xref: /linux/arch/s390/include/asm/pgtable.h (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
22 
23 extern pgd_t swapper_pg_dir[];
24 extern void paging_init(void);
25 
26 enum {
27 	PG_DIRECT_MAP_4K = 0,
28 	PG_DIRECT_MAP_1M,
29 	PG_DIRECT_MAP_2G,
30 	PG_DIRECT_MAP_MAX
31 };
32 
33 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
34 
35 static inline void update_page_count(int level, long count)
36 {
37 	if (IS_ENABLED(CONFIG_PROC_FS))
38 		atomic_long_add(count, &direct_pages_count[level]);
39 }
40 
41 struct seq_file;
42 void arch_report_meminfo(struct seq_file *m);
43 
44 /*
45  * The S390 doesn't have any external MMU info: the kernel page
46  * tables contain all the necessary information.
47  */
48 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
49 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
50 
51 /*
52  * ZERO_PAGE is a global shared page that is always zero; used
53  * for zero-mapped memory areas etc..
54  */
55 
56 extern unsigned long empty_zero_page;
57 extern unsigned long zero_page_mask;
58 
59 #define ZERO_PAGE(vaddr) \
60 	(virt_to_page((void *)(empty_zero_page + \
61 	 (((unsigned long)(vaddr)) &zero_page_mask))))
62 #define __HAVE_COLOR_ZERO_PAGE
63 
64 /* TODO: s390 cannot support io_remap_pfn_range... */
65 
66 #define FIRST_USER_ADDRESS  0UL
67 
68 #define pte_ERROR(e) \
69 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70 #define pmd_ERROR(e) \
71 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72 #define pud_ERROR(e) \
73 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74 #define p4d_ERROR(e) \
75 	printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76 #define pgd_ERROR(e) \
77 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
78 
79 /*
80  * The vmalloc and module area will always be on the topmost area of the
81  * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82  * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83  * modules will reside. That makes sure that inter module branches always
84  * happen without trampolines and in addition the placement within a 2GB frame
85  * is branch prediction unit friendly.
86  */
87 extern unsigned long VMALLOC_START;
88 extern unsigned long VMALLOC_END;
89 #define VMALLOC_DEFAULT_SIZE	((128UL << 30) - MODULES_LEN)
90 extern struct page *vmemmap;
91 
92 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
93 
94 extern unsigned long MODULES_VADDR;
95 extern unsigned long MODULES_END;
96 #define MODULES_VADDR	MODULES_VADDR
97 #define MODULES_END	MODULES_END
98 #define MODULES_LEN	(1UL << 31)
99 
100 static inline int is_module_addr(void *addr)
101 {
102 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 	if (addr < (void *)MODULES_VADDR)
104 		return 0;
105 	if (addr > (void *)MODULES_END)
106 		return 0;
107 	return 1;
108 }
109 
110 /*
111  * A 64 bit pagetable entry of S390 has following format:
112  * |			 PFRA			      |0IPC|  OS  |
113  * 0000000000111111111122222222223333333333444444444455555555556666
114  * 0123456789012345678901234567890123456789012345678901234567890123
115  *
116  * I Page-Invalid Bit:    Page is not available for address-translation
117  * P Page-Protection Bit: Store access not possible for page
118  * C Change-bit override: HW is not required to set change bit
119  *
120  * A 64 bit segmenttable entry of S390 has following format:
121  * |        P-table origin                              |      TT
122  * 0000000000111111111122222222223333333333444444444455555555556666
123  * 0123456789012345678901234567890123456789012345678901234567890123
124  *
125  * I Segment-Invalid Bit:    Segment is not available for address-translation
126  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
127  * P Page-Protection Bit: Store access not possible for page
128  * TT Type 00
129  *
130  * A 64 bit region table entry of S390 has following format:
131  * |        S-table origin                             |   TF  TTTL
132  * 0000000000111111111122222222223333333333444444444455555555556666
133  * 0123456789012345678901234567890123456789012345678901234567890123
134  *
135  * I Segment-Invalid Bit:    Segment is not available for address-translation
136  * TT Type 01
137  * TF
138  * TL Table length
139  *
140  * The 64 bit regiontable origin of S390 has following format:
141  * |      region table origon                          |       DTTL
142  * 0000000000111111111122222222223333333333444444444455555555556666
143  * 0123456789012345678901234567890123456789012345678901234567890123
144  *
145  * X Space-Switch event:
146  * G Segment-Invalid Bit:
147  * P Private-Space Bit:
148  * S Storage-Alteration:
149  * R Real space
150  * TL Table-Length:
151  *
152  * A storage key has the following format:
153  * | ACC |F|R|C|0|
154  *  0   3 4 5 6 7
155  * ACC: access key
156  * F  : fetch protection bit
157  * R  : referenced bit
158  * C  : changed bit
159  */
160 
161 /* Hardware bits in the page table entry */
162 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
163 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
164 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
165 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
166 
167 /* Software bits in the page table entry */
168 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
169 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
170 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
171 #define _PAGE_READ	0x010		/* SW pte read bit */
172 #define _PAGE_WRITE	0x020		/* SW pte write bit */
173 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
174 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
175 
176 #ifdef CONFIG_MEM_SOFT_DIRTY
177 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
178 #else
179 #define _PAGE_SOFT_DIRTY 0x000
180 #endif
181 
182 /* Set of bits not changed in pte_modify */
183 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
184 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
185 
186 /*
187  * handle_pte_fault uses pte_present and pte_none to find out the pte type
188  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
189  * distinguish present from not-present ptes. It is changed only with the page
190  * table lock held.
191  *
192  * The following table gives the different possible bit combinations for
193  * the pte hardware and software bits in the last 12 bits of a pte
194  * (. unassigned bit, x don't care, t swap type):
195  *
196  *				842100000000
197  *				000084210000
198  *				000000008421
199  *				.IR.uswrdy.p
200  * empty			.10.00000000
201  * swap				.11..ttttt.0
202  * prot-none, clean, old	.11.xx0000.1
203  * prot-none, clean, young	.11.xx0001.1
204  * prot-none, dirty, old	.11.xx0010.1
205  * prot-none, dirty, young	.11.xx0011.1
206  * read-only, clean, old	.11.xx0100.1
207  * read-only, clean, young	.01.xx0101.1
208  * read-only, dirty, old	.11.xx0110.1
209  * read-only, dirty, young	.01.xx0111.1
210  * read-write, clean, old	.11.xx1100.1
211  * read-write, clean, young	.01.xx1101.1
212  * read-write, dirty, old	.10.xx1110.1
213  * read-write, dirty, young	.00.xx1111.1
214  * HW-bits: R read-only, I invalid
215  * SW-bits: p present, y young, d dirty, r read, w write, s special,
216  *	    u unused, l large
217  *
218  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
219  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
220  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
221  */
222 
223 /* Bits in the segment/region table address-space-control-element */
224 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
225 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
226 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
227 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
228 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
229 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
230 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
231 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
232 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
233 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
234 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
235 
236 /* Bits in the region table entry */
237 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
238 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
239 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
240 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
241 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
242 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
243 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
244 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
245 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
246 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
247 
248 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
249 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
250 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
251 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
252 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
253 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
254 
255 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
256 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
257 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
258 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
259 #define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
260 #define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
261 
262 #ifdef CONFIG_MEM_SOFT_DIRTY
263 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
264 #else
265 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
266 #endif
267 
268 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
269 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
270 
271 /* Bits in the segment table entry */
272 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
273 #define _SEGMENT_ENTRY_BITS_LARGE		0xfffffffffff0ff33UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
275 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
276 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
277 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
278 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
279 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
280 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
281 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
282 
283 #define _SEGMENT_ENTRY		(0)
284 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
285 
286 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
287 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
288 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
289 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
290 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
291 
292 #ifdef CONFIG_MEM_SOFT_DIRTY
293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
294 #else
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
296 #endif
297 
298 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
299 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
300 
301 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
302 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
303 
304 #define _REGION1_SHIFT	53
305 #define _REGION2_SHIFT	42
306 #define _REGION3_SHIFT	31
307 #define _SEGMENT_SHIFT	20
308 
309 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
310 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
311 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
312 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
313 #define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
314 
315 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
316 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
317 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
318 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
319 
320 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
321 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
322 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
323 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
324 
325 #define PMD_SHIFT	_SEGMENT_SHIFT
326 #define PUD_SHIFT	_REGION3_SHIFT
327 #define P4D_SHIFT	_REGION2_SHIFT
328 #define PGDIR_SHIFT	_REGION1_SHIFT
329 
330 #define PMD_SIZE	_SEGMENT_SIZE
331 #define PUD_SIZE	_REGION3_SIZE
332 #define P4D_SIZE	_REGION2_SIZE
333 #define PGDIR_SIZE	_REGION1_SIZE
334 
335 #define PMD_MASK	_SEGMENT_MASK
336 #define PUD_MASK	_REGION3_MASK
337 #define P4D_MASK	_REGION2_MASK
338 #define PGDIR_MASK	_REGION1_MASK
339 
340 #define PTRS_PER_PTE	_PAGE_ENTRIES
341 #define PTRS_PER_PMD	_CRST_ENTRIES
342 #define PTRS_PER_PUD	_CRST_ENTRIES
343 #define PTRS_PER_P4D	_CRST_ENTRIES
344 #define PTRS_PER_PGD	_CRST_ENTRIES
345 
346 #define MAX_PTRS_PER_P4D	PTRS_PER_P4D
347 
348 /*
349  * Segment table and region3 table entry encoding
350  * (R = read-only, I = invalid, y = young bit):
351  *				dy..R...I...wr
352  * prot-none, clean, old	00..1...1...00
353  * prot-none, clean, young	01..1...1...00
354  * prot-none, dirty, old	10..1...1...00
355  * prot-none, dirty, young	11..1...1...00
356  * read-only, clean, old	00..1...1...01
357  * read-only, clean, young	01..1...0...01
358  * read-only, dirty, old	10..1...1...01
359  * read-only, dirty, young	11..1...0...01
360  * read-write, clean, old	00..1...1...11
361  * read-write, clean, young	01..1...0...11
362  * read-write, dirty, old	10..0...1...11
363  * read-write, dirty, young	11..0...0...11
364  * The segment table origin is used to distinguish empty (origin==0) from
365  * read-write, old segment table entries (origin!=0)
366  * HW-bits: R read-only, I invalid
367  * SW-bits: y young, d dirty, r read, w write
368  */
369 
370 /* Page status table bits for virtualization */
371 #define PGSTE_ACC_BITS	0xf000000000000000UL
372 #define PGSTE_FP_BIT	0x0800000000000000UL
373 #define PGSTE_PCL_BIT	0x0080000000000000UL
374 #define PGSTE_HR_BIT	0x0040000000000000UL
375 #define PGSTE_HC_BIT	0x0020000000000000UL
376 #define PGSTE_GR_BIT	0x0004000000000000UL
377 #define PGSTE_GC_BIT	0x0002000000000000UL
378 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
379 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
380 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
381 
382 /* Guest Page State used for virtualization */
383 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
384 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
385 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
386 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
387 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
388 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
389 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
390 
391 /*
392  * A user page table pointer has the space-switch-event bit, the
393  * private-space-control bit and the storage-alteration-event-control
394  * bit set. A kernel page table pointer doesn't need them.
395  */
396 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
397 				 _ASCE_ALT_EVENT)
398 
399 /*
400  * Page protection definitions.
401  */
402 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
406 				 _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
409 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 				 _PAGE_INVALID | _PAGE_PROTECT)
411 
412 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
417 				 _PAGE_PROTECT | _PAGE_NOEXEC)
418 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 				  _PAGE_YOUNG |	_PAGE_DIRTY)
420 
421 /*
422  * On s390 the page table entry has an invalid bit and a read-only bit.
423  * Read permission implies execute permission and write permission
424  * implies read permission.
425  */
426          /*xwr*/
427 #define __P000	PAGE_NONE
428 #define __P001	PAGE_RO
429 #define __P010	PAGE_RO
430 #define __P011	PAGE_RO
431 #define __P100	PAGE_RX
432 #define __P101	PAGE_RX
433 #define __P110	PAGE_RX
434 #define __P111	PAGE_RX
435 
436 #define __S000	PAGE_NONE
437 #define __S001	PAGE_RO
438 #define __S010	PAGE_RW
439 #define __S011	PAGE_RW
440 #define __S100	PAGE_RX
441 #define __S101	PAGE_RX
442 #define __S110	PAGE_RWX
443 #define __S111	PAGE_RWX
444 
445 /*
446  * Segment entry (large page) protection definitions.
447  */
448 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
449 				 _SEGMENT_ENTRY_PROTECT)
450 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
451 				 _SEGMENT_ENTRY_READ | \
452 				 _SEGMENT_ENTRY_NOEXEC)
453 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
454 				 _SEGMENT_ENTRY_READ)
455 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
456 				 _SEGMENT_ENTRY_WRITE | \
457 				 _SEGMENT_ENTRY_NOEXEC)
458 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
459 				 _SEGMENT_ENTRY_WRITE)
460 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
461 				 _SEGMENT_ENTRY_LARGE |	\
462 				 _SEGMENT_ENTRY_READ |	\
463 				 _SEGMENT_ENTRY_WRITE | \
464 				 _SEGMENT_ENTRY_YOUNG | \
465 				 _SEGMENT_ENTRY_DIRTY | \
466 				 _SEGMENT_ENTRY_NOEXEC)
467 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
468 				 _SEGMENT_ENTRY_LARGE |	\
469 				 _SEGMENT_ENTRY_READ |	\
470 				 _SEGMENT_ENTRY_YOUNG |	\
471 				 _SEGMENT_ENTRY_PROTECT | \
472 				 _SEGMENT_ENTRY_NOEXEC)
473 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
474 				 _SEGMENT_ENTRY_LARGE |	\
475 				 _SEGMENT_ENTRY_READ |	\
476 				 _SEGMENT_ENTRY_WRITE | \
477 				 _SEGMENT_ENTRY_YOUNG |	\
478 				 _SEGMENT_ENTRY_DIRTY)
479 
480 /*
481  * Region3 entry (large page) protection definitions.
482  */
483 
484 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
485 				 _REGION3_ENTRY_LARGE |	 \
486 				 _REGION3_ENTRY_READ |	 \
487 				 _REGION3_ENTRY_WRITE |	 \
488 				 _REGION3_ENTRY_YOUNG |	 \
489 				 _REGION3_ENTRY_DIRTY | \
490 				 _REGION_ENTRY_NOEXEC)
491 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
492 				   _REGION3_ENTRY_LARGE |  \
493 				   _REGION3_ENTRY_READ |   \
494 				   _REGION3_ENTRY_YOUNG |  \
495 				   _REGION_ENTRY_PROTECT | \
496 				   _REGION_ENTRY_NOEXEC)
497 
498 static inline bool mm_p4d_folded(struct mm_struct *mm)
499 {
500 	return mm->context.asce_limit <= _REGION1_SIZE;
501 }
502 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
503 
504 static inline bool mm_pud_folded(struct mm_struct *mm)
505 {
506 	return mm->context.asce_limit <= _REGION2_SIZE;
507 }
508 #define mm_pud_folded(mm) mm_pud_folded(mm)
509 
510 static inline bool mm_pmd_folded(struct mm_struct *mm)
511 {
512 	return mm->context.asce_limit <= _REGION3_SIZE;
513 }
514 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
515 
516 static inline int mm_has_pgste(struct mm_struct *mm)
517 {
518 #ifdef CONFIG_PGSTE
519 	if (unlikely(mm->context.has_pgste))
520 		return 1;
521 #endif
522 	return 0;
523 }
524 
525 static inline int mm_alloc_pgste(struct mm_struct *mm)
526 {
527 #ifdef CONFIG_PGSTE
528 	if (unlikely(mm->context.alloc_pgste))
529 		return 1;
530 #endif
531 	return 0;
532 }
533 
534 /*
535  * In the case that a guest uses storage keys
536  * faults should no longer be backed by zero pages
537  */
538 #define mm_forbids_zeropage mm_has_pgste
539 static inline int mm_uses_skeys(struct mm_struct *mm)
540 {
541 #ifdef CONFIG_PGSTE
542 	if (mm->context.uses_skeys)
543 		return 1;
544 #endif
545 	return 0;
546 }
547 
548 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
549 {
550 	register unsigned long reg2 asm("2") = old;
551 	register unsigned long reg3 asm("3") = new;
552 	unsigned long address = (unsigned long)ptr | 1;
553 
554 	asm volatile(
555 		"	csp	%0,%3"
556 		: "+d" (reg2), "+m" (*ptr)
557 		: "d" (reg3), "d" (address)
558 		: "cc");
559 }
560 
561 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
562 {
563 	register unsigned long reg2 asm("2") = old;
564 	register unsigned long reg3 asm("3") = new;
565 	unsigned long address = (unsigned long)ptr | 1;
566 
567 	asm volatile(
568 		"	.insn	rre,0xb98a0000,%0,%3"
569 		: "+d" (reg2), "+m" (*ptr)
570 		: "d" (reg3), "d" (address)
571 		: "cc");
572 }
573 
574 #define CRDTE_DTT_PAGE		0x00UL
575 #define CRDTE_DTT_SEGMENT	0x10UL
576 #define CRDTE_DTT_REGION3	0x14UL
577 #define CRDTE_DTT_REGION2	0x18UL
578 #define CRDTE_DTT_REGION1	0x1cUL
579 
580 static inline void crdte(unsigned long old, unsigned long new,
581 			 unsigned long table, unsigned long dtt,
582 			 unsigned long address, unsigned long asce)
583 {
584 	register unsigned long reg2 asm("2") = old;
585 	register unsigned long reg3 asm("3") = new;
586 	register unsigned long reg4 asm("4") = table | dtt;
587 	register unsigned long reg5 asm("5") = address;
588 
589 	asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
590 		     : "+d" (reg2)
591 		     : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
592 		     : "memory", "cc");
593 }
594 
595 /*
596  * pgd/p4d/pud/pmd/pte query functions
597  */
598 static inline int pgd_folded(pgd_t pgd)
599 {
600 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
601 }
602 
603 static inline int pgd_present(pgd_t pgd)
604 {
605 	if (pgd_folded(pgd))
606 		return 1;
607 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
608 }
609 
610 static inline int pgd_none(pgd_t pgd)
611 {
612 	if (pgd_folded(pgd))
613 		return 0;
614 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
615 }
616 
617 static inline int pgd_bad(pgd_t pgd)
618 {
619 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
620 		return 0;
621 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
622 }
623 
624 static inline unsigned long pgd_pfn(pgd_t pgd)
625 {
626 	unsigned long origin_mask;
627 
628 	origin_mask = _REGION_ENTRY_ORIGIN;
629 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
630 }
631 
632 static inline int p4d_folded(p4d_t p4d)
633 {
634 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
635 }
636 
637 static inline int p4d_present(p4d_t p4d)
638 {
639 	if (p4d_folded(p4d))
640 		return 1;
641 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
642 }
643 
644 static inline int p4d_none(p4d_t p4d)
645 {
646 	if (p4d_folded(p4d))
647 		return 0;
648 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
649 }
650 
651 static inline unsigned long p4d_pfn(p4d_t p4d)
652 {
653 	unsigned long origin_mask;
654 
655 	origin_mask = _REGION_ENTRY_ORIGIN;
656 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
657 }
658 
659 static inline int pud_folded(pud_t pud)
660 {
661 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
662 }
663 
664 static inline int pud_present(pud_t pud)
665 {
666 	if (pud_folded(pud))
667 		return 1;
668 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
669 }
670 
671 static inline int pud_none(pud_t pud)
672 {
673 	if (pud_folded(pud))
674 		return 0;
675 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
676 }
677 
678 static inline int pud_large(pud_t pud)
679 {
680 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
681 		return 0;
682 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
683 }
684 
685 static inline unsigned long pud_pfn(pud_t pud)
686 {
687 	unsigned long origin_mask;
688 
689 	origin_mask = _REGION_ENTRY_ORIGIN;
690 	if (pud_large(pud))
691 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
692 	return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
693 }
694 
695 static inline int pmd_large(pmd_t pmd)
696 {
697 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
698 }
699 
700 static inline int pmd_bad(pmd_t pmd)
701 {
702 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0)
703 		return 1;
704 	if (pmd_large(pmd))
705 		return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
706 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
707 }
708 
709 static inline int pud_bad(pud_t pud)
710 {
711 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
712 
713 	if (type > _REGION_ENTRY_TYPE_R3)
714 		return 1;
715 	if (type < _REGION_ENTRY_TYPE_R3)
716 		return 0;
717 	if (pud_large(pud))
718 		return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
719 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
720 }
721 
722 static inline int p4d_bad(p4d_t p4d)
723 {
724 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
725 
726 	if (type > _REGION_ENTRY_TYPE_R2)
727 		return 1;
728 	if (type < _REGION_ENTRY_TYPE_R2)
729 		return 0;
730 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
731 }
732 
733 static inline int pmd_present(pmd_t pmd)
734 {
735 	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
736 }
737 
738 static inline int pmd_none(pmd_t pmd)
739 {
740 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
741 }
742 
743 static inline unsigned long pmd_pfn(pmd_t pmd)
744 {
745 	unsigned long origin_mask;
746 
747 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
748 	if (pmd_large(pmd))
749 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
750 	return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
751 }
752 
753 #define pmd_write pmd_write
754 static inline int pmd_write(pmd_t pmd)
755 {
756 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
757 }
758 
759 static inline int pmd_dirty(pmd_t pmd)
760 {
761 	int dirty = 1;
762 	if (pmd_large(pmd))
763 		dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
764 	return dirty;
765 }
766 
767 static inline int pmd_young(pmd_t pmd)
768 {
769 	int young = 1;
770 	if (pmd_large(pmd))
771 		young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
772 	return young;
773 }
774 
775 static inline int pte_present(pte_t pte)
776 {
777 	/* Bit pattern: (pte & 0x001) == 0x001 */
778 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
779 }
780 
781 static inline int pte_none(pte_t pte)
782 {
783 	/* Bit pattern: pte == 0x400 */
784 	return pte_val(pte) == _PAGE_INVALID;
785 }
786 
787 static inline int pte_swap(pte_t pte)
788 {
789 	/* Bit pattern: (pte & 0x201) == 0x200 */
790 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
791 		== _PAGE_PROTECT;
792 }
793 
794 static inline int pte_special(pte_t pte)
795 {
796 	return (pte_val(pte) & _PAGE_SPECIAL);
797 }
798 
799 #define __HAVE_ARCH_PTE_SAME
800 static inline int pte_same(pte_t a, pte_t b)
801 {
802 	return pte_val(a) == pte_val(b);
803 }
804 
805 #ifdef CONFIG_NUMA_BALANCING
806 static inline int pte_protnone(pte_t pte)
807 {
808 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
809 }
810 
811 static inline int pmd_protnone(pmd_t pmd)
812 {
813 	/* pmd_large(pmd) implies pmd_present(pmd) */
814 	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
815 }
816 #endif
817 
818 static inline int pte_soft_dirty(pte_t pte)
819 {
820 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
821 }
822 #define pte_swp_soft_dirty pte_soft_dirty
823 
824 static inline pte_t pte_mksoft_dirty(pte_t pte)
825 {
826 	pte_val(pte) |= _PAGE_SOFT_DIRTY;
827 	return pte;
828 }
829 #define pte_swp_mksoft_dirty pte_mksoft_dirty
830 
831 static inline pte_t pte_clear_soft_dirty(pte_t pte)
832 {
833 	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
834 	return pte;
835 }
836 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
837 
838 static inline int pmd_soft_dirty(pmd_t pmd)
839 {
840 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
841 }
842 
843 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
844 {
845 	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
846 	return pmd;
847 }
848 
849 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
850 {
851 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
852 	return pmd;
853 }
854 
855 /*
856  * query functions pte_write/pte_dirty/pte_young only work if
857  * pte_present() is true. Undefined behaviour if not..
858  */
859 static inline int pte_write(pte_t pte)
860 {
861 	return (pte_val(pte) & _PAGE_WRITE) != 0;
862 }
863 
864 static inline int pte_dirty(pte_t pte)
865 {
866 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
867 }
868 
869 static inline int pte_young(pte_t pte)
870 {
871 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
872 }
873 
874 #define __HAVE_ARCH_PTE_UNUSED
875 static inline int pte_unused(pte_t pte)
876 {
877 	return pte_val(pte) & _PAGE_UNUSED;
878 }
879 
880 /*
881  * pgd/pmd/pte modification functions
882  */
883 
884 static inline void pgd_clear(pgd_t *pgd)
885 {
886 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
887 		pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
888 }
889 
890 static inline void p4d_clear(p4d_t *p4d)
891 {
892 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
893 		p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
894 }
895 
896 static inline void pud_clear(pud_t *pud)
897 {
898 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
899 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
900 }
901 
902 static inline void pmd_clear(pmd_t *pmdp)
903 {
904 	pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
905 }
906 
907 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
908 {
909 	pte_val(*ptep) = _PAGE_INVALID;
910 }
911 
912 /*
913  * The following pte modification functions only work if
914  * pte_present() is true. Undefined behaviour if not..
915  */
916 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
917 {
918 	pte_val(pte) &= _PAGE_CHG_MASK;
919 	pte_val(pte) |= pgprot_val(newprot);
920 	/*
921 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
922 	 * has the invalid bit set, clear it again for readable, young pages
923 	 */
924 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
925 		pte_val(pte) &= ~_PAGE_INVALID;
926 	/*
927 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
928 	 * protection bit set, clear it again for writable, dirty pages
929 	 */
930 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
931 		pte_val(pte) &= ~_PAGE_PROTECT;
932 	return pte;
933 }
934 
935 static inline pte_t pte_wrprotect(pte_t pte)
936 {
937 	pte_val(pte) &= ~_PAGE_WRITE;
938 	pte_val(pte) |= _PAGE_PROTECT;
939 	return pte;
940 }
941 
942 static inline pte_t pte_mkwrite(pte_t pte)
943 {
944 	pte_val(pte) |= _PAGE_WRITE;
945 	if (pte_val(pte) & _PAGE_DIRTY)
946 		pte_val(pte) &= ~_PAGE_PROTECT;
947 	return pte;
948 }
949 
950 static inline pte_t pte_mkclean(pte_t pte)
951 {
952 	pte_val(pte) &= ~_PAGE_DIRTY;
953 	pte_val(pte) |= _PAGE_PROTECT;
954 	return pte;
955 }
956 
957 static inline pte_t pte_mkdirty(pte_t pte)
958 {
959 	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
960 	if (pte_val(pte) & _PAGE_WRITE)
961 		pte_val(pte) &= ~_PAGE_PROTECT;
962 	return pte;
963 }
964 
965 static inline pte_t pte_mkold(pte_t pte)
966 {
967 	pte_val(pte) &= ~_PAGE_YOUNG;
968 	pte_val(pte) |= _PAGE_INVALID;
969 	return pte;
970 }
971 
972 static inline pte_t pte_mkyoung(pte_t pte)
973 {
974 	pte_val(pte) |= _PAGE_YOUNG;
975 	if (pte_val(pte) & _PAGE_READ)
976 		pte_val(pte) &= ~_PAGE_INVALID;
977 	return pte;
978 }
979 
980 static inline pte_t pte_mkspecial(pte_t pte)
981 {
982 	pte_val(pte) |= _PAGE_SPECIAL;
983 	return pte;
984 }
985 
986 #ifdef CONFIG_HUGETLB_PAGE
987 static inline pte_t pte_mkhuge(pte_t pte)
988 {
989 	pte_val(pte) |= _PAGE_LARGE;
990 	return pte;
991 }
992 #endif
993 
994 #define IPTE_GLOBAL	0
995 #define	IPTE_LOCAL	1
996 
997 #define IPTE_NODAT	0x400
998 #define IPTE_GUEST_ASCE	0x800
999 
1000 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1001 					unsigned long opt, unsigned long asce,
1002 					int local)
1003 {
1004 	unsigned long pto = (unsigned long) ptep;
1005 
1006 	if (__builtin_constant_p(opt) && opt == 0) {
1007 		/* Invalidation + TLB flush for the pte */
1008 		asm volatile(
1009 			"	.insn	rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1010 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1011 			  [m4] "i" (local));
1012 		return;
1013 	}
1014 
1015 	/* Invalidate ptes with options + TLB flush of the ptes */
1016 	opt = opt | (asce & _ASCE_ORIGIN);
1017 	asm volatile(
1018 		"	.insn	rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1019 		: [r2] "+a" (address), [r3] "+a" (opt)
1020 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1021 }
1022 
1023 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1024 					      pte_t *ptep, int local)
1025 {
1026 	unsigned long pto = (unsigned long) ptep;
1027 
1028 	/* Invalidate a range of ptes + TLB flush of the ptes */
1029 	do {
1030 		asm volatile(
1031 			"       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1032 			: [r2] "+a" (address), [r3] "+a" (nr)
1033 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1034 	} while (nr != 255);
1035 }
1036 
1037 /*
1038  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1039  * both clear the TLB for the unmapped pte. The reason is that
1040  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1041  * to modify an active pte. The sequence is
1042  *   1) ptep_get_and_clear
1043  *   2) set_pte_at
1044  *   3) flush_tlb_range
1045  * On s390 the tlb needs to get flushed with the modification of the pte
1046  * if the pte is active. The only way how this can be implemented is to
1047  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1048  * is a nop.
1049  */
1050 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1051 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1052 
1053 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1054 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1055 					    unsigned long addr, pte_t *ptep)
1056 {
1057 	pte_t pte = *ptep;
1058 
1059 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1060 	return pte_young(pte);
1061 }
1062 
1063 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1064 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1065 					 unsigned long address, pte_t *ptep)
1066 {
1067 	return ptep_test_and_clear_young(vma, address, ptep);
1068 }
1069 
1070 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1071 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1072 				       unsigned long addr, pte_t *ptep)
1073 {
1074 	return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1075 }
1076 
1077 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1078 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1079 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1080 			     pte_t *, pte_t, pte_t);
1081 
1082 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1083 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1084 				     unsigned long addr, pte_t *ptep)
1085 {
1086 	return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1087 }
1088 
1089 /*
1090  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1091  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1092  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1093  * cannot be accessed while the batched unmap is running. In this case
1094  * full==1 and a simple pte_clear is enough. See tlb.h.
1095  */
1096 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1097 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1098 					    unsigned long addr,
1099 					    pte_t *ptep, int full)
1100 {
1101 	if (full) {
1102 		pte_t pte = *ptep;
1103 		*ptep = __pte(_PAGE_INVALID);
1104 		return pte;
1105 	}
1106 	return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1107 }
1108 
1109 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1110 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1111 				      unsigned long addr, pte_t *ptep)
1112 {
1113 	pte_t pte = *ptep;
1114 
1115 	if (pte_write(pte))
1116 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1117 }
1118 
1119 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1120 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1121 					unsigned long addr, pte_t *ptep,
1122 					pte_t entry, int dirty)
1123 {
1124 	if (pte_same(*ptep, entry))
1125 		return 0;
1126 	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1127 	return 1;
1128 }
1129 
1130 /*
1131  * Additional functions to handle KVM guest page tables
1132  */
1133 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1134 		     pte_t *ptep, pte_t entry);
1135 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1136 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1137 		 pte_t *ptep, unsigned long bits);
1138 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1139 		    pte_t *ptep, int prot, unsigned long bit);
1140 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1141 		     pte_t *ptep , int reset);
1142 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1143 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1144 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1145 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1146 
1147 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1148 			    pte_t *ptep);
1149 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1150 			  unsigned char key, bool nq);
1151 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1152 			       unsigned char key, unsigned char *oldkey,
1153 			       bool nq, bool mr, bool mc);
1154 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1155 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1156 			  unsigned char *key);
1157 
1158 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1159 				unsigned long bits, unsigned long value);
1160 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1161 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1162 			unsigned long *oldpte, unsigned long *oldpgste);
1163 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1164 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1165 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1166 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1167 
1168 /*
1169  * Certain architectures need to do special things when PTEs
1170  * within a page table are directly modified.  Thus, the following
1171  * hook is made available.
1172  */
1173 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1174 			      pte_t *ptep, pte_t entry)
1175 {
1176 	if (!MACHINE_HAS_NX)
1177 		pte_val(entry) &= ~_PAGE_NOEXEC;
1178 	if (pte_present(entry))
1179 		pte_val(entry) &= ~_PAGE_UNUSED;
1180 	if (mm_has_pgste(mm))
1181 		ptep_set_pte_at(mm, addr, ptep, entry);
1182 	else
1183 		*ptep = entry;
1184 }
1185 
1186 /*
1187  * Conversion functions: convert a page and protection to a page entry,
1188  * and a page entry and page directory to the page they refer to.
1189  */
1190 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1191 {
1192 	pte_t __pte;
1193 	pte_val(__pte) = physpage + pgprot_val(pgprot);
1194 	return pte_mkyoung(__pte);
1195 }
1196 
1197 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1198 {
1199 	unsigned long physpage = page_to_phys(page);
1200 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1201 
1202 	if (pte_write(__pte) && PageDirty(page))
1203 		__pte = pte_mkdirty(__pte);
1204 	return __pte;
1205 }
1206 
1207 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1208 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1209 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1210 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1211 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1212 
1213 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1214 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1215 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1216 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1217 
1218 /*
1219  * The pgd_offset function *always* adds the index for the top-level
1220  * region/segment table. This is done to get a sequence like the
1221  * following to work:
1222  *	pgdp = pgd_offset(current->mm, addr);
1223  *	pgd = READ_ONCE(*pgdp);
1224  *	p4dp = p4d_offset(&pgd, addr);
1225  *	...
1226  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1227  * only add an index if they dereferenced the pointer.
1228  */
1229 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1230 {
1231 	unsigned long rste;
1232 	unsigned int shift;
1233 
1234 	/* Get the first entry of the top level table */
1235 	rste = pgd_val(*pgd);
1236 	/* Pick up the shift from the table type of the first entry */
1237 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1238 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1239 }
1240 
1241 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1242 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1243 
1244 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1245 {
1246 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1247 		return (p4d_t *) pgd_deref(*pgd) + p4d_index(address);
1248 	return (p4d_t *) pgd;
1249 }
1250 
1251 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1252 {
1253 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1254 		return (pud_t *) p4d_deref(*p4d) + pud_index(address);
1255 	return (pud_t *) p4d;
1256 }
1257 
1258 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1259 {
1260 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1261 		return (pmd_t *) pud_deref(*pud) + pmd_index(address);
1262 	return (pmd_t *) pud;
1263 }
1264 
1265 static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address)
1266 {
1267 	return (pte_t *) pmd_deref(*pmd) + pte_index(address);
1268 }
1269 
1270 #define pte_offset_kernel(pmd, address) pte_offset(pmd, address)
1271 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1272 
1273 static inline void pte_unmap(pte_t *pte) { }
1274 
1275 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1276 {
1277 	return end <= current->mm->context.asce_limit;
1278 }
1279 #define gup_fast_permitted gup_fast_permitted
1280 
1281 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1282 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1283 #define pte_page(x) pfn_to_page(pte_pfn(x))
1284 
1285 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1286 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1287 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1288 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1289 
1290 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1291 {
1292 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1293 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1294 	return pmd;
1295 }
1296 
1297 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1298 {
1299 	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1300 	if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1301 		return pmd;
1302 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1303 	return pmd;
1304 }
1305 
1306 static inline pmd_t pmd_mkclean(pmd_t pmd)
1307 {
1308 	if (pmd_large(pmd)) {
1309 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1310 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1311 	}
1312 	return pmd;
1313 }
1314 
1315 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1316 {
1317 	if (pmd_large(pmd)) {
1318 		pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1319 				_SEGMENT_ENTRY_SOFT_DIRTY;
1320 		if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1321 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1322 	}
1323 	return pmd;
1324 }
1325 
1326 static inline pud_t pud_wrprotect(pud_t pud)
1327 {
1328 	pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1329 	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1330 	return pud;
1331 }
1332 
1333 static inline pud_t pud_mkwrite(pud_t pud)
1334 {
1335 	pud_val(pud) |= _REGION3_ENTRY_WRITE;
1336 	if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1337 		return pud;
1338 	pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1339 	return pud;
1340 }
1341 
1342 static inline pud_t pud_mkclean(pud_t pud)
1343 {
1344 	if (pud_large(pud)) {
1345 		pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1346 		pud_val(pud) |= _REGION_ENTRY_PROTECT;
1347 	}
1348 	return pud;
1349 }
1350 
1351 static inline pud_t pud_mkdirty(pud_t pud)
1352 {
1353 	if (pud_large(pud)) {
1354 		pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1355 				_REGION3_ENTRY_SOFT_DIRTY;
1356 		if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1357 			pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1358 	}
1359 	return pud;
1360 }
1361 
1362 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1363 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1364 {
1365 	/*
1366 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1367 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1368 	 */
1369 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1370 		return pgprot_val(SEGMENT_NONE);
1371 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1372 		return pgprot_val(SEGMENT_RO);
1373 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1374 		return pgprot_val(SEGMENT_RX);
1375 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1376 		return pgprot_val(SEGMENT_RW);
1377 	return pgprot_val(SEGMENT_RWX);
1378 }
1379 
1380 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1381 {
1382 	if (pmd_large(pmd)) {
1383 		pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1384 		if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1385 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1386 	}
1387 	return pmd;
1388 }
1389 
1390 static inline pmd_t pmd_mkold(pmd_t pmd)
1391 {
1392 	if (pmd_large(pmd)) {
1393 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1394 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1395 	}
1396 	return pmd;
1397 }
1398 
1399 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1400 {
1401 	if (pmd_large(pmd)) {
1402 		pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1403 			_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1404 			_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1405 		pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1406 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1407 			pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1408 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1409 			pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1410 		return pmd;
1411 	}
1412 	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1413 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1414 	return pmd;
1415 }
1416 
1417 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1418 {
1419 	pmd_t __pmd;
1420 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1421 	return __pmd;
1422 }
1423 
1424 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1425 
1426 static inline void __pmdp_csp(pmd_t *pmdp)
1427 {
1428 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1429 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1430 }
1431 
1432 #define IDTE_GLOBAL	0
1433 #define IDTE_LOCAL	1
1434 
1435 #define IDTE_PTOA	0x0800
1436 #define IDTE_NODAT	0x1000
1437 #define IDTE_GUEST_ASCE	0x2000
1438 
1439 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1440 					unsigned long opt, unsigned long asce,
1441 					int local)
1442 {
1443 	unsigned long sto;
1444 
1445 	sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1446 	if (__builtin_constant_p(opt) && opt == 0) {
1447 		/* flush without guest asce */
1448 		asm volatile(
1449 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1450 			: "+m" (*pmdp)
1451 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1452 			  [m4] "i" (local)
1453 			: "cc" );
1454 	} else {
1455 		/* flush with guest asce */
1456 		asm volatile(
1457 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1458 			: "+m" (*pmdp)
1459 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1460 			  [r3] "a" (asce), [m4] "i" (local)
1461 			: "cc" );
1462 	}
1463 }
1464 
1465 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1466 					unsigned long opt, unsigned long asce,
1467 					int local)
1468 {
1469 	unsigned long r3o;
1470 
1471 	r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1472 	r3o |= _ASCE_TYPE_REGION3;
1473 	if (__builtin_constant_p(opt) && opt == 0) {
1474 		/* flush without guest asce */
1475 		asm volatile(
1476 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1477 			: "+m" (*pudp)
1478 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1479 			  [m4] "i" (local)
1480 			: "cc");
1481 	} else {
1482 		/* flush with guest asce */
1483 		asm volatile(
1484 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1485 			: "+m" (*pudp)
1486 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1487 			  [r3] "a" (asce), [m4] "i" (local)
1488 			: "cc" );
1489 	}
1490 }
1491 
1492 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1493 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1494 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1495 
1496 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1497 
1498 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1499 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1500 				pgtable_t pgtable);
1501 
1502 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1503 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1504 
1505 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1506 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1507 					unsigned long addr, pmd_t *pmdp,
1508 					pmd_t entry, int dirty)
1509 {
1510 	VM_BUG_ON(addr & ~HPAGE_MASK);
1511 
1512 	entry = pmd_mkyoung(entry);
1513 	if (dirty)
1514 		entry = pmd_mkdirty(entry);
1515 	if (pmd_val(*pmdp) == pmd_val(entry))
1516 		return 0;
1517 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1518 	return 1;
1519 }
1520 
1521 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1522 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1523 					    unsigned long addr, pmd_t *pmdp)
1524 {
1525 	pmd_t pmd = *pmdp;
1526 
1527 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1528 	return pmd_young(pmd);
1529 }
1530 
1531 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1532 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1533 					 unsigned long addr, pmd_t *pmdp)
1534 {
1535 	VM_BUG_ON(addr & ~HPAGE_MASK);
1536 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1537 }
1538 
1539 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1540 			      pmd_t *pmdp, pmd_t entry)
1541 {
1542 	if (!MACHINE_HAS_NX)
1543 		pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1544 	*pmdp = entry;
1545 }
1546 
1547 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1548 {
1549 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1550 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1551 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1552 	return pmd;
1553 }
1554 
1555 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1556 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1557 					    unsigned long addr, pmd_t *pmdp)
1558 {
1559 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1560 }
1561 
1562 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1563 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1564 						 unsigned long addr,
1565 						 pmd_t *pmdp, int full)
1566 {
1567 	if (full) {
1568 		pmd_t pmd = *pmdp;
1569 		*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1570 		return pmd;
1571 	}
1572 	return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1573 }
1574 
1575 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1576 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1577 					  unsigned long addr, pmd_t *pmdp)
1578 {
1579 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1580 }
1581 
1582 #define __HAVE_ARCH_PMDP_INVALIDATE
1583 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1584 				   unsigned long addr, pmd_t *pmdp)
1585 {
1586 	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1587 
1588 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1589 }
1590 
1591 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1592 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1593 				      unsigned long addr, pmd_t *pmdp)
1594 {
1595 	pmd_t pmd = *pmdp;
1596 
1597 	if (pmd_write(pmd))
1598 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1599 }
1600 
1601 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1602 					unsigned long address,
1603 					pmd_t *pmdp)
1604 {
1605 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1606 }
1607 #define pmdp_collapse_flush pmdp_collapse_flush
1608 
1609 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1610 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1611 
1612 static inline int pmd_trans_huge(pmd_t pmd)
1613 {
1614 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1615 }
1616 
1617 #define has_transparent_hugepage has_transparent_hugepage
1618 static inline int has_transparent_hugepage(void)
1619 {
1620 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1621 }
1622 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1623 
1624 /*
1625  * 64 bit swap entry format:
1626  * A page-table entry has some bits we have to treat in a special way.
1627  * Bits 52 and bit 55 have to be zero, otherwise a specification
1628  * exception will occur instead of a page translation exception. The
1629  * specification exception has the bad habit not to store necessary
1630  * information in the lowcore.
1631  * Bits 54 and 63 are used to indicate the page type.
1632  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1633  * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1634  * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1635  * for the offset.
1636  * |			  offset			|01100|type |00|
1637  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1638  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1639  */
1640 
1641 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1642 #define __SWP_OFFSET_SHIFT	12
1643 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1644 #define __SWP_TYPE_SHIFT	2
1645 
1646 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1647 {
1648 	pte_t pte;
1649 
1650 	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1651 	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1652 	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1653 	return pte;
1654 }
1655 
1656 static inline unsigned long __swp_type(swp_entry_t entry)
1657 {
1658 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1659 }
1660 
1661 static inline unsigned long __swp_offset(swp_entry_t entry)
1662 {
1663 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1664 }
1665 
1666 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1667 {
1668 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1669 }
1670 
1671 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1672 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1673 
1674 #define kern_addr_valid(addr)   (1)
1675 
1676 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1677 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1678 extern int s390_enable_sie(void);
1679 extern int s390_enable_skey(void);
1680 extern void s390_reset_cmma(struct mm_struct *mm);
1681 
1682 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1683 #define HAVE_ARCH_UNMAPPED_AREA
1684 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1685 
1686 #include <asm-generic/pgtable.h>
1687 
1688 #endif /* _S390_PAGE_H */
1689