1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * S390 version 4 * Copyright IBM Corp. 1999, 2000 5 * Author(s): Hartmut Penner (hp@de.ibm.com) 6 * Ulrich Weigand (weigand@de.ibm.com) 7 * Martin Schwidefsky (schwidefsky@de.ibm.com) 8 * 9 * Derived from "include/asm-i386/pgtable.h" 10 */ 11 12 #ifndef _ASM_S390_PGTABLE_H 13 #define _ASM_S390_PGTABLE_H 14 15 #include <linux/sched.h> 16 #include <linux/mm_types.h> 17 #include <linux/page-flags.h> 18 #include <linux/radix-tree.h> 19 #include <linux/atomic.h> 20 #include <asm/sections.h> 21 #include <asm/ctlreg.h> 22 #include <asm/bug.h> 23 #include <asm/page.h> 24 #include <asm/uv.h> 25 26 extern pgd_t swapper_pg_dir[]; 27 extern pgd_t invalid_pg_dir[]; 28 extern void paging_init(void); 29 extern struct ctlreg s390_invalid_asce; 30 31 enum { 32 PG_DIRECT_MAP_4K = 0, 33 PG_DIRECT_MAP_1M, 34 PG_DIRECT_MAP_2G, 35 PG_DIRECT_MAP_MAX 36 }; 37 38 extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]); 39 40 static inline void update_page_count(int level, long count) 41 { 42 if (IS_ENABLED(CONFIG_PROC_FS)) 43 atomic_long_add(count, &direct_pages_count[level]); 44 } 45 46 /* 47 * The S390 doesn't have any external MMU info: the kernel page 48 * tables contain all the necessary information. 49 */ 50 #define update_mmu_cache(vma, address, ptep) do { } while (0) 51 #define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0) 52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 53 54 /* 55 * ZERO_PAGE is a global shared page that is always zero; used 56 * for zero-mapped memory areas etc.. 57 */ 58 59 extern unsigned long empty_zero_page; 60 extern unsigned long zero_page_mask; 61 62 #define ZERO_PAGE(vaddr) \ 63 (virt_to_page((void *)(empty_zero_page + \ 64 (((unsigned long)(vaddr)) &zero_page_mask)))) 65 #define __HAVE_COLOR_ZERO_PAGE 66 67 /* TODO: s390 cannot support io_remap_pfn_range... */ 68 69 #define pte_ERROR(e) \ 70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) 71 #define pmd_ERROR(e) \ 72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) 73 #define pud_ERROR(e) \ 74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) 75 #define p4d_ERROR(e) \ 76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e)) 77 #define pgd_ERROR(e) \ 78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) 79 80 /* 81 * The vmalloc and module area will always be on the topmost area of the 82 * kernel mapping. 512GB are reserved for vmalloc by default. 83 * At the top of the vmalloc area a 2GB area is reserved where modules 84 * will reside. That makes sure that inter module branches always 85 * happen without trampolines and in addition the placement within a 86 * 2GB frame is branch prediction unit friendly. 87 */ 88 extern unsigned long __bootdata_preserved(VMALLOC_START); 89 extern unsigned long __bootdata_preserved(VMALLOC_END); 90 #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN) 91 extern struct page *__bootdata_preserved(vmemmap); 92 extern unsigned long __bootdata_preserved(vmemmap_size); 93 94 extern unsigned long __bootdata_preserved(MODULES_VADDR); 95 extern unsigned long __bootdata_preserved(MODULES_END); 96 #define MODULES_VADDR MODULES_VADDR 97 #define MODULES_END MODULES_END 98 #define MODULES_LEN (1UL << 31) 99 100 static inline int is_module_addr(void *addr) 101 { 102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 103 if (addr < (void *)MODULES_VADDR) 104 return 0; 105 if (addr > (void *)MODULES_END) 106 return 0; 107 return 1; 108 } 109 110 /* 111 * A 64 bit pagetable entry of S390 has following format: 112 * | PFRA |0IPC| OS | 113 * 0000000000111111111122222222223333333333444444444455555555556666 114 * 0123456789012345678901234567890123456789012345678901234567890123 115 * 116 * I Page-Invalid Bit: Page is not available for address-translation 117 * P Page-Protection Bit: Store access not possible for page 118 * C Change-bit override: HW is not required to set change bit 119 * 120 * A 64 bit segmenttable entry of S390 has following format: 121 * | P-table origin | TT 122 * 0000000000111111111122222222223333333333444444444455555555556666 123 * 0123456789012345678901234567890123456789012345678901234567890123 124 * 125 * I Segment-Invalid Bit: Segment is not available for address-translation 126 * C Common-Segment Bit: Segment is not private (PoP 3-30) 127 * P Page-Protection Bit: Store access not possible for page 128 * TT Type 00 129 * 130 * A 64 bit region table entry of S390 has following format: 131 * | S-table origin | TF TTTL 132 * 0000000000111111111122222222223333333333444444444455555555556666 133 * 0123456789012345678901234567890123456789012345678901234567890123 134 * 135 * I Segment-Invalid Bit: Segment is not available for address-translation 136 * TT Type 01 137 * TF 138 * TL Table length 139 * 140 * The 64 bit regiontable origin of S390 has following format: 141 * | region table origon | DTTL 142 * 0000000000111111111122222222223333333333444444444455555555556666 143 * 0123456789012345678901234567890123456789012345678901234567890123 144 * 145 * X Space-Switch event: 146 * G Segment-Invalid Bit: 147 * P Private-Space Bit: 148 * S Storage-Alteration: 149 * R Real space 150 * TL Table-Length: 151 * 152 * A storage key has the following format: 153 * | ACC |F|R|C|0| 154 * 0 3 4 5 6 7 155 * ACC: access key 156 * F : fetch protection bit 157 * R : referenced bit 158 * C : changed bit 159 */ 160 161 /* Hardware bits in the page table entry */ 162 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */ 163 #define _PAGE_PROTECT 0x200 /* HW read-only bit */ 164 #define _PAGE_INVALID 0x400 /* HW invalid bit */ 165 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ 166 167 /* Software bits in the page table entry */ 168 #define _PAGE_PRESENT 0x001 /* SW pte present bit */ 169 #define _PAGE_YOUNG 0x004 /* SW pte young bit */ 170 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ 171 #define _PAGE_READ 0x010 /* SW pte read bit */ 172 #define _PAGE_WRITE 0x020 /* SW pte write bit */ 173 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */ 174 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ 175 176 #ifdef CONFIG_MEM_SOFT_DIRTY 177 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ 178 #else 179 #define _PAGE_SOFT_DIRTY 0x000 180 #endif 181 182 #define _PAGE_SW_BITS 0xffUL /* All SW bits */ 183 184 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */ 185 186 /* Set of bits not changed in pte_modify */ 187 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ 188 _PAGE_YOUNG | _PAGE_SOFT_DIRTY) 189 190 /* 191 * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT 192 * HW bit and all SW bits. 193 */ 194 #define _PAGE_RDP_MASK ~(_PAGE_PROTECT | _PAGE_SW_BITS) 195 196 /* 197 * handle_pte_fault uses pte_present and pte_none to find out the pte type 198 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to 199 * distinguish present from not-present ptes. It is changed only with the page 200 * table lock held. 201 * 202 * The following table gives the different possible bit combinations for 203 * the pte hardware and software bits in the last 12 bits of a pte 204 * (. unassigned bit, x don't care, t swap type): 205 * 206 * 842100000000 207 * 000084210000 208 * 000000008421 209 * .IR.uswrdy.p 210 * empty .10.00000000 211 * swap .11..ttttt.0 212 * prot-none, clean, old .11.xx0000.1 213 * prot-none, clean, young .11.xx0001.1 214 * prot-none, dirty, old .11.xx0010.1 215 * prot-none, dirty, young .11.xx0011.1 216 * read-only, clean, old .11.xx0100.1 217 * read-only, clean, young .01.xx0101.1 218 * read-only, dirty, old .11.xx0110.1 219 * read-only, dirty, young .01.xx0111.1 220 * read-write, clean, old .11.xx1100.1 221 * read-write, clean, young .01.xx1101.1 222 * read-write, dirty, old .10.xx1110.1 223 * read-write, dirty, young .00.xx1111.1 224 * HW-bits: R read-only, I invalid 225 * SW-bits: p present, y young, d dirty, r read, w write, s special, 226 * u unused, l large 227 * 228 * pte_none is true for the bit pattern .10.00000000, pte == 0x400 229 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 230 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 231 */ 232 233 /* Bits in the segment/region table address-space-control-element */ 234 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */ 235 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 236 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 237 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 238 #define _ASCE_REAL_SPACE 0x20 /* real space control */ 239 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 240 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 241 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 242 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 243 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 244 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 245 246 /* Bits in the region table entry */ 247 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 248 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ 249 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */ 250 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */ 251 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ 252 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */ 253 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 254 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 255 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 256 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 257 258 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 259 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) 260 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 261 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) 262 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 263 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) 264 265 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */ 266 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */ 267 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */ 268 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */ 269 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */ 270 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */ 271 272 #ifdef CONFIG_MEM_SOFT_DIRTY 273 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */ 274 #else 275 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */ 276 #endif 277 278 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL 279 280 /* Bits in the segment table entry */ 281 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL 282 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL 283 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL 284 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 285 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */ 286 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */ 287 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */ 288 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 289 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */ 290 291 #define _SEGMENT_ENTRY (0) 292 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 293 294 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ 295 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ 296 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ 297 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */ 298 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */ 299 300 #ifdef CONFIG_MEM_SOFT_DIRTY 301 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ 302 #else 303 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ 304 #endif 305 306 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */ 307 #define _PAGE_ENTRIES 256 /* number of page table entries */ 308 309 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8) 310 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8) 311 312 #define _REGION1_SHIFT 53 313 #define _REGION2_SHIFT 42 314 #define _REGION3_SHIFT 31 315 #define _SEGMENT_SHIFT 20 316 317 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT) 318 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT) 319 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT) 320 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT) 321 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT) 322 323 #define _REGION1_SIZE (1UL << _REGION1_SHIFT) 324 #define _REGION2_SIZE (1UL << _REGION2_SHIFT) 325 #define _REGION3_SIZE (1UL << _REGION3_SHIFT) 326 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT) 327 328 #define _REGION1_MASK (~(_REGION1_SIZE - 1)) 329 #define _REGION2_MASK (~(_REGION2_SIZE - 1)) 330 #define _REGION3_MASK (~(_REGION3_SIZE - 1)) 331 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1)) 332 333 #define PMD_SHIFT _SEGMENT_SHIFT 334 #define PUD_SHIFT _REGION3_SHIFT 335 #define P4D_SHIFT _REGION2_SHIFT 336 #define PGDIR_SHIFT _REGION1_SHIFT 337 338 #define PMD_SIZE _SEGMENT_SIZE 339 #define PUD_SIZE _REGION3_SIZE 340 #define P4D_SIZE _REGION2_SIZE 341 #define PGDIR_SIZE _REGION1_SIZE 342 343 #define PMD_MASK _SEGMENT_MASK 344 #define PUD_MASK _REGION3_MASK 345 #define P4D_MASK _REGION2_MASK 346 #define PGDIR_MASK _REGION1_MASK 347 348 #define PTRS_PER_PTE _PAGE_ENTRIES 349 #define PTRS_PER_PMD _CRST_ENTRIES 350 #define PTRS_PER_PUD _CRST_ENTRIES 351 #define PTRS_PER_P4D _CRST_ENTRIES 352 #define PTRS_PER_PGD _CRST_ENTRIES 353 354 /* 355 * Segment table and region3 table entry encoding 356 * (R = read-only, I = invalid, y = young bit): 357 * dy..R...I...wr 358 * prot-none, clean, old 00..1...1...00 359 * prot-none, clean, young 01..1...1...00 360 * prot-none, dirty, old 10..1...1...00 361 * prot-none, dirty, young 11..1...1...00 362 * read-only, clean, old 00..1...1...01 363 * read-only, clean, young 01..1...0...01 364 * read-only, dirty, old 10..1...1...01 365 * read-only, dirty, young 11..1...0...01 366 * read-write, clean, old 00..1...1...11 367 * read-write, clean, young 01..1...0...11 368 * read-write, dirty, old 10..0...1...11 369 * read-write, dirty, young 11..0...0...11 370 * The segment table origin is used to distinguish empty (origin==0) from 371 * read-write, old segment table entries (origin!=0) 372 * HW-bits: R read-only, I invalid 373 * SW-bits: y young, d dirty, r read, w write 374 */ 375 376 /* Page status table bits for virtualization */ 377 #define PGSTE_ACC_BITS 0xf000000000000000UL 378 #define PGSTE_FP_BIT 0x0800000000000000UL 379 #define PGSTE_PCL_BIT 0x0080000000000000UL 380 #define PGSTE_HR_BIT 0x0040000000000000UL 381 #define PGSTE_HC_BIT 0x0020000000000000UL 382 #define PGSTE_GR_BIT 0x0004000000000000UL 383 #define PGSTE_GC_BIT 0x0002000000000000UL 384 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ 385 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ 386 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */ 387 388 /* Guest Page State used for virtualization */ 389 #define _PGSTE_GPS_ZERO 0x0000000080000000UL 390 #define _PGSTE_GPS_NODAT 0x0000000040000000UL 391 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL 392 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL 393 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL 394 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL 395 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK 396 397 /* 398 * A user page table pointer has the space-switch-event bit, the 399 * private-space-control bit and the storage-alteration-event-control 400 * bit set. A kernel page table pointer doesn't need them. 401 */ 402 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 403 _ASCE_ALT_EVENT) 404 405 /* 406 * Page protection definitions. 407 */ 408 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT) 409 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 410 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 411 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 412 _PAGE_INVALID | _PAGE_PROTECT) 413 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 414 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 415 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 416 _PAGE_INVALID | _PAGE_PROTECT) 417 418 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 419 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 420 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 421 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 422 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ 423 _PAGE_PROTECT | _PAGE_NOEXEC) 424 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 425 _PAGE_YOUNG | _PAGE_DIRTY) 426 427 /* 428 * On s390 the page table entry has an invalid bit and a read-only bit. 429 * Read permission implies execute permission and write permission 430 * implies read permission. 431 */ 432 /*xwr*/ 433 434 /* 435 * Segment entry (large page) protection definitions. 436 */ 437 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ 438 _SEGMENT_ENTRY_PROTECT) 439 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \ 440 _SEGMENT_ENTRY_READ | \ 441 _SEGMENT_ENTRY_NOEXEC) 442 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \ 443 _SEGMENT_ENTRY_READ) 444 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \ 445 _SEGMENT_ENTRY_WRITE | \ 446 _SEGMENT_ENTRY_NOEXEC) 447 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \ 448 _SEGMENT_ENTRY_WRITE) 449 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \ 450 _SEGMENT_ENTRY_LARGE | \ 451 _SEGMENT_ENTRY_READ | \ 452 _SEGMENT_ENTRY_WRITE | \ 453 _SEGMENT_ENTRY_YOUNG | \ 454 _SEGMENT_ENTRY_DIRTY | \ 455 _SEGMENT_ENTRY_NOEXEC) 456 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \ 457 _SEGMENT_ENTRY_LARGE | \ 458 _SEGMENT_ENTRY_READ | \ 459 _SEGMENT_ENTRY_YOUNG | \ 460 _SEGMENT_ENTRY_PROTECT | \ 461 _SEGMENT_ENTRY_NOEXEC) 462 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \ 463 _SEGMENT_ENTRY_LARGE | \ 464 _SEGMENT_ENTRY_READ | \ 465 _SEGMENT_ENTRY_WRITE | \ 466 _SEGMENT_ENTRY_YOUNG | \ 467 _SEGMENT_ENTRY_DIRTY) 468 469 /* 470 * Region3 entry (large page) protection definitions. 471 */ 472 473 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \ 474 _REGION3_ENTRY_LARGE | \ 475 _REGION3_ENTRY_READ | \ 476 _REGION3_ENTRY_WRITE | \ 477 _REGION3_ENTRY_YOUNG | \ 478 _REGION3_ENTRY_DIRTY | \ 479 _REGION_ENTRY_NOEXEC) 480 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \ 481 _REGION3_ENTRY_LARGE | \ 482 _REGION3_ENTRY_READ | \ 483 _REGION3_ENTRY_YOUNG | \ 484 _REGION_ENTRY_PROTECT | \ 485 _REGION_ENTRY_NOEXEC) 486 #define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \ 487 _REGION3_ENTRY_LARGE | \ 488 _REGION3_ENTRY_READ | \ 489 _REGION3_ENTRY_WRITE | \ 490 _REGION3_ENTRY_YOUNG | \ 491 _REGION3_ENTRY_DIRTY) 492 493 static inline bool mm_p4d_folded(struct mm_struct *mm) 494 { 495 return mm->context.asce_limit <= _REGION1_SIZE; 496 } 497 #define mm_p4d_folded(mm) mm_p4d_folded(mm) 498 499 static inline bool mm_pud_folded(struct mm_struct *mm) 500 { 501 return mm->context.asce_limit <= _REGION2_SIZE; 502 } 503 #define mm_pud_folded(mm) mm_pud_folded(mm) 504 505 static inline bool mm_pmd_folded(struct mm_struct *mm) 506 { 507 return mm->context.asce_limit <= _REGION3_SIZE; 508 } 509 #define mm_pmd_folded(mm) mm_pmd_folded(mm) 510 511 static inline int mm_has_pgste(struct mm_struct *mm) 512 { 513 #ifdef CONFIG_PGSTE 514 if (unlikely(mm->context.has_pgste)) 515 return 1; 516 #endif 517 return 0; 518 } 519 520 static inline int mm_is_protected(struct mm_struct *mm) 521 { 522 #ifdef CONFIG_PGSTE 523 if (unlikely(atomic_read(&mm->context.protected_count))) 524 return 1; 525 #endif 526 return 0; 527 } 528 529 static inline int mm_alloc_pgste(struct mm_struct *mm) 530 { 531 #ifdef CONFIG_PGSTE 532 if (unlikely(mm->context.alloc_pgste)) 533 return 1; 534 #endif 535 return 0; 536 } 537 538 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 539 { 540 return __pte(pte_val(pte) & ~pgprot_val(prot)); 541 } 542 543 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 544 { 545 return __pte(pte_val(pte) | pgprot_val(prot)); 546 } 547 548 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) 549 { 550 return __pmd(pmd_val(pmd) & ~pgprot_val(prot)); 551 } 552 553 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) 554 { 555 return __pmd(pmd_val(pmd) | pgprot_val(prot)); 556 } 557 558 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot) 559 { 560 return __pud(pud_val(pud) & ~pgprot_val(prot)); 561 } 562 563 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot) 564 { 565 return __pud(pud_val(pud) | pgprot_val(prot)); 566 } 567 568 /* 569 * In the case that a guest uses storage keys 570 * faults should no longer be backed by zero pages 571 */ 572 #define mm_forbids_zeropage mm_has_pgste 573 static inline int mm_uses_skeys(struct mm_struct *mm) 574 { 575 #ifdef CONFIG_PGSTE 576 if (mm->context.uses_skeys) 577 return 1; 578 #endif 579 return 0; 580 } 581 582 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new) 583 { 584 union register_pair r1 = { .even = old, .odd = new, }; 585 unsigned long address = (unsigned long)ptr | 1; 586 587 asm volatile( 588 " csp %[r1],%[address]" 589 : [r1] "+&d" (r1.pair), "+m" (*ptr) 590 : [address] "d" (address) 591 : "cc"); 592 } 593 594 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new) 595 { 596 union register_pair r1 = { .even = old, .odd = new, }; 597 unsigned long address = (unsigned long)ptr | 1; 598 599 asm volatile( 600 " cspg %[r1],%[address]" 601 : [r1] "+&d" (r1.pair), "+m" (*ptr) 602 : [address] "d" (address) 603 : "cc"); 604 } 605 606 #define CRDTE_DTT_PAGE 0x00UL 607 #define CRDTE_DTT_SEGMENT 0x10UL 608 #define CRDTE_DTT_REGION3 0x14UL 609 #define CRDTE_DTT_REGION2 0x18UL 610 #define CRDTE_DTT_REGION1 0x1cUL 611 612 static inline void crdte(unsigned long old, unsigned long new, 613 unsigned long *table, unsigned long dtt, 614 unsigned long address, unsigned long asce) 615 { 616 union register_pair r1 = { .even = old, .odd = new, }; 617 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, }; 618 619 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0" 620 : [r1] "+&d" (r1.pair) 621 : [r2] "d" (r2.pair), [asce] "a" (asce) 622 : "memory", "cc"); 623 } 624 625 /* 626 * pgd/p4d/pud/pmd/pte query functions 627 */ 628 static inline int pgd_folded(pgd_t pgd) 629 { 630 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1; 631 } 632 633 static inline int pgd_present(pgd_t pgd) 634 { 635 if (pgd_folded(pgd)) 636 return 1; 637 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 638 } 639 640 static inline int pgd_none(pgd_t pgd) 641 { 642 if (pgd_folded(pgd)) 643 return 0; 644 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; 645 } 646 647 static inline int pgd_bad(pgd_t pgd) 648 { 649 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1) 650 return 0; 651 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0; 652 } 653 654 static inline unsigned long pgd_pfn(pgd_t pgd) 655 { 656 unsigned long origin_mask; 657 658 origin_mask = _REGION_ENTRY_ORIGIN; 659 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT; 660 } 661 662 static inline int p4d_folded(p4d_t p4d) 663 { 664 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2; 665 } 666 667 static inline int p4d_present(p4d_t p4d) 668 { 669 if (p4d_folded(p4d)) 670 return 1; 671 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL; 672 } 673 674 static inline int p4d_none(p4d_t p4d) 675 { 676 if (p4d_folded(p4d)) 677 return 0; 678 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY; 679 } 680 681 static inline unsigned long p4d_pfn(p4d_t p4d) 682 { 683 unsigned long origin_mask; 684 685 origin_mask = _REGION_ENTRY_ORIGIN; 686 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT; 687 } 688 689 static inline int pud_folded(pud_t pud) 690 { 691 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3; 692 } 693 694 static inline int pud_present(pud_t pud) 695 { 696 if (pud_folded(pud)) 697 return 1; 698 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 699 } 700 701 static inline int pud_none(pud_t pud) 702 { 703 if (pud_folded(pud)) 704 return 0; 705 return pud_val(pud) == _REGION3_ENTRY_EMPTY; 706 } 707 708 #define pud_leaf pud_large 709 static inline int pud_large(pud_t pud) 710 { 711 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 712 return 0; 713 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 714 } 715 716 #define pmd_leaf pmd_large 717 static inline int pmd_large(pmd_t pmd) 718 { 719 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; 720 } 721 722 static inline int pmd_bad(pmd_t pmd) 723 { 724 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd)) 725 return 1; 726 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; 727 } 728 729 static inline int pud_bad(pud_t pud) 730 { 731 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK; 732 733 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud)) 734 return 1; 735 if (type < _REGION_ENTRY_TYPE_R3) 736 return 0; 737 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0; 738 } 739 740 static inline int p4d_bad(p4d_t p4d) 741 { 742 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK; 743 744 if (type > _REGION_ENTRY_TYPE_R2) 745 return 1; 746 if (type < _REGION_ENTRY_TYPE_R2) 747 return 0; 748 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0; 749 } 750 751 static inline int pmd_present(pmd_t pmd) 752 { 753 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY; 754 } 755 756 static inline int pmd_none(pmd_t pmd) 757 { 758 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY; 759 } 760 761 #define pmd_write pmd_write 762 static inline int pmd_write(pmd_t pmd) 763 { 764 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; 765 } 766 767 #define pud_write pud_write 768 static inline int pud_write(pud_t pud) 769 { 770 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0; 771 } 772 773 #define pmd_dirty pmd_dirty 774 static inline int pmd_dirty(pmd_t pmd) 775 { 776 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; 777 } 778 779 #define pmd_young pmd_young 780 static inline int pmd_young(pmd_t pmd) 781 { 782 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; 783 } 784 785 static inline int pte_present(pte_t pte) 786 { 787 /* Bit pattern: (pte & 0x001) == 0x001 */ 788 return (pte_val(pte) & _PAGE_PRESENT) != 0; 789 } 790 791 static inline int pte_none(pte_t pte) 792 { 793 /* Bit pattern: pte == 0x400 */ 794 return pte_val(pte) == _PAGE_INVALID; 795 } 796 797 static inline int pte_swap(pte_t pte) 798 { 799 /* Bit pattern: (pte & 0x201) == 0x200 */ 800 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) 801 == _PAGE_PROTECT; 802 } 803 804 static inline int pte_special(pte_t pte) 805 { 806 return (pte_val(pte) & _PAGE_SPECIAL); 807 } 808 809 #define __HAVE_ARCH_PTE_SAME 810 static inline int pte_same(pte_t a, pte_t b) 811 { 812 return pte_val(a) == pte_val(b); 813 } 814 815 #ifdef CONFIG_NUMA_BALANCING 816 static inline int pte_protnone(pte_t pte) 817 { 818 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); 819 } 820 821 static inline int pmd_protnone(pmd_t pmd) 822 { 823 /* pmd_large(pmd) implies pmd_present(pmd) */ 824 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); 825 } 826 #endif 827 828 static inline int pte_swp_exclusive(pte_t pte) 829 { 830 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 831 } 832 833 static inline pte_t pte_swp_mkexclusive(pte_t pte) 834 { 835 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE)); 836 } 837 838 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 839 { 840 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE)); 841 } 842 843 static inline int pte_soft_dirty(pte_t pte) 844 { 845 return pte_val(pte) & _PAGE_SOFT_DIRTY; 846 } 847 #define pte_swp_soft_dirty pte_soft_dirty 848 849 static inline pte_t pte_mksoft_dirty(pte_t pte) 850 { 851 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY)); 852 } 853 #define pte_swp_mksoft_dirty pte_mksoft_dirty 854 855 static inline pte_t pte_clear_soft_dirty(pte_t pte) 856 { 857 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY)); 858 } 859 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty 860 861 static inline int pmd_soft_dirty(pmd_t pmd) 862 { 863 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; 864 } 865 866 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 867 { 868 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY)); 869 } 870 871 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 872 { 873 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY)); 874 } 875 876 /* 877 * query functions pte_write/pte_dirty/pte_young only work if 878 * pte_present() is true. Undefined behaviour if not.. 879 */ 880 static inline int pte_write(pte_t pte) 881 { 882 return (pte_val(pte) & _PAGE_WRITE) != 0; 883 } 884 885 static inline int pte_dirty(pte_t pte) 886 { 887 return (pte_val(pte) & _PAGE_DIRTY) != 0; 888 } 889 890 static inline int pte_young(pte_t pte) 891 { 892 return (pte_val(pte) & _PAGE_YOUNG) != 0; 893 } 894 895 #define __HAVE_ARCH_PTE_UNUSED 896 static inline int pte_unused(pte_t pte) 897 { 898 return pte_val(pte) & _PAGE_UNUSED; 899 } 900 901 /* 902 * Extract the pgprot value from the given pte while at the same time making it 903 * usable for kernel address space mappings where fault driven dirty and 904 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID 905 * must not be set. 906 */ 907 static inline pgprot_t pte_pgprot(pte_t pte) 908 { 909 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK; 910 911 if (pte_write(pte)) 912 pte_flags |= pgprot_val(PAGE_KERNEL); 913 else 914 pte_flags |= pgprot_val(PAGE_KERNEL_RO); 915 pte_flags |= pte_val(pte) & mio_wb_bit_mask; 916 917 return __pgprot(pte_flags); 918 } 919 920 /* 921 * pgd/pmd/pte modification functions 922 */ 923 924 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) 925 { 926 WRITE_ONCE(*pgdp, pgd); 927 } 928 929 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) 930 { 931 WRITE_ONCE(*p4dp, p4d); 932 } 933 934 static inline void set_pud(pud_t *pudp, pud_t pud) 935 { 936 WRITE_ONCE(*pudp, pud); 937 } 938 939 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 940 { 941 WRITE_ONCE(*pmdp, pmd); 942 } 943 944 static inline void set_pte(pte_t *ptep, pte_t pte) 945 { 946 WRITE_ONCE(*ptep, pte); 947 } 948 949 static inline void pgd_clear(pgd_t *pgd) 950 { 951 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1) 952 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY)); 953 } 954 955 static inline void p4d_clear(p4d_t *p4d) 956 { 957 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 958 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY)); 959 } 960 961 static inline void pud_clear(pud_t *pud) 962 { 963 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 964 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY)); 965 } 966 967 static inline void pmd_clear(pmd_t *pmdp) 968 { 969 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 970 } 971 972 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 973 { 974 set_pte(ptep, __pte(_PAGE_INVALID)); 975 } 976 977 /* 978 * The following pte modification functions only work if 979 * pte_present() is true. Undefined behaviour if not.. 980 */ 981 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 982 { 983 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK)); 984 pte = set_pte_bit(pte, newprot); 985 /* 986 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX 987 * has the invalid bit set, clear it again for readable, young pages 988 */ 989 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) 990 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID)); 991 /* 992 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page 993 * protection bit set, clear it again for writable, dirty pages 994 */ 995 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) 996 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 997 return pte; 998 } 999 1000 static inline pte_t pte_wrprotect(pte_t pte) 1001 { 1002 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE)); 1003 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1004 } 1005 1006 static inline pte_t pte_mkwrite_novma(pte_t pte) 1007 { 1008 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE)); 1009 if (pte_val(pte) & _PAGE_DIRTY) 1010 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1011 return pte; 1012 } 1013 1014 static inline pte_t pte_mkclean(pte_t pte) 1015 { 1016 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY)); 1017 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1018 } 1019 1020 static inline pte_t pte_mkdirty(pte_t pte) 1021 { 1022 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY)); 1023 if (pte_val(pte) & _PAGE_WRITE) 1024 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1025 return pte; 1026 } 1027 1028 static inline pte_t pte_mkold(pte_t pte) 1029 { 1030 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG)); 1031 return set_pte_bit(pte, __pgprot(_PAGE_INVALID)); 1032 } 1033 1034 static inline pte_t pte_mkyoung(pte_t pte) 1035 { 1036 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG)); 1037 if (pte_val(pte) & _PAGE_READ) 1038 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID)); 1039 return pte; 1040 } 1041 1042 static inline pte_t pte_mkspecial(pte_t pte) 1043 { 1044 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL)); 1045 } 1046 1047 #ifdef CONFIG_HUGETLB_PAGE 1048 static inline pte_t pte_mkhuge(pte_t pte) 1049 { 1050 return set_pte_bit(pte, __pgprot(_PAGE_LARGE)); 1051 } 1052 #endif 1053 1054 #define IPTE_GLOBAL 0 1055 #define IPTE_LOCAL 1 1056 1057 #define IPTE_NODAT 0x400 1058 #define IPTE_GUEST_ASCE 0x800 1059 1060 static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep, 1061 unsigned long opt, unsigned long asce, 1062 int local) 1063 { 1064 unsigned long pto; 1065 1066 pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1); 1067 asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]" 1068 : "+m" (*ptep) 1069 : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt), 1070 [asce] "a" (asce), [m4] "i" (local)); 1071 } 1072 1073 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep, 1074 unsigned long opt, unsigned long asce, 1075 int local) 1076 { 1077 unsigned long pto = __pa(ptep); 1078 1079 if (__builtin_constant_p(opt) && opt == 0) { 1080 /* Invalidation + TLB flush for the pte */ 1081 asm volatile( 1082 " ipte %[r1],%[r2],0,%[m4]" 1083 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address), 1084 [m4] "i" (local)); 1085 return; 1086 } 1087 1088 /* Invalidate ptes with options + TLB flush of the ptes */ 1089 opt = opt | (asce & _ASCE_ORIGIN); 1090 asm volatile( 1091 " ipte %[r1],%[r2],%[r3],%[m4]" 1092 : [r2] "+a" (address), [r3] "+a" (opt) 1093 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1094 } 1095 1096 static __always_inline void __ptep_ipte_range(unsigned long address, int nr, 1097 pte_t *ptep, int local) 1098 { 1099 unsigned long pto = __pa(ptep); 1100 1101 /* Invalidate a range of ptes + TLB flush of the ptes */ 1102 do { 1103 asm volatile( 1104 " ipte %[r1],%[r2],%[r3],%[m4]" 1105 : [r2] "+a" (address), [r3] "+a" (nr) 1106 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1107 } while (nr != 255); 1108 } 1109 1110 /* 1111 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 1112 * both clear the TLB for the unmapped pte. The reason is that 1113 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 1114 * to modify an active pte. The sequence is 1115 * 1) ptep_get_and_clear 1116 * 2) set_pte_at 1117 * 3) flush_tlb_range 1118 * On s390 the tlb needs to get flushed with the modification of the pte 1119 * if the pte is active. The only way how this can be implemented is to 1120 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1121 * is a nop. 1122 */ 1123 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t); 1124 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t); 1125 1126 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1127 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1128 unsigned long addr, pte_t *ptep) 1129 { 1130 pte_t pte = *ptep; 1131 1132 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte)); 1133 return pte_young(pte); 1134 } 1135 1136 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1137 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1138 unsigned long address, pte_t *ptep) 1139 { 1140 return ptep_test_and_clear_young(vma, address, ptep); 1141 } 1142 1143 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1144 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1145 unsigned long addr, pte_t *ptep) 1146 { 1147 pte_t res; 1148 1149 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1150 /* At this point the reference through the mapping is still present */ 1151 if (mm_is_protected(mm) && pte_present(res)) 1152 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK); 1153 return res; 1154 } 1155 1156 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1157 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); 1158 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, 1159 pte_t *, pte_t, pte_t); 1160 1161 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1162 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1163 unsigned long addr, pte_t *ptep) 1164 { 1165 pte_t res; 1166 1167 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID)); 1168 /* At this point the reference through the mapping is still present */ 1169 if (mm_is_protected(vma->vm_mm) && pte_present(res)) 1170 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK); 1171 return res; 1172 } 1173 1174 /* 1175 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1176 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1177 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1178 * cannot be accessed while the batched unmap is running. In this case 1179 * full==1 and a simple pte_clear is enough. See tlb.h. 1180 */ 1181 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1182 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1183 unsigned long addr, 1184 pte_t *ptep, int full) 1185 { 1186 pte_t res; 1187 1188 if (full) { 1189 res = *ptep; 1190 set_pte(ptep, __pte(_PAGE_INVALID)); 1191 } else { 1192 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1193 } 1194 /* Nothing to do */ 1195 if (!mm_is_protected(mm) || !pte_present(res)) 1196 return res; 1197 /* 1198 * At this point the reference through the mapping is still present. 1199 * The notifier should have destroyed all protected vCPUs at this 1200 * point, so the destroy should be successful. 1201 */ 1202 if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK)) 1203 return res; 1204 /* 1205 * If something went wrong and the page could not be destroyed, or 1206 * if this is not a mm teardown, the slower export is used as 1207 * fallback instead. 1208 */ 1209 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK); 1210 return res; 1211 } 1212 1213 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1214 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1215 unsigned long addr, pte_t *ptep) 1216 { 1217 pte_t pte = *ptep; 1218 1219 if (pte_write(pte)) 1220 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte)); 1221 } 1222 1223 /* 1224 * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE 1225 * bits in the comparison. Those might change e.g. because of dirty and young 1226 * tracking. 1227 */ 1228 static inline int pte_allow_rdp(pte_t old, pte_t new) 1229 { 1230 /* 1231 * Only allow changes from RO to RW 1232 */ 1233 if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT) 1234 return 0; 1235 1236 return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK); 1237 } 1238 1239 static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma, 1240 unsigned long address, 1241 pte_t *ptep) 1242 { 1243 /* 1244 * RDP might not have propagated the PTE protection reset to all CPUs, 1245 * so there could be spurious TLB protection faults. 1246 * NOTE: This will also be called when a racing pagetable update on 1247 * another thread already installed the correct PTE. Both cases cannot 1248 * really be distinguished. 1249 * Therefore, only do the local TLB flush when RDP can be used, and the 1250 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead. 1251 * A local RDP can be used to do the flush. 1252 */ 1253 if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT)) 1254 __ptep_rdp(address, ptep, 0, 0, 1); 1255 } 1256 #define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault 1257 1258 void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep, 1259 pte_t new); 1260 1261 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1262 static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1263 unsigned long addr, pte_t *ptep, 1264 pte_t entry, int dirty) 1265 { 1266 if (pte_same(*ptep, entry)) 1267 return 0; 1268 if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry)) 1269 ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry); 1270 else 1271 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry); 1272 return 1; 1273 } 1274 1275 /* 1276 * Additional functions to handle KVM guest page tables 1277 */ 1278 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr, 1279 pte_t *ptep, pte_t entry); 1280 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1281 void ptep_notify(struct mm_struct *mm, unsigned long addr, 1282 pte_t *ptep, unsigned long bits); 1283 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr, 1284 pte_t *ptep, int prot, unsigned long bit); 1285 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr, 1286 pte_t *ptep , int reset); 1287 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1288 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr, 1289 pte_t *sptep, pte_t *tptep, pte_t pte); 1290 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep); 1291 1292 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address, 1293 pte_t *ptep); 1294 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1295 unsigned char key, bool nq); 1296 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1297 unsigned char key, unsigned char *oldkey, 1298 bool nq, bool mr, bool mc); 1299 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr); 1300 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1301 unsigned char *key); 1302 1303 int set_pgste_bits(struct mm_struct *mm, unsigned long addr, 1304 unsigned long bits, unsigned long value); 1305 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep); 1306 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc, 1307 unsigned long *oldpte, unsigned long *oldpgste); 1308 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr); 1309 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr); 1310 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr); 1311 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr); 1312 1313 #define pgprot_writecombine pgprot_writecombine 1314 pgprot_t pgprot_writecombine(pgprot_t prot); 1315 1316 #define pgprot_writethrough pgprot_writethrough 1317 pgprot_t pgprot_writethrough(pgprot_t prot); 1318 1319 /* 1320 * Set multiple PTEs to consecutive pages with a single call. All PTEs 1321 * are within the same folio, PMD and VMA. 1322 */ 1323 static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 1324 pte_t *ptep, pte_t entry, unsigned int nr) 1325 { 1326 if (pte_present(entry)) 1327 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED)); 1328 if (mm_has_pgste(mm)) { 1329 for (;;) { 1330 ptep_set_pte_at(mm, addr, ptep, entry); 1331 if (--nr == 0) 1332 break; 1333 ptep++; 1334 entry = __pte(pte_val(entry) + PAGE_SIZE); 1335 addr += PAGE_SIZE; 1336 } 1337 } else { 1338 for (;;) { 1339 set_pte(ptep, entry); 1340 if (--nr == 0) 1341 break; 1342 ptep++; 1343 entry = __pte(pte_val(entry) + PAGE_SIZE); 1344 } 1345 } 1346 } 1347 #define set_ptes set_ptes 1348 1349 /* 1350 * Conversion functions: convert a page and protection to a page entry, 1351 * and a page entry and page directory to the page they refer to. 1352 */ 1353 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1354 { 1355 pte_t __pte; 1356 1357 __pte = __pte(physpage | pgprot_val(pgprot)); 1358 if (!MACHINE_HAS_NX) 1359 __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC)); 1360 return pte_mkyoung(__pte); 1361 } 1362 1363 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1364 { 1365 unsigned long physpage = page_to_phys(page); 1366 pte_t __pte = mk_pte_phys(physpage, pgprot); 1367 1368 if (pte_write(__pte) && PageDirty(page)) 1369 __pte = pte_mkdirty(__pte); 1370 return __pte; 1371 } 1372 1373 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1374 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1)) 1375 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1376 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1377 1378 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN)) 1379 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN)) 1380 1381 static inline unsigned long pmd_deref(pmd_t pmd) 1382 { 1383 unsigned long origin_mask; 1384 1385 origin_mask = _SEGMENT_ENTRY_ORIGIN; 1386 if (pmd_large(pmd)) 1387 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 1388 return (unsigned long)__va(pmd_val(pmd) & origin_mask); 1389 } 1390 1391 static inline unsigned long pmd_pfn(pmd_t pmd) 1392 { 1393 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT; 1394 } 1395 1396 static inline unsigned long pud_deref(pud_t pud) 1397 { 1398 unsigned long origin_mask; 1399 1400 origin_mask = _REGION_ENTRY_ORIGIN; 1401 if (pud_large(pud)) 1402 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE; 1403 return (unsigned long)__va(pud_val(pud) & origin_mask); 1404 } 1405 1406 static inline unsigned long pud_pfn(pud_t pud) 1407 { 1408 return __pa(pud_deref(pud)) >> PAGE_SHIFT; 1409 } 1410 1411 /* 1412 * The pgd_offset function *always* adds the index for the top-level 1413 * region/segment table. This is done to get a sequence like the 1414 * following to work: 1415 * pgdp = pgd_offset(current->mm, addr); 1416 * pgd = READ_ONCE(*pgdp); 1417 * p4dp = p4d_offset(&pgd, addr); 1418 * ... 1419 * The subsequent p4d_offset, pud_offset and pmd_offset functions 1420 * only add an index if they dereferenced the pointer. 1421 */ 1422 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address) 1423 { 1424 unsigned long rste; 1425 unsigned int shift; 1426 1427 /* Get the first entry of the top level table */ 1428 rste = pgd_val(*pgd); 1429 /* Pick up the shift from the table type of the first entry */ 1430 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20; 1431 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1)); 1432 } 1433 1434 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address) 1435 1436 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address) 1437 { 1438 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1) 1439 return (p4d_t *) pgd_deref(pgd) + p4d_index(address); 1440 return (p4d_t *) pgdp; 1441 } 1442 #define p4d_offset_lockless p4d_offset_lockless 1443 1444 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address) 1445 { 1446 return p4d_offset_lockless(pgdp, *pgdp, address); 1447 } 1448 1449 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address) 1450 { 1451 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2) 1452 return (pud_t *) p4d_deref(p4d) + pud_index(address); 1453 return (pud_t *) p4dp; 1454 } 1455 #define pud_offset_lockless pud_offset_lockless 1456 1457 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address) 1458 { 1459 return pud_offset_lockless(p4dp, *p4dp, address); 1460 } 1461 #define pud_offset pud_offset 1462 1463 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address) 1464 { 1465 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3) 1466 return (pmd_t *) pud_deref(pud) + pmd_index(address); 1467 return (pmd_t *) pudp; 1468 } 1469 #define pmd_offset_lockless pmd_offset_lockless 1470 1471 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address) 1472 { 1473 return pmd_offset_lockless(pudp, *pudp, address); 1474 } 1475 #define pmd_offset pmd_offset 1476 1477 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 1478 { 1479 return (unsigned long) pmd_deref(pmd); 1480 } 1481 1482 static inline bool gup_fast_permitted(unsigned long start, unsigned long end) 1483 { 1484 return end <= current->mm->context.asce_limit; 1485 } 1486 #define gup_fast_permitted gup_fast_permitted 1487 1488 #define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot)) 1489 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1490 #define pte_page(x) pfn_to_page(pte_pfn(x)) 1491 1492 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1493 #define pud_page(pud) pfn_to_page(pud_pfn(pud)) 1494 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 1495 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 1496 1497 static inline pmd_t pmd_wrprotect(pmd_t pmd) 1498 { 1499 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE)); 1500 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1501 } 1502 1503 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) 1504 { 1505 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE)); 1506 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) 1507 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1508 return pmd; 1509 } 1510 1511 static inline pmd_t pmd_mkclean(pmd_t pmd) 1512 { 1513 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY)); 1514 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1515 } 1516 1517 static inline pmd_t pmd_mkdirty(pmd_t pmd) 1518 { 1519 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY)); 1520 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) 1521 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1522 return pmd; 1523 } 1524 1525 static inline pud_t pud_wrprotect(pud_t pud) 1526 { 1527 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE)); 1528 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1529 } 1530 1531 static inline pud_t pud_mkwrite(pud_t pud) 1532 { 1533 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE)); 1534 if (pud_val(pud) & _REGION3_ENTRY_DIRTY) 1535 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1536 return pud; 1537 } 1538 1539 static inline pud_t pud_mkclean(pud_t pud) 1540 { 1541 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY)); 1542 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1543 } 1544 1545 static inline pud_t pud_mkdirty(pud_t pud) 1546 { 1547 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY)); 1548 if (pud_val(pud) & _REGION3_ENTRY_WRITE) 1549 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1550 return pud; 1551 } 1552 1553 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1554 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1555 { 1556 /* 1557 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX 1558 * (see __Pxxx / __Sxxx). Convert to segment table entry format. 1559 */ 1560 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1561 return pgprot_val(SEGMENT_NONE); 1562 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) 1563 return pgprot_val(SEGMENT_RO); 1564 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX)) 1565 return pgprot_val(SEGMENT_RX); 1566 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW)) 1567 return pgprot_val(SEGMENT_RW); 1568 return pgprot_val(SEGMENT_RWX); 1569 } 1570 1571 static inline pmd_t pmd_mkyoung(pmd_t pmd) 1572 { 1573 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1574 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) 1575 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1576 return pmd; 1577 } 1578 1579 static inline pmd_t pmd_mkold(pmd_t pmd) 1580 { 1581 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1582 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1583 } 1584 1585 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1586 { 1587 unsigned long mask; 1588 1589 mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 1590 mask |= _SEGMENT_ENTRY_DIRTY; 1591 mask |= _SEGMENT_ENTRY_YOUNG; 1592 mask |= _SEGMENT_ENTRY_LARGE; 1593 mask |= _SEGMENT_ENTRY_SOFT_DIRTY; 1594 pmd = __pmd(pmd_val(pmd) & mask); 1595 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot))); 1596 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1597 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1598 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) 1599 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1600 return pmd; 1601 } 1602 1603 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1604 { 1605 return __pmd(physpage + massage_pgprot_pmd(pgprot)); 1606 } 1607 1608 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1609 1610 static inline void __pmdp_csp(pmd_t *pmdp) 1611 { 1612 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp), 1613 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1614 } 1615 1616 #define IDTE_GLOBAL 0 1617 #define IDTE_LOCAL 1 1618 1619 #define IDTE_PTOA 0x0800 1620 #define IDTE_NODAT 0x1000 1621 #define IDTE_GUEST_ASCE 0x2000 1622 1623 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp, 1624 unsigned long opt, unsigned long asce, 1625 int local) 1626 { 1627 unsigned long sto; 1628 1629 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t); 1630 if (__builtin_constant_p(opt) && opt == 0) { 1631 /* flush without guest asce */ 1632 asm volatile( 1633 " idte %[r1],0,%[r2],%[m4]" 1634 : "+m" (*pmdp) 1635 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)), 1636 [m4] "i" (local) 1637 : "cc" ); 1638 } else { 1639 /* flush with guest asce */ 1640 asm volatile( 1641 " idte %[r1],%[r3],%[r2],%[m4]" 1642 : "+m" (*pmdp) 1643 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt), 1644 [r3] "a" (asce), [m4] "i" (local) 1645 : "cc" ); 1646 } 1647 } 1648 1649 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp, 1650 unsigned long opt, unsigned long asce, 1651 int local) 1652 { 1653 unsigned long r3o; 1654 1655 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t); 1656 r3o |= _ASCE_TYPE_REGION3; 1657 if (__builtin_constant_p(opt) && opt == 0) { 1658 /* flush without guest asce */ 1659 asm volatile( 1660 " idte %[r1],0,%[r2],%[m4]" 1661 : "+m" (*pudp) 1662 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)), 1663 [m4] "i" (local) 1664 : "cc"); 1665 } else { 1666 /* flush with guest asce */ 1667 asm volatile( 1668 " idte %[r1],%[r3],%[r2],%[m4]" 1669 : "+m" (*pudp) 1670 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt), 1671 [r3] "a" (asce), [m4] "i" (local) 1672 : "cc" ); 1673 } 1674 } 1675 1676 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1677 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1678 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t); 1679 1680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1681 1682 #define __HAVE_ARCH_PGTABLE_DEPOSIT 1683 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1684 pgtable_t pgtable); 1685 1686 #define __HAVE_ARCH_PGTABLE_WITHDRAW 1687 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1688 1689 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1690 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1691 unsigned long addr, pmd_t *pmdp, 1692 pmd_t entry, int dirty) 1693 { 1694 VM_BUG_ON(addr & ~HPAGE_MASK); 1695 1696 entry = pmd_mkyoung(entry); 1697 if (dirty) 1698 entry = pmd_mkdirty(entry); 1699 if (pmd_val(*pmdp) == pmd_val(entry)) 1700 return 0; 1701 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry); 1702 return 1; 1703 } 1704 1705 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1706 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1707 unsigned long addr, pmd_t *pmdp) 1708 { 1709 pmd_t pmd = *pmdp; 1710 1711 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd)); 1712 return pmd_young(pmd); 1713 } 1714 1715 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1716 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 1717 unsigned long addr, pmd_t *pmdp) 1718 { 1719 VM_BUG_ON(addr & ~HPAGE_MASK); 1720 return pmdp_test_and_clear_young(vma, addr, pmdp); 1721 } 1722 1723 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1724 pmd_t *pmdp, pmd_t entry) 1725 { 1726 if (!MACHINE_HAS_NX) 1727 entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC)); 1728 set_pmd(pmdp, entry); 1729 } 1730 1731 static inline pmd_t pmd_mkhuge(pmd_t pmd) 1732 { 1733 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE)); 1734 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1735 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1736 } 1737 1738 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1739 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1740 unsigned long addr, pmd_t *pmdp) 1741 { 1742 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1743 } 1744 1745 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1746 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 1747 unsigned long addr, 1748 pmd_t *pmdp, int full) 1749 { 1750 if (full) { 1751 pmd_t pmd = *pmdp; 1752 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1753 return pmd; 1754 } 1755 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1756 } 1757 1758 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 1759 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 1760 unsigned long addr, pmd_t *pmdp) 1761 { 1762 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 1763 } 1764 1765 #define __HAVE_ARCH_PMDP_INVALIDATE 1766 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma, 1767 unsigned long addr, pmd_t *pmdp) 1768 { 1769 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1770 1771 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd); 1772 } 1773 1774 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1775 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1776 unsigned long addr, pmd_t *pmdp) 1777 { 1778 pmd_t pmd = *pmdp; 1779 1780 if (pmd_write(pmd)) 1781 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd)); 1782 } 1783 1784 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1785 unsigned long address, 1786 pmd_t *pmdp) 1787 { 1788 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 1789 } 1790 #define pmdp_collapse_flush pmdp_collapse_flush 1791 1792 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot)) 1793 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1794 1795 static inline int pmd_trans_huge(pmd_t pmd) 1796 { 1797 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1798 } 1799 1800 #define has_transparent_hugepage has_transparent_hugepage 1801 static inline int has_transparent_hugepage(void) 1802 { 1803 return MACHINE_HAS_EDAT1 ? 1 : 0; 1804 } 1805 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1806 1807 /* 1808 * 64 bit swap entry format: 1809 * A page-table entry has some bits we have to treat in a special way. 1810 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte 1811 * as invalid. 1812 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 1813 * | offset |E11XX|type |S0| 1814 * |0000000000111111111122222222223333333333444444444455|55555|55566|66| 1815 * |0123456789012345678901234567890123456789012345678901|23456|78901|23| 1816 * 1817 * Bits 0-51 store the offset. 1818 * Bit 52 (E) is used to remember PG_anon_exclusive. 1819 * Bits 57-61 store the type. 1820 * Bit 62 (S) is used for softdirty tracking. 1821 * Bits 55 and 56 (X) are unused. 1822 */ 1823 1824 #define __SWP_OFFSET_MASK ((1UL << 52) - 1) 1825 #define __SWP_OFFSET_SHIFT 12 1826 #define __SWP_TYPE_MASK ((1UL << 5) - 1) 1827 #define __SWP_TYPE_SHIFT 2 1828 1829 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1830 { 1831 unsigned long pteval; 1832 1833 pteval = _PAGE_INVALID | _PAGE_PROTECT; 1834 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; 1835 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; 1836 return __pte(pteval); 1837 } 1838 1839 static inline unsigned long __swp_type(swp_entry_t entry) 1840 { 1841 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; 1842 } 1843 1844 static inline unsigned long __swp_offset(swp_entry_t entry) 1845 { 1846 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; 1847 } 1848 1849 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) 1850 { 1851 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; 1852 } 1853 1854 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1855 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1856 1857 extern int vmem_add_mapping(unsigned long start, unsigned long size); 1858 extern void vmem_remove_mapping(unsigned long start, unsigned long size); 1859 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc); 1860 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot); 1861 extern void vmem_unmap_4k_page(unsigned long addr); 1862 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc); 1863 extern int s390_enable_sie(void); 1864 extern int s390_enable_skey(void); 1865 extern void s390_reset_cmma(struct mm_struct *mm); 1866 1867 /* s390 has a private copy of get unmapped area to deal with cache synonyms */ 1868 #define HAVE_ARCH_UNMAPPED_AREA 1869 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1870 1871 #define pmd_pgtable(pmd) \ 1872 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE)) 1873 1874 #endif /* _S390_PAGE_H */ 1875