935 	return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
936 }
937 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
938 
939 static inline int pmd_soft_dirty(pmd_t pmd)
940 {
941 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
942 }
943 
944 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
945 {
946 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
947 }
948 
949 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
950 {
951 	return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
952 }
953 
954 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
955 #define pmd_swp_soft_dirty(pmd)		pmd_soft_dirty(pmd)
956 #define pmd_swp_mksoft_dirty(pmd)	pmd_mksoft_dirty(pmd)
957 #define pmd_swp_clear_soft_dirty(pmd)	pmd_clear_soft_dirty(pmd)
958 #endif
959 
960 /*
961  * query functions pte_write/pte_dirty/pte_young only work if
962  * pte_present() is true. Undefined behaviour if not..
963  */
964 static inline int pte_write(pte_t pte)
965 {
966 	return (pte_val(pte) & _PAGE_WRITE) != 0;
967 }
968 
969 static inline int pte_dirty(pte_t pte)
970 {
971 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
972 }
973 
974 static inline int pte_young(pte_t pte)
975 {
976 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
977 }
978 
979 #define __HAVE_ARCH_PTE_UNUSED
980 static inline int pte_unused(pte_t pte)
981 {
982 	return pte_val(pte) & _PAGE_UNUSED;
983 }
984 
985 /*
986  * Extract the pgprot value from the given pte while at the same time making it
987  * usable for kernel address space mappings where fault driven dirty and
988  * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
989  * must not be set.
990  */
991 #define pte_pgprot pte_pgprot
992 static inline pgprot_t pte_pgprot(pte_t pte)
993 {
994 	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
995 
996 	if (pte_write(pte))
997 		pte_flags |= pgprot_val(PAGE_KERNEL);
998 	else
999 		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
1000 	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
1001 
1002 	return __pgprot(pte_flags);
1003 }
1004 
1005 /*
1006  * pgd/pmd/pte modification functions
1007  */
1008 
1009 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1010 {
1011 	WRITE_ONCE(*pgdp, pgd);
1012 }
1013 
1014 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
1015 {
1016 	WRITE_ONCE(*p4dp, p4d);
1017 }
1018 
1019 static inline void set_pud(pud_t *pudp, pud_t pud)
1020 {
1021 	WRITE_ONCE(*pudp, pud);
1022 }
1023 
1024 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
1025 {
1026 	WRITE_ONCE(*pmdp, pmd);
1027 }
1028 
1029 static inline void set_pte(pte_t *ptep, pte_t pte)
1030 {
1031 	WRITE_ONCE(*ptep, pte);
1032 }
1033 
1034 static inline void pgd_clear(pgd_t *pgd)
1035 {
1036 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1037 		set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
1038 }
1039 
1040 static inline void p4d_clear(p4d_t *p4d)
1041 {
1042 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1043 		set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
1044 }
1045 
1046 static inline void pud_clear(pud_t *pud)
1047 {
1048 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1049 		set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
1050 }
1051 
1052 static inline void pmd_clear(pmd_t *pmdp)
1053 {
1054 	set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1055 }
1056 
1057 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1058 {
1059 	set_pte(ptep, __pte(_PAGE_INVALID));
1060 }
1061 
1062 /*
1063  * The following pte modification functions only work if
1064  * pte_present() is true. Undefined behaviour if not..
1065  */
1066 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1067 {
1068 	pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
1069 	pte = set_pte_bit(pte, newprot);
1070 	/*
1071 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
1072 	 * has the invalid bit set, clear it again for readable, young pages
1073 	 */
1074 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
1075 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1076 	/*
1077 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
1078 	 * protection bit set, clear it again for writable, dirty pages
1079 	 */
1080 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
1081 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1082 	return pte;
1083 }
1084 
1085 static inline pte_t pte_wrprotect(pte_t pte)
1086 {
1087 	pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1088 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1089 }
1090 
1091 static inline pte_t pte_mkwrite_novma(pte_t pte)
1092 {
1093 	pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1094 	if (pte_val(pte) & _PAGE_DIRTY)
1095 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1096 	return pte;
1097 }
1098 
1099 static inline pte_t pte_mkclean(pte_t pte)
1100 {
1101 	pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1102 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1103 }
1104 
1105 static inline pte_t pte_mkdirty(pte_t pte)
1106 {
1107 	pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1108 	if (pte_val(pte) & _PAGE_WRITE)
1109 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1110 	return pte;
1111 }
1112 
1113 static inline pte_t pte_mkold(pte_t pte)
1114 {
1115 	pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1116 	return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1117 }
1118 
1119 static inline pte_t pte_mkyoung(pte_t pte)
1120 {
1121 	pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1122 	if (pte_val(pte) & _PAGE_READ)
1123 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1124 	return pte;
1125 }
1126 
1127 static inline pte_t pte_mkspecial(pte_t pte)
1128 {
1129 	return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1130 }
1131 
1132 #ifdef CONFIG_HUGETLB_PAGE
1133 static inline pte_t pte_mkhuge(pte_t pte)
1134 {
1135 	return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1136 }
1137 #endif
1138 
1139 #define IPTE_GLOBAL	0
1140 #define	IPTE_LOCAL	1
1141 
1142 #define IPTE_NODAT	0x400
1143 #define IPTE_GUEST_ASCE	0x800
1144 
1145 static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep, int local)
1146 {
1147 	unsigned long pto;
1148 
1149 	pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1150 	asm volatile(".insn	rrf,0xb98b0000,%[r1],%[r2],%%r0,%[m4]"
1151 		     : "+m" (*ptep)
1152 		     : [r1] "a" (pto), [r2] "a" (addr & PAGE_MASK),
1153 		       [m4] "i" (local));
1154 }
1155 
1156 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1157 					unsigned long opt, unsigned long asce,
1158 					int local)
1159 {
1160 	unsigned long pto = __pa(ptep);
1161 
1162 	if (__builtin_constant_p(opt) && opt == 0) {
1163 		/* Invalidation + TLB flush for the pte */
1164 		asm volatile(
1165 			"	ipte	%[r1],%[r2],0,%[m4]"
1166 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1167 			  [m4] "i" (local));
1168 		return;
1169 	}
1170 
1171 	/* Invalidate ptes with options + TLB flush of the ptes */
1172 	opt = opt | (asce & _ASCE_ORIGIN);
1173 	asm volatile(
1174 		"	ipte	%[r1],%[r2],%[r3],%[m4]"
1175 		: [r2] "+a" (address), [r3] "+a" (opt)
1176 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1177 }
1178 
1179 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1180 					      pte_t *ptep, int local)
1181 {
1182 	unsigned long pto = __pa(ptep);
1183 
1184 	/* Invalidate a range of ptes + TLB flush of the ptes */
1185 	do {
1186 		asm volatile(
1187 			"	ipte %[r1],%[r2],%[r3],%[m4]"
1188 			: [r2] "+a" (address), [r3] "+a" (nr)
1189 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1190 	} while (nr != 255);
1191 }
1192 
1193 /*
1194  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1195  * both clear the TLB for the unmapped pte. The reason is that
1196  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1197  * to modify an active pte. The sequence is
1198  *   1) ptep_get_and_clear
1199  *   2) set_pte_at
1200  *   3) flush_tlb_range
1201  * On s390 the tlb needs to get flushed with the modification of the pte
1202  * if the pte is active. The only way how this can be implemented is to
1203  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1204  * is a nop.
1205  */
1206 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1207 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1208 
1209 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1210 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1211 					    unsigned long addr, pte_t *ptep)
1212 {
1213 	pte_t pte = *ptep;
1214 
1215 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1216 	return pte_young(pte);
1217 }
1218 
1219 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1220 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1221 					 unsigned long address, pte_t *ptep)
1222 {
1223 	return ptep_test_and_clear_young(vma, address, ptep);
1224 }
1225 
1226 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1227 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1228 				       unsigned long addr, pte_t *ptep)
1229 {
1230 	pte_t res;
1231 
1232 	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1233 	/* At this point the reference through the mapping is still present */
1234 	if (mm_is_protected(mm) && pte_present(res))
1235 		uv_convert_from_secure_pte(res);
1236 	return res;
1237 }
1238 
1239 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1240 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1241 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1242 			     pte_t *, pte_t, pte_t);
1243 
1244 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1245 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1246 				     unsigned long addr, pte_t *ptep)
1247 {
1248 	pte_t res;
1249 
1250 	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1251 	/* At this point the reference through the mapping is still present */
1252 	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1253 		uv_convert_from_secure_pte(res);
1254 	return res;
1255 }
1256 
1257 /*
1258  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1259  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1260  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1261  * cannot be accessed while the batched unmap is running. In this case
1262  * full==1 and a simple pte_clear is enough. See tlb.h.
1263  */
1264 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1265 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1266 					    unsigned long addr,
1267 					    pte_t *ptep, int full)
1268 {
1269 	pte_t res;
1270 
1271 	if (full) {
1272 		res = *ptep;
1273 		set_pte(ptep, __pte(_PAGE_INVALID));
1274 	} else {
1275 		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1276 	}
1277 	/* Nothing to do */
1278 	if (!mm_is_protected(mm) || !pte_present(res))
1279 		return res;
1280 	/*
1281 	 * At this point the reference through the mapping is still present.
1282 	 * The notifier should have destroyed all protected vCPUs at this
1283 	 * point, so the destroy should be successful.
1284 	 */
1285 	if (full && !uv_destroy_pte(res))
1286 		return res;
1287 	/*
1288 	 * If something went wrong and the page could not be destroyed, or
1289 	 * if this is not a mm teardown, the slower export is used as
1290 	 * fallback instead.
1291 	 */
1292 	uv_convert_from_secure_pte(res);
1293 	return res;
1294 }
1295 
1296 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1297 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1298 				      unsigned long addr, pte_t *ptep)
1299 {
1300 	pte_t pte = *ptep;
1301 
1302 	if (pte_write(pte))
1303 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1304 }
1305 
1306 /*
1307  * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1308  * bits in the comparison. Those might change e.g. because of dirty and young
1309  * tracking.
1310  */
1311 static inline int pte_allow_rdp(pte_t old, pte_t new)
1312 {
1313 	/*
1314 	 * Only allow changes from RO to RW
1315 	 */
1316 	if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1317 		return 0;
1318 
1319 	return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1320 }
1321 
1322 static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1323 						unsigned long address,
1324 						pte_t *ptep)
1325 {
1326 	/*
1327 	 * RDP might not have propagated the PTE protection reset to all CPUs,
1328 	 * so there could be spurious TLB protection faults.
1329 	 * NOTE: This will also be called when a racing pagetable update on
1330 	 * another thread already installed the correct PTE. Both cases cannot
1331 	 * really be distinguished.
1332 	 * Therefore, only do the local TLB flush when RDP can be used, and the
1333 	 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1334 	 * A local RDP can be used to do the flush.
1335 	 */
1336 	if (cpu_has_rdp() && !(pte_val(*ptep) & _PAGE_PROTECT))
1337 		__ptep_rdp(address, ptep, 1);
1338 }
1339 #define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1340 
1341 void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1342 			 pte_t new);
1343 
1344 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1345 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1346 					unsigned long addr, pte_t *ptep,
1347 					pte_t entry, int dirty)
1348 {
1349 	if (pte_same(*ptep, entry))
1350 		return 0;
1351 	if (cpu_has_rdp() && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1352 		ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1353 	else
1354 		ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1355 	return 1;
1356 }
1357 
1358 /*
1359  * Additional functions to handle KVM guest page tables
1360  */
1361 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1362 		     pte_t *ptep, pte_t entry);
1363 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1364 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1365 		 pte_t *ptep, unsigned long bits);
1366 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1367 		    pte_t *ptep, int prot, unsigned long bit);
1368 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1369 		     pte_t *ptep , int reset);
1370 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1371 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1372 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1373 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1374 
1375 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1376 			    pte_t *ptep);
1377 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1378 			  unsigned char key, bool nq);
1379 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1380 			       unsigned char key, unsigned char *oldkey,
1381 			       bool nq, bool mr, bool mc);
1382 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1383 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1384 			  unsigned char *key);
1385 
1386 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1387 				unsigned long bits, unsigned long value);
1388 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1389 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1390 			unsigned long *oldpte, unsigned long *oldpgste);
1391 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1392 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1393 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1394 
1395 #define pgprot_writecombine	pgprot_writecombine
1396 pgprot_t pgprot_writecombine(pgprot_t prot);
1397 
1398 #define PFN_PTE_SHIFT		PAGE_SHIFT
1399 
1400 /*
1401  * Set multiple PTEs to consecutive pages with a single call.  All PTEs
1402  * are within the same folio, PMD and VMA.
1403  */
1404 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1405 			      pte_t *ptep, pte_t entry, unsigned int nr)
1406 {
1407 	if (pte_present(entry))
1408 		entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1409 	if (mm_has_pgste(mm)) {
1410 		for (;;) {
1411 			ptep_set_pte_at(mm, addr, ptep, entry);
1412 			if (--nr == 0)
1413 				break;
1414 			ptep++;
1415 			entry = __pte(pte_val(entry) + PAGE_SIZE);
1416 			addr += PAGE_SIZE;
1417 		}
1418 	} else {
1419 		for (;;) {
1420 			set_pte(ptep, entry);
1421 			if (--nr == 0)
1422 				break;
1423 			ptep++;
1424 			entry = __pte(pte_val(entry) + PAGE_SIZE);
1425 		}
1426 	}
1427 }
1428 #define set_ptes set_ptes
1429 
1430 /*
1431  * Conversion functions: convert a page and protection to a page entry,
1432  * and a page entry and page directory to the page they refer to.
1433  */
1434 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1435 {
1436 	pte_t __pte;
1437 
1438 	__pte = __pte(physpage | pgprot_val(pgprot));
1439 	return pte_mkyoung(__pte);
1440 }
1441 
1442 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1443 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1444 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1445 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1446 
1447 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1448 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1449 
1450 static inline unsigned long pmd_deref(pmd_t pmd)
1451 {
1452 	unsigned long origin_mask;
1453 
1454 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1455 	if (pmd_leaf(pmd))
1456 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1457 	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1458 }
1459 
1460 static inline unsigned long pmd_pfn(pmd_t pmd)
1461 {
1462 	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1463 }
1464 
1465 static inline unsigned long pud_deref(pud_t pud)
1466 {
1467 	unsigned long origin_mask;
1468 
1469 	origin_mask = _REGION_ENTRY_ORIGIN;
1470 	if (pud_leaf(pud))
1471 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1472 	return (unsigned long)__va(pud_val(pud) & origin_mask);
1473 }
1474 
1475 #define pud_pfn pud_pfn
1476 static inline unsigned long pud_pfn(pud_t pud)
1477 {
1478 	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1479 }
1480 
1481 /*
1482  * The pgd_offset function *always* adds the index for the top-level
1483  * region/segment table. This is done to get a sequence like the
1484  * following to work:
1485  *	pgdp = pgd_offset(current->mm, addr);
1486  *	pgd = READ_ONCE(*pgdp);
1487  *	p4dp = p4d_offset(&pgd, addr);
1488  *	...
1489  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1490  * only add an index if they dereferenced the pointer.
1491  */
1492 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1493 {
1494 	unsigned long rste;
1495 	unsigned int shift;
1496 
1497 	/* Get the first entry of the top level table */
1498 	rste = pgd_val(*pgd);
1499 	/* Pick up the shift from the table type of the first entry */
1500 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1501 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1502 }
1503 
1504 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1505 
1506 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1507 {
1508 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1509 		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1510 	return (p4d_t *) pgdp;
1511 }
1512 #define p4d_offset_lockless p4d_offset_lockless
1513 
1514 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1515 {
1516 	return p4d_offset_lockless(pgdp, *pgdp, address);
1517 }
1518 
1519 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1520 {
1521 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1522 		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1523 	return (pud_t *) p4dp;
1524 }
1525 #define pud_offset_lockless pud_offset_lockless
1526 
1527 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1528 {
1529 	return pud_offset_lockless(p4dp, *p4dp, address);
1530 }
1531 #define pud_offset pud_offset
1532 
1533 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1534 {
1535 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1536 		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1537 	return (pmd_t *) pudp;
1538 }
1539 #define pmd_offset_lockless pmd_offset_lockless
1540 
1541 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1542 {
1543 	return pmd_offset_lockless(pudp, *pudp, address);
1544 }
1545 #define pmd_offset pmd_offset
1546 
1547 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1548 {
1549 	return (unsigned long) pmd_deref(pmd);
1550 }
1551 
1552 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1553 {
1554 	return end <= current->mm->context.asce_limit;
1555 }
1556 #define gup_fast_permitted gup_fast_permitted
1557 
1558 #define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1559 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1560 #define pte_page(x) pfn_to_page(pte_pfn(x))
1561 
1562 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1563 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1564 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1565 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1566 
1567 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1568 {
1569 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1570 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1571 }
1572 
1573 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
1574 {
1575 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1576 	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1577 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1578 	return pmd;
1579 }
1580 
1581 static inline pmd_t pmd_mkclean(pmd_t pmd)
1582 {
1583 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1584 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1585 }
1586 
1587 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1588 {
1589 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1590 	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1591 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1592 	return pmd;
1593 }
1594 
1595 static inline pud_t pud_wrprotect(pud_t pud)
1596 {
1597 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1598 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1599 }
1600 
1601 static inline pud_t pud_mkwrite(pud_t pud)
1602 {
1603 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1604 	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1605 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1606 	return pud;
1607 }
1608 
1609 static inline pud_t pud_mkclean(pud_t pud)
1610 {
1611 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1612 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1613 }
1614 
1615 static inline pud_t pud_mkdirty(pud_t pud)
1616 {
1617 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1618 	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1619 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1620 	return pud;
1621 }
1622 
1623 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1624 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1625 {
1626 	/*
1627 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1628 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1629 	 */
1630 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1631 		return pgprot_val(SEGMENT_NONE);
1632 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1633 		return pgprot_val(SEGMENT_RO);
1634 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1635 		return pgprot_val(SEGMENT_RX);
1636 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1637 		return pgprot_val(SEGMENT_RW);
1638 	return pgprot_val(SEGMENT_RWX);
1639 }
1640 
1641 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1642 {
1643 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1644 	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1645 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1646 	return pmd;
1647 }
1648 
1649 static inline pmd_t pmd_mkold(pmd_t pmd)
1650 {
1651 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1652 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1653 }
1654 
1655 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1656 {
1657 	unsigned long mask;
1658 
1659 	mask  = _SEGMENT_ENTRY_ORIGIN_LARGE;
1660 	mask |= _SEGMENT_ENTRY_DIRTY;
1661 	mask |= _SEGMENT_ENTRY_YOUNG;
1662 	mask |=	_SEGMENT_ENTRY_LARGE;
1663 	mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1664 	pmd = __pmd(pmd_val(pmd) & mask);
1665 	pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1666 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1667 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1668 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1669 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1670 	return pmd;
1671 }
1672 
1673 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1674 {
1675 	return __pmd(physpage + massage_pgprot_pmd(pgprot));
1676 }
1677 
1678 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1679 
1680 static inline void __pmdp_cspg(pmd_t *pmdp)
1681 {
1682 	cspg((unsigned long *)pmdp, pmd_val(*pmdp),
1683 	     pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1684 }
1685 
1686 #define IDTE_GLOBAL	0
1687 #define IDTE_LOCAL	1
1688 
1689 #define IDTE_PTOA	0x0800
1690 #define IDTE_NODAT	0x1000
1691 #define IDTE_GUEST_ASCE	0x2000
1692 
1693 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1694 					unsigned long opt, unsigned long asce,
1695 					int local)
1696 {
1697 	unsigned long sto;
1698 
1699 	sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1700 	if (__builtin_constant_p(opt) && opt == 0) {
1701 		/* flush without guest asce */
1702 		asm volatile(
1703 			"	idte	%[r1],0,%[r2],%[m4]"
1704 			: "+m" (*pmdp)
1705 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1706 			  [m4] "i" (local)
1707 			: "cc" );
1708 	} else {
1709 		/* flush with guest asce */
1710 		asm volatile(
1711 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1712 			: "+m" (*pmdp)
1713 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1714 			  [r3] "a" (asce), [m4] "i" (local)
1715 			: "cc" );
1716 	}
1717 }
1718 
1719 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1720 					unsigned long opt, unsigned long asce,
1721 					int local)
1722 {
1723 	unsigned long r3o;
1724 
1725 	r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1726 	r3o |= _ASCE_TYPE_REGION3;
1727 	if (__builtin_constant_p(opt) && opt == 0) {
1728 		/* flush without guest asce */
1729 		asm volatile(
1730 			"	idte	%[r1],0,%[r2],%[m4]"
1731 			: "+m" (*pudp)
1732 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1733 			  [m4] "i" (local)
1734 			: "cc");
1735 	} else {
1736 		/* flush with guest asce */
1737 		asm volatile(
1738 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1739 			: "+m" (*pudp)
1740 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1741 			  [r3] "a" (asce), [m4] "i" (local)
1742 			: "cc" );
1743 	}
1744 }
1745 
1746 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1747 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1748 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1749 
1750 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1751 
1752 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1753 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1754 				pgtable_t pgtable);
1755 
1756 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1757 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1758 
1759 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1760 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1761 					unsigned long addr, pmd_t *pmdp,
1762 					pmd_t entry, int dirty)
1763 {
1764 	VM_BUG_ON(addr & ~HPAGE_MASK);
1765 
1766 	entry = pmd_mkyoung(entry);
1767 	if (dirty)
1768 		entry = pmd_mkdirty(entry);
1769 	if (pmd_val(*pmdp) == pmd_val(entry))
1770 		return 0;
1771 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1772 	return 1;
1773 }
1774 
1775 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1776 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1777 					    unsigned long addr, pmd_t *pmdp)
1778 {
1779 	pmd_t pmd = *pmdp;
1780 
1781 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1782 	return pmd_young(pmd);
1783 }
1784 
1785 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1786 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1787 					 unsigned long addr, pmd_t *pmdp)
1788 {
1789 	VM_BUG_ON(addr & ~HPAGE_MASK);
1790 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1791 }
1792 
1793 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1794 			      pmd_t *pmdp, pmd_t entry)
1795 {
1796 	set_pmd(pmdp, entry);
1797 }
1798 
1799 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1800 {
1801 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1802 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1803 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1804 }
1805 
1806 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1807 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1808 					    unsigned long addr, pmd_t *pmdp)
1809 {
1810 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1811 }
1812 
1813 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1814 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1815 						 unsigned long addr,
1816 						 pmd_t *pmdp, int full)
1817 {
1818 	if (full) {
1819 		pmd_t pmd = *pmdp;
1820 		set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1821 		return pmd;
1822 	}
1823 	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1824 }
1825 
1826 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1827 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1828 					  unsigned long addr, pmd_t *pmdp)
1829 {
1830 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1831 }
1832 
1833 #define __HAVE_ARCH_PMDP_INVALIDATE
1834 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1835 				   unsigned long addr, pmd_t *pmdp)
1836 {
1837 	pmd_t pmd;
1838 
1839 	VM_WARN_ON_ONCE(!pmd_present(*pmdp));
1840 	pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1841 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1842 }
1843 
1844 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1845 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1846 				      unsigned long addr, pmd_t *pmdp)
1847 {
1848 	pmd_t pmd = *pmdp;
1849 
1850 	if (pmd_write(pmd))
1851 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1852 }
1853 
1854 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1855 					unsigned long address,
1856 					pmd_t *pmdp)
1857 {
1858 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1859 }
1860 #define pmdp_collapse_flush pmdp_collapse_flush
1861 
1862 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1863 
1864 static inline int pmd_trans_huge(pmd_t pmd)
1865 {
1866 	return pmd_leaf(pmd);
1867 }
1868 
1869 #define has_transparent_hugepage has_transparent_hugepage
1870 static inline int has_transparent_hugepage(void)
1871 {
1872 	return cpu_has_edat1() ? 1 : 0;
1873 }
1874 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1875 
1876 /*
1877  * 64 bit swap entry format:
1878  * A page-table entry has some bits we have to treat in a special way.
1879  * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1880  * as invalid.
1881  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1882  * |			  offset			|E11XX|type |S0|
1883  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1884  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1885  *
1886  * Bits 0-51 store the offset.
1887  * Bit 52 (E) is used to remember PG_anon_exclusive.
1888  * Bits 57-61 store the type.
1889  * Bit 62 (S) is used for softdirty tracking.
1890  * Bits 55 and 56 (X) are unused.
1891  */
1892 
1893 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1894 #define __SWP_OFFSET_SHIFT	12
1895 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1896 #define __SWP_TYPE_SHIFT	2
1897 
1898 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1899 {
1900 	unsigned long pteval;
1901 
1902 	pteval = _PAGE_INVALID | _PAGE_PROTECT;
1903 	pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1904 	pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1905 	return __pte(pteval);
1906 }
1907 
1908 static inline unsigned long __swp_type(swp_entry_t entry)
1909 {
1910 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1911 }
1912 
1913 static inline unsigned long __swp_offset(swp_entry_t entry)
1914 {
1915 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1916 }
1917 
1918 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1919 {
1920 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1921 }
1922 
1923 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1924 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1925 
1926 /*
1927  * 64 bit swap entry format for REGION3 and SEGMENT table entries (RSTE)
1928  * Bits 59 and 63 are used to indicate the swap entry. Bit 58 marks the rste
1929  * as invalid.
1930  * A swap entry is indicated by bit pattern (rste & 0x011) == 0x010
1931  * |			  offset			|Xtype |11TT|S0|
1932  * |0000000000111111111122222222223333333333444444444455|555555|5566|66|
1933  * |0123456789012345678901234567890123456789012345678901|234567|8901|23|
1934  *
1935  * Bits 0-51 store the offset.
1936  * Bits 53-57 store the type.
1937  * Bit 62 (S) is used for softdirty tracking.
1938  * Bits 60-61 (TT) indicate the table type: 0x01 for REGION3 and 0x00 for SEGMENT.
1939  * Bit 52 (X) is unused.
1940  */
1941 
1942 #define __SWP_OFFSET_MASK_RSTE	((1UL << 52) - 1)
1943 #define __SWP_OFFSET_SHIFT_RSTE	12
1944 #define __SWP_TYPE_MASK_RSTE		((1UL << 5) - 1)
1945 #define __SWP_TYPE_SHIFT_RSTE	6
1946 
1947 /*
1948  * TT bits set to 0x00 == SEGMENT. For REGION3 entries, caller must add R3
1949  * bits 0x01. See also __set_huge_pte_at().
1950  */
1951 static inline unsigned long mk_swap_rste(unsigned long type, unsigned long offset)
1952 {
1953 	unsigned long rste;
1954 
1955 	rste = _RST_ENTRY_INVALID | _RST_ENTRY_COMM;
1956 	rste |= (offset & __SWP_OFFSET_MASK_RSTE) << __SWP_OFFSET_SHIFT_RSTE;
1957 	rste |= (type & __SWP_TYPE_MASK_RSTE) << __SWP_TYPE_SHIFT_RSTE;
1958 	return rste;
1959 }
1960 
1961 static inline unsigned long __swp_type_rste(swp_entry_t entry)
1962 {
1963 	return (entry.val >> __SWP_TYPE_SHIFT_RSTE) & __SWP_TYPE_MASK_RSTE;
1964 }
1965 
1966 static inline unsigned long __swp_offset_rste(swp_entry_t entry)
1967 {
1968 	return (entry.val >> __SWP_OFFSET_SHIFT_RSTE) & __SWP_OFFSET_MASK_RSTE;
1969 }
1970 
1971 #define __rste_to_swp_entry(rste)	((swp_entry_t) { rste })
1972 
1973 /*
1974  * s390 has different layout for PTE and region / segment table entries (RSTE).
1975  * This is also true for swap entries, and their swap type and offset encoding.
1976  * For hugetlbfs PTE_MARKER support, s390 has internal __swp_type_rste() and
1977  * __swp_offset_rste() helpers to correctly handle RSTE swap entries.
1978  *
1979  * But common swap code does not know about this difference, and only uses
1980  * __swp_type(), __swp_offset() and __swp_entry() helpers for conversion between
1981  * arch-dependent and arch-independent representation of swp_entry_t for all
1982  * pagetable levels. On s390, those helpers only work for PTE swap entries.
1983  *
1984  * Therefore, implement __pmd_to_swp_entry() to build a fake PTE swap entry
1985  * and return the arch-dependent representation of that. Correspondingly,
1986  * implement __swp_entry_to_pmd() to convert that into a proper PMD swap
1987  * entry again. With this, the arch-dependent swp_entry_t representation will
1988  * always look like a PTE swap entry in common code.
1989  *
1990  * This is somewhat similar to fake PTEs in hugetlbfs code for s390, but only
1991  * requires conversion of the swap type and offset, and not all the possible
1992  * PTE bits.
1993  */
1994 static inline swp_entry_t __pmd_to_swp_entry(pmd_t pmd)
1995 {
1996 	swp_entry_t arch_entry;
1997 	pte_t pte;
1998 
1999 	arch_entry = __rste_to_swp_entry(pmd_val(pmd));
2000 	pte = mk_swap_pte(__swp_type_rste(arch_entry), __swp_offset_rste(arch_entry));
2001 	return __pte_to_swp_entry(pte);
2002 }
2003 
2004 static inline pmd_t __swp_entry_to_pmd(swp_entry_t arch_entry)
2005 {
2006 	pmd_t pmd;
2007 
2008 	pmd = __pmd(mk_swap_rste(__swp_type(arch_entry), __swp_offset(arch_entry)));
2009 	return pmd;
2010 }
2011 
2012 extern int vmem_add_mapping(unsigned long start, unsigned long size);
2013 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
2014 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
2015 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
2016 extern void vmem_unmap_4k_page(unsigned long addr);
2017 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
2018 extern int s390_enable_sie(void);
2019 extern int s390_enable_skey(void);
2020 extern void s390_reset_cmma(struct mm_struct *mm);
2021 
2022 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
2023 #define HAVE_ARCH_UNMAPPED_AREA
2024 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2025 
2026 #define pmd_pgtable(pmd) \
2027 	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
2028 
2029 static inline unsigned long gmap_pgste_get_pgt_addr(unsigned long *pgt)
2030 {
2031 	unsigned long *pgstes, res;
2032 
2033 	pgstes = pgt + _PAGE_ENTRIES;
2034 
2035 	res = (pgstes[0] & PGSTE_ST2_MASK) << 16;
2036 	res |= pgstes[1] & PGSTE_ST2_MASK;
2037 	res |= (pgstes[2] & PGSTE_ST2_MASK) >> 16;
2038 	res |= (pgstes[3] & PGSTE_ST2_MASK) >> 32;
2039 
2040 	return res;
2041 }
2042 
2043 static inline pgste_t pgste_get_lock(pte_t *ptep)
2044 {
2045 	unsigned long value = 0;
2046 #ifdef CONFIG_PGSTE
2047 	unsigned long *ptr = (unsigned long *)(ptep + PTRS_PER_PTE);
2048 
2049 	do {
2050 		value = __atomic64_or_barrier(PGSTE_PCL_BIT, ptr);
2051 	} while (value & PGSTE_PCL_BIT);
2052 	value |= PGSTE_PCL_BIT;
2053 #endif
2054 	return __pgste(value);
2055 }
2056 
2057 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
2058 {
2059 #ifdef CONFIG_PGSTE
2060 	barrier();
2061 	WRITE_ONCE(*(unsigned long *)(ptep + PTRS_PER_PTE), pgste_val(pgste) & ~PGSTE_PCL_BIT);
2062 #endif
2063 }
2064 
2065 #endif /* _S390_PAGE_H */
2066