xref: /linux/arch/s390/crypto/aes_s390.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Cryptographic API.
4  *
5  * s390 implementation of the AES Cipher Algorithm.
6  *
7  * s390 Version:
8  *   Copyright IBM Corp. 2005, 2017
9  *   Author(s): Jan Glauber (jang@de.ibm.com)
10  *		Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
11  *		Patrick Steuer <patrick.steuer@de.ibm.com>
12  *		Harald Freudenberger <freude@de.ibm.com>
13  *
14  * Derived from "crypto/aes_generic.c"
15  */
16 
17 #define KMSG_COMPONENT "aes_s390"
18 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
19 
20 #include <crypto/aes.h>
21 #include <crypto/algapi.h>
22 #include <crypto/ghash.h>
23 #include <crypto/internal/aead.h>
24 #include <crypto/internal/skcipher.h>
25 #include <crypto/scatterwalk.h>
26 #include <linux/err.h>
27 #include <linux/module.h>
28 #include <linux/cpufeature.h>
29 #include <linux/init.h>
30 #include <linux/mutex.h>
31 #include <linux/fips.h>
32 #include <linux/string.h>
33 #include <crypto/xts.h>
34 #include <asm/cpacf.h>
35 
36 static u8 *ctrblk;
37 static DEFINE_MUTEX(ctrblk_lock);
38 
39 static cpacf_mask_t km_functions, kmc_functions, kmctr_functions,
40 		    kma_functions;
41 
42 struct s390_aes_ctx {
43 	u8 key[AES_MAX_KEY_SIZE];
44 	int key_len;
45 	unsigned long fc;
46 	union {
47 		struct crypto_sync_skcipher *blk;
48 		struct crypto_cipher *cip;
49 	} fallback;
50 };
51 
52 struct s390_xts_ctx {
53 	u8 key[32];
54 	u8 pcc_key[32];
55 	int key_len;
56 	unsigned long fc;
57 	struct crypto_sync_skcipher *fallback;
58 };
59 
60 struct gcm_sg_walk {
61 	struct scatter_walk walk;
62 	unsigned int walk_bytes;
63 	u8 *walk_ptr;
64 	unsigned int walk_bytes_remain;
65 	u8 buf[AES_BLOCK_SIZE];
66 	unsigned int buf_bytes;
67 	u8 *ptr;
68 	unsigned int nbytes;
69 };
70 
71 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
72 		unsigned int key_len)
73 {
74 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
75 	int ret;
76 
77 	sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
78 	sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
79 			CRYPTO_TFM_REQ_MASK);
80 
81 	ret = crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
82 	if (ret) {
83 		tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
84 		tfm->crt_flags |= (sctx->fallback.cip->base.crt_flags &
85 				CRYPTO_TFM_RES_MASK);
86 	}
87 	return ret;
88 }
89 
90 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
91 		       unsigned int key_len)
92 {
93 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
94 	unsigned long fc;
95 
96 	/* Pick the correct function code based on the key length */
97 	fc = (key_len == 16) ? CPACF_KM_AES_128 :
98 	     (key_len == 24) ? CPACF_KM_AES_192 :
99 	     (key_len == 32) ? CPACF_KM_AES_256 : 0;
100 
101 	/* Check if the function code is available */
102 	sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
103 	if (!sctx->fc)
104 		return setkey_fallback_cip(tfm, in_key, key_len);
105 
106 	sctx->key_len = key_len;
107 	memcpy(sctx->key, in_key, key_len);
108 	return 0;
109 }
110 
111 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
112 {
113 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
114 
115 	if (unlikely(!sctx->fc)) {
116 		crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
117 		return;
118 	}
119 	cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE);
120 }
121 
122 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
123 {
124 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
125 
126 	if (unlikely(!sctx->fc)) {
127 		crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
128 		return;
129 	}
130 	cpacf_km(sctx->fc | CPACF_DECRYPT,
131 		 &sctx->key, out, in, AES_BLOCK_SIZE);
132 }
133 
134 static int fallback_init_cip(struct crypto_tfm *tfm)
135 {
136 	const char *name = tfm->__crt_alg->cra_name;
137 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
138 
139 	sctx->fallback.cip = crypto_alloc_cipher(name, 0,
140 						 CRYPTO_ALG_NEED_FALLBACK);
141 
142 	if (IS_ERR(sctx->fallback.cip)) {
143 		pr_err("Allocating AES fallback algorithm %s failed\n",
144 		       name);
145 		return PTR_ERR(sctx->fallback.cip);
146 	}
147 
148 	return 0;
149 }
150 
151 static void fallback_exit_cip(struct crypto_tfm *tfm)
152 {
153 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
154 
155 	crypto_free_cipher(sctx->fallback.cip);
156 	sctx->fallback.cip = NULL;
157 }
158 
159 static struct crypto_alg aes_alg = {
160 	.cra_name		=	"aes",
161 	.cra_driver_name	=	"aes-s390",
162 	.cra_priority		=	300,
163 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER |
164 					CRYPTO_ALG_NEED_FALLBACK,
165 	.cra_blocksize		=	AES_BLOCK_SIZE,
166 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
167 	.cra_module		=	THIS_MODULE,
168 	.cra_init               =       fallback_init_cip,
169 	.cra_exit               =       fallback_exit_cip,
170 	.cra_u			=	{
171 		.cipher = {
172 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
173 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
174 			.cia_setkey		=	aes_set_key,
175 			.cia_encrypt		=	aes_encrypt,
176 			.cia_decrypt		=	aes_decrypt,
177 		}
178 	}
179 };
180 
181 static int setkey_fallback_blk(struct crypto_tfm *tfm, const u8 *key,
182 		unsigned int len)
183 {
184 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
185 	unsigned int ret;
186 
187 	crypto_sync_skcipher_clear_flags(sctx->fallback.blk,
188 					 CRYPTO_TFM_REQ_MASK);
189 	crypto_sync_skcipher_set_flags(sctx->fallback.blk, tfm->crt_flags &
190 						      CRYPTO_TFM_REQ_MASK);
191 
192 	ret = crypto_sync_skcipher_setkey(sctx->fallback.blk, key, len);
193 
194 	tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
195 	tfm->crt_flags |= crypto_sync_skcipher_get_flags(sctx->fallback.blk) &
196 			  CRYPTO_TFM_RES_MASK;
197 
198 	return ret;
199 }
200 
201 static int fallback_blk_dec(struct blkcipher_desc *desc,
202 		struct scatterlist *dst, struct scatterlist *src,
203 		unsigned int nbytes)
204 {
205 	unsigned int ret;
206 	struct crypto_blkcipher *tfm = desc->tfm;
207 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(tfm);
208 	SYNC_SKCIPHER_REQUEST_ON_STACK(req, sctx->fallback.blk);
209 
210 	skcipher_request_set_sync_tfm(req, sctx->fallback.blk);
211 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
212 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
213 
214 	ret = crypto_skcipher_decrypt(req);
215 
216 	skcipher_request_zero(req);
217 	return ret;
218 }
219 
220 static int fallback_blk_enc(struct blkcipher_desc *desc,
221 		struct scatterlist *dst, struct scatterlist *src,
222 		unsigned int nbytes)
223 {
224 	unsigned int ret;
225 	struct crypto_blkcipher *tfm = desc->tfm;
226 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(tfm);
227 	SYNC_SKCIPHER_REQUEST_ON_STACK(req, sctx->fallback.blk);
228 
229 	skcipher_request_set_sync_tfm(req, sctx->fallback.blk);
230 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
231 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
232 
233 	ret = crypto_skcipher_encrypt(req);
234 	return ret;
235 }
236 
237 static int ecb_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
238 			   unsigned int key_len)
239 {
240 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
241 	unsigned long fc;
242 
243 	/* Pick the correct function code based on the key length */
244 	fc = (key_len == 16) ? CPACF_KM_AES_128 :
245 	     (key_len == 24) ? CPACF_KM_AES_192 :
246 	     (key_len == 32) ? CPACF_KM_AES_256 : 0;
247 
248 	/* Check if the function code is available */
249 	sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
250 	if (!sctx->fc)
251 		return setkey_fallback_blk(tfm, in_key, key_len);
252 
253 	sctx->key_len = key_len;
254 	memcpy(sctx->key, in_key, key_len);
255 	return 0;
256 }
257 
258 static int ecb_aes_crypt(struct blkcipher_desc *desc, unsigned long modifier,
259 			 struct blkcipher_walk *walk)
260 {
261 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
262 	unsigned int nbytes, n;
263 	int ret;
264 
265 	ret = blkcipher_walk_virt(desc, walk);
266 	while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
267 		/* only use complete blocks */
268 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
269 		cpacf_km(sctx->fc | modifier, sctx->key,
270 			 walk->dst.virt.addr, walk->src.virt.addr, n);
271 		ret = blkcipher_walk_done(desc, walk, nbytes - n);
272 	}
273 
274 	return ret;
275 }
276 
277 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
278 			   struct scatterlist *dst, struct scatterlist *src,
279 			   unsigned int nbytes)
280 {
281 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
282 	struct blkcipher_walk walk;
283 
284 	if (unlikely(!sctx->fc))
285 		return fallback_blk_enc(desc, dst, src, nbytes);
286 
287 	blkcipher_walk_init(&walk, dst, src, nbytes);
288 	return ecb_aes_crypt(desc, 0, &walk);
289 }
290 
291 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
292 			   struct scatterlist *dst, struct scatterlist *src,
293 			   unsigned int nbytes)
294 {
295 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
296 	struct blkcipher_walk walk;
297 
298 	if (unlikely(!sctx->fc))
299 		return fallback_blk_dec(desc, dst, src, nbytes);
300 
301 	blkcipher_walk_init(&walk, dst, src, nbytes);
302 	return ecb_aes_crypt(desc, CPACF_DECRYPT, &walk);
303 }
304 
305 static int fallback_init_blk(struct crypto_tfm *tfm)
306 {
307 	const char *name = tfm->__crt_alg->cra_name;
308 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
309 
310 	sctx->fallback.blk = crypto_alloc_sync_skcipher(name, 0,
311 						   CRYPTO_ALG_NEED_FALLBACK);
312 
313 	if (IS_ERR(sctx->fallback.blk)) {
314 		pr_err("Allocating AES fallback algorithm %s failed\n",
315 		       name);
316 		return PTR_ERR(sctx->fallback.blk);
317 	}
318 
319 	return 0;
320 }
321 
322 static void fallback_exit_blk(struct crypto_tfm *tfm)
323 {
324 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
325 
326 	crypto_free_sync_skcipher(sctx->fallback.blk);
327 }
328 
329 static struct crypto_alg ecb_aes_alg = {
330 	.cra_name		=	"ecb(aes)",
331 	.cra_driver_name	=	"ecb-aes-s390",
332 	.cra_priority		=	401,	/* combo: aes + ecb + 1 */
333 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER |
334 					CRYPTO_ALG_NEED_FALLBACK,
335 	.cra_blocksize		=	AES_BLOCK_SIZE,
336 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
337 	.cra_type		=	&crypto_blkcipher_type,
338 	.cra_module		=	THIS_MODULE,
339 	.cra_init		=	fallback_init_blk,
340 	.cra_exit		=	fallback_exit_blk,
341 	.cra_u			=	{
342 		.blkcipher = {
343 			.min_keysize		=	AES_MIN_KEY_SIZE,
344 			.max_keysize		=	AES_MAX_KEY_SIZE,
345 			.setkey			=	ecb_aes_set_key,
346 			.encrypt		=	ecb_aes_encrypt,
347 			.decrypt		=	ecb_aes_decrypt,
348 		}
349 	}
350 };
351 
352 static int cbc_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
353 			   unsigned int key_len)
354 {
355 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
356 	unsigned long fc;
357 
358 	/* Pick the correct function code based on the key length */
359 	fc = (key_len == 16) ? CPACF_KMC_AES_128 :
360 	     (key_len == 24) ? CPACF_KMC_AES_192 :
361 	     (key_len == 32) ? CPACF_KMC_AES_256 : 0;
362 
363 	/* Check if the function code is available */
364 	sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
365 	if (!sctx->fc)
366 		return setkey_fallback_blk(tfm, in_key, key_len);
367 
368 	sctx->key_len = key_len;
369 	memcpy(sctx->key, in_key, key_len);
370 	return 0;
371 }
372 
373 static int cbc_aes_crypt(struct blkcipher_desc *desc, unsigned long modifier,
374 			 struct blkcipher_walk *walk)
375 {
376 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
377 	unsigned int nbytes, n;
378 	int ret;
379 	struct {
380 		u8 iv[AES_BLOCK_SIZE];
381 		u8 key[AES_MAX_KEY_SIZE];
382 	} param;
383 
384 	ret = blkcipher_walk_virt(desc, walk);
385 	memcpy(param.iv, walk->iv, AES_BLOCK_SIZE);
386 	memcpy(param.key, sctx->key, sctx->key_len);
387 	while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
388 		/* only use complete blocks */
389 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
390 		cpacf_kmc(sctx->fc | modifier, &param,
391 			  walk->dst.virt.addr, walk->src.virt.addr, n);
392 		ret = blkcipher_walk_done(desc, walk, nbytes - n);
393 	}
394 	memcpy(walk->iv, param.iv, AES_BLOCK_SIZE);
395 	return ret;
396 }
397 
398 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
399 			   struct scatterlist *dst, struct scatterlist *src,
400 			   unsigned int nbytes)
401 {
402 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
403 	struct blkcipher_walk walk;
404 
405 	if (unlikely(!sctx->fc))
406 		return fallback_blk_enc(desc, dst, src, nbytes);
407 
408 	blkcipher_walk_init(&walk, dst, src, nbytes);
409 	return cbc_aes_crypt(desc, 0, &walk);
410 }
411 
412 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
413 			   struct scatterlist *dst, struct scatterlist *src,
414 			   unsigned int nbytes)
415 {
416 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
417 	struct blkcipher_walk walk;
418 
419 	if (unlikely(!sctx->fc))
420 		return fallback_blk_dec(desc, dst, src, nbytes);
421 
422 	blkcipher_walk_init(&walk, dst, src, nbytes);
423 	return cbc_aes_crypt(desc, CPACF_DECRYPT, &walk);
424 }
425 
426 static struct crypto_alg cbc_aes_alg = {
427 	.cra_name		=	"cbc(aes)",
428 	.cra_driver_name	=	"cbc-aes-s390",
429 	.cra_priority		=	402,	/* ecb-aes-s390 + 1 */
430 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER |
431 					CRYPTO_ALG_NEED_FALLBACK,
432 	.cra_blocksize		=	AES_BLOCK_SIZE,
433 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
434 	.cra_type		=	&crypto_blkcipher_type,
435 	.cra_module		=	THIS_MODULE,
436 	.cra_init		=	fallback_init_blk,
437 	.cra_exit		=	fallback_exit_blk,
438 	.cra_u			=	{
439 		.blkcipher = {
440 			.min_keysize		=	AES_MIN_KEY_SIZE,
441 			.max_keysize		=	AES_MAX_KEY_SIZE,
442 			.ivsize			=	AES_BLOCK_SIZE,
443 			.setkey			=	cbc_aes_set_key,
444 			.encrypt		=	cbc_aes_encrypt,
445 			.decrypt		=	cbc_aes_decrypt,
446 		}
447 	}
448 };
449 
450 static int xts_fallback_setkey(struct crypto_tfm *tfm, const u8 *key,
451 				   unsigned int len)
452 {
453 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
454 	unsigned int ret;
455 
456 	crypto_sync_skcipher_clear_flags(xts_ctx->fallback,
457 					 CRYPTO_TFM_REQ_MASK);
458 	crypto_sync_skcipher_set_flags(xts_ctx->fallback, tfm->crt_flags &
459 						     CRYPTO_TFM_REQ_MASK);
460 
461 	ret = crypto_sync_skcipher_setkey(xts_ctx->fallback, key, len);
462 
463 	tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
464 	tfm->crt_flags |= crypto_sync_skcipher_get_flags(xts_ctx->fallback) &
465 			  CRYPTO_TFM_RES_MASK;
466 
467 	return ret;
468 }
469 
470 static int xts_fallback_decrypt(struct blkcipher_desc *desc,
471 		struct scatterlist *dst, struct scatterlist *src,
472 		unsigned int nbytes)
473 {
474 	struct crypto_blkcipher *tfm = desc->tfm;
475 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(tfm);
476 	SYNC_SKCIPHER_REQUEST_ON_STACK(req, xts_ctx->fallback);
477 	unsigned int ret;
478 
479 	skcipher_request_set_sync_tfm(req, xts_ctx->fallback);
480 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
481 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
482 
483 	ret = crypto_skcipher_decrypt(req);
484 
485 	skcipher_request_zero(req);
486 	return ret;
487 }
488 
489 static int xts_fallback_encrypt(struct blkcipher_desc *desc,
490 		struct scatterlist *dst, struct scatterlist *src,
491 		unsigned int nbytes)
492 {
493 	struct crypto_blkcipher *tfm = desc->tfm;
494 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(tfm);
495 	SYNC_SKCIPHER_REQUEST_ON_STACK(req, xts_ctx->fallback);
496 	unsigned int ret;
497 
498 	skcipher_request_set_sync_tfm(req, xts_ctx->fallback);
499 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
500 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
501 
502 	ret = crypto_skcipher_encrypt(req);
503 
504 	skcipher_request_zero(req);
505 	return ret;
506 }
507 
508 static int xts_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
509 			   unsigned int key_len)
510 {
511 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
512 	unsigned long fc;
513 	int err;
514 
515 	err = xts_check_key(tfm, in_key, key_len);
516 	if (err)
517 		return err;
518 
519 	/* In fips mode only 128 bit or 256 bit keys are valid */
520 	if (fips_enabled && key_len != 32 && key_len != 64) {
521 		tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
522 		return -EINVAL;
523 	}
524 
525 	/* Pick the correct function code based on the key length */
526 	fc = (key_len == 32) ? CPACF_KM_XTS_128 :
527 	     (key_len == 64) ? CPACF_KM_XTS_256 : 0;
528 
529 	/* Check if the function code is available */
530 	xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
531 	if (!xts_ctx->fc)
532 		return xts_fallback_setkey(tfm, in_key, key_len);
533 
534 	/* Split the XTS key into the two subkeys */
535 	key_len = key_len / 2;
536 	xts_ctx->key_len = key_len;
537 	memcpy(xts_ctx->key, in_key, key_len);
538 	memcpy(xts_ctx->pcc_key, in_key + key_len, key_len);
539 	return 0;
540 }
541 
542 static int xts_aes_crypt(struct blkcipher_desc *desc, unsigned long modifier,
543 			 struct blkcipher_walk *walk)
544 {
545 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
546 	unsigned int offset, nbytes, n;
547 	int ret;
548 	struct {
549 		u8 key[32];
550 		u8 tweak[16];
551 		u8 block[16];
552 		u8 bit[16];
553 		u8 xts[16];
554 	} pcc_param;
555 	struct {
556 		u8 key[32];
557 		u8 init[16];
558 	} xts_param;
559 
560 	ret = blkcipher_walk_virt(desc, walk);
561 	offset = xts_ctx->key_len & 0x10;
562 	memset(pcc_param.block, 0, sizeof(pcc_param.block));
563 	memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
564 	memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
565 	memcpy(pcc_param.tweak, walk->iv, sizeof(pcc_param.tweak));
566 	memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len);
567 	cpacf_pcc(xts_ctx->fc, pcc_param.key + offset);
568 
569 	memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len);
570 	memcpy(xts_param.init, pcc_param.xts, 16);
571 
572 	while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
573 		/* only use complete blocks */
574 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
575 		cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset,
576 			 walk->dst.virt.addr, walk->src.virt.addr, n);
577 		ret = blkcipher_walk_done(desc, walk, nbytes - n);
578 	}
579 	return ret;
580 }
581 
582 static int xts_aes_encrypt(struct blkcipher_desc *desc,
583 			   struct scatterlist *dst, struct scatterlist *src,
584 			   unsigned int nbytes)
585 {
586 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
587 	struct blkcipher_walk walk;
588 
589 	if (unlikely(!xts_ctx->fc))
590 		return xts_fallback_encrypt(desc, dst, src, nbytes);
591 
592 	blkcipher_walk_init(&walk, dst, src, nbytes);
593 	return xts_aes_crypt(desc, 0, &walk);
594 }
595 
596 static int xts_aes_decrypt(struct blkcipher_desc *desc,
597 			   struct scatterlist *dst, struct scatterlist *src,
598 			   unsigned int nbytes)
599 {
600 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
601 	struct blkcipher_walk walk;
602 
603 	if (unlikely(!xts_ctx->fc))
604 		return xts_fallback_decrypt(desc, dst, src, nbytes);
605 
606 	blkcipher_walk_init(&walk, dst, src, nbytes);
607 	return xts_aes_crypt(desc, CPACF_DECRYPT, &walk);
608 }
609 
610 static int xts_fallback_init(struct crypto_tfm *tfm)
611 {
612 	const char *name = tfm->__crt_alg->cra_name;
613 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
614 
615 	xts_ctx->fallback = crypto_alloc_sync_skcipher(name, 0,
616 						  CRYPTO_ALG_NEED_FALLBACK);
617 
618 	if (IS_ERR(xts_ctx->fallback)) {
619 		pr_err("Allocating XTS fallback algorithm %s failed\n",
620 		       name);
621 		return PTR_ERR(xts_ctx->fallback);
622 	}
623 	return 0;
624 }
625 
626 static void xts_fallback_exit(struct crypto_tfm *tfm)
627 {
628 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
629 
630 	crypto_free_sync_skcipher(xts_ctx->fallback);
631 }
632 
633 static struct crypto_alg xts_aes_alg = {
634 	.cra_name		=	"xts(aes)",
635 	.cra_driver_name	=	"xts-aes-s390",
636 	.cra_priority		=	402,	/* ecb-aes-s390 + 1 */
637 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER |
638 					CRYPTO_ALG_NEED_FALLBACK,
639 	.cra_blocksize		=	AES_BLOCK_SIZE,
640 	.cra_ctxsize		=	sizeof(struct s390_xts_ctx),
641 	.cra_type		=	&crypto_blkcipher_type,
642 	.cra_module		=	THIS_MODULE,
643 	.cra_init		=	xts_fallback_init,
644 	.cra_exit		=	xts_fallback_exit,
645 	.cra_u			=	{
646 		.blkcipher = {
647 			.min_keysize		=	2 * AES_MIN_KEY_SIZE,
648 			.max_keysize		=	2 * AES_MAX_KEY_SIZE,
649 			.ivsize			=	AES_BLOCK_SIZE,
650 			.setkey			=	xts_aes_set_key,
651 			.encrypt		=	xts_aes_encrypt,
652 			.decrypt		=	xts_aes_decrypt,
653 		}
654 	}
655 };
656 
657 static int ctr_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
658 			   unsigned int key_len)
659 {
660 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
661 	unsigned long fc;
662 
663 	/* Pick the correct function code based on the key length */
664 	fc = (key_len == 16) ? CPACF_KMCTR_AES_128 :
665 	     (key_len == 24) ? CPACF_KMCTR_AES_192 :
666 	     (key_len == 32) ? CPACF_KMCTR_AES_256 : 0;
667 
668 	/* Check if the function code is available */
669 	sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
670 	if (!sctx->fc)
671 		return setkey_fallback_blk(tfm, in_key, key_len);
672 
673 	sctx->key_len = key_len;
674 	memcpy(sctx->key, in_key, key_len);
675 	return 0;
676 }
677 
678 static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
679 {
680 	unsigned int i, n;
681 
682 	/* only use complete blocks, max. PAGE_SIZE */
683 	memcpy(ctrptr, iv, AES_BLOCK_SIZE);
684 	n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
685 	for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
686 		memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
687 		crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
688 		ctrptr += AES_BLOCK_SIZE;
689 	}
690 	return n;
691 }
692 
693 static int ctr_aes_crypt(struct blkcipher_desc *desc, unsigned long modifier,
694 			 struct blkcipher_walk *walk)
695 {
696 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
697 	u8 buf[AES_BLOCK_SIZE], *ctrptr;
698 	unsigned int n, nbytes;
699 	int ret, locked;
700 
701 	locked = mutex_trylock(&ctrblk_lock);
702 
703 	ret = blkcipher_walk_virt_block(desc, walk, AES_BLOCK_SIZE);
704 	while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
705 		n = AES_BLOCK_SIZE;
706 		if (nbytes >= 2*AES_BLOCK_SIZE && locked)
707 			n = __ctrblk_init(ctrblk, walk->iv, nbytes);
708 		ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk->iv;
709 		cpacf_kmctr(sctx->fc | modifier, sctx->key,
710 			    walk->dst.virt.addr, walk->src.virt.addr,
711 			    n, ctrptr);
712 		if (ctrptr == ctrblk)
713 			memcpy(walk->iv, ctrptr + n - AES_BLOCK_SIZE,
714 			       AES_BLOCK_SIZE);
715 		crypto_inc(walk->iv, AES_BLOCK_SIZE);
716 		ret = blkcipher_walk_done(desc, walk, nbytes - n);
717 	}
718 	if (locked)
719 		mutex_unlock(&ctrblk_lock);
720 	/*
721 	 * final block may be < AES_BLOCK_SIZE, copy only nbytes
722 	 */
723 	if (nbytes) {
724 		cpacf_kmctr(sctx->fc | modifier, sctx->key,
725 			    buf, walk->src.virt.addr,
726 			    AES_BLOCK_SIZE, walk->iv);
727 		memcpy(walk->dst.virt.addr, buf, nbytes);
728 		crypto_inc(walk->iv, AES_BLOCK_SIZE);
729 		ret = blkcipher_walk_done(desc, walk, 0);
730 	}
731 
732 	return ret;
733 }
734 
735 static int ctr_aes_encrypt(struct blkcipher_desc *desc,
736 			   struct scatterlist *dst, struct scatterlist *src,
737 			   unsigned int nbytes)
738 {
739 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
740 	struct blkcipher_walk walk;
741 
742 	if (unlikely(!sctx->fc))
743 		return fallback_blk_enc(desc, dst, src, nbytes);
744 
745 	blkcipher_walk_init(&walk, dst, src, nbytes);
746 	return ctr_aes_crypt(desc, 0, &walk);
747 }
748 
749 static int ctr_aes_decrypt(struct blkcipher_desc *desc,
750 			   struct scatterlist *dst, struct scatterlist *src,
751 			   unsigned int nbytes)
752 {
753 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
754 	struct blkcipher_walk walk;
755 
756 	if (unlikely(!sctx->fc))
757 		return fallback_blk_dec(desc, dst, src, nbytes);
758 
759 	blkcipher_walk_init(&walk, dst, src, nbytes);
760 	return ctr_aes_crypt(desc, CPACF_DECRYPT, &walk);
761 }
762 
763 static struct crypto_alg ctr_aes_alg = {
764 	.cra_name		=	"ctr(aes)",
765 	.cra_driver_name	=	"ctr-aes-s390",
766 	.cra_priority		=	402,	/* ecb-aes-s390 + 1 */
767 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER |
768 					CRYPTO_ALG_NEED_FALLBACK,
769 	.cra_blocksize		=	1,
770 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
771 	.cra_type		=	&crypto_blkcipher_type,
772 	.cra_module		=	THIS_MODULE,
773 	.cra_init		=	fallback_init_blk,
774 	.cra_exit		=	fallback_exit_blk,
775 	.cra_u			=	{
776 		.blkcipher = {
777 			.min_keysize		=	AES_MIN_KEY_SIZE,
778 			.max_keysize		=	AES_MAX_KEY_SIZE,
779 			.ivsize			=	AES_BLOCK_SIZE,
780 			.setkey			=	ctr_aes_set_key,
781 			.encrypt		=	ctr_aes_encrypt,
782 			.decrypt		=	ctr_aes_decrypt,
783 		}
784 	}
785 };
786 
787 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key,
788 			  unsigned int keylen)
789 {
790 	struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
791 
792 	switch (keylen) {
793 	case AES_KEYSIZE_128:
794 		ctx->fc = CPACF_KMA_GCM_AES_128;
795 		break;
796 	case AES_KEYSIZE_192:
797 		ctx->fc = CPACF_KMA_GCM_AES_192;
798 		break;
799 	case AES_KEYSIZE_256:
800 		ctx->fc = CPACF_KMA_GCM_AES_256;
801 		break;
802 	default:
803 		return -EINVAL;
804 	}
805 
806 	memcpy(ctx->key, key, keylen);
807 	ctx->key_len = keylen;
808 	return 0;
809 }
810 
811 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
812 {
813 	switch (authsize) {
814 	case 4:
815 	case 8:
816 	case 12:
817 	case 13:
818 	case 14:
819 	case 15:
820 	case 16:
821 		break;
822 	default:
823 		return -EINVAL;
824 	}
825 
826 	return 0;
827 }
828 
829 static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg,
830 			   unsigned int len)
831 {
832 	memset(gw, 0, sizeof(*gw));
833 	gw->walk_bytes_remain = len;
834 	scatterwalk_start(&gw->walk, sg);
835 }
836 
837 static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)
838 {
839 	struct scatterlist *nextsg;
840 
841 	gw->walk_bytes = scatterwalk_clamp(&gw->walk, gw->walk_bytes_remain);
842 	while (!gw->walk_bytes) {
843 		nextsg = sg_next(gw->walk.sg);
844 		if (!nextsg)
845 			return 0;
846 		scatterwalk_start(&gw->walk, nextsg);
847 		gw->walk_bytes = scatterwalk_clamp(&gw->walk,
848 						   gw->walk_bytes_remain);
849 	}
850 	gw->walk_ptr = scatterwalk_map(&gw->walk);
851 	return gw->walk_bytes;
852 }
853 
854 static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw,
855 					     unsigned int nbytes)
856 {
857 	gw->walk_bytes_remain -= nbytes;
858 	scatterwalk_unmap(&gw->walk);
859 	scatterwalk_advance(&gw->walk, nbytes);
860 	scatterwalk_done(&gw->walk, 0, gw->walk_bytes_remain);
861 	gw->walk_ptr = NULL;
862 }
863 
864 static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
865 {
866 	int n;
867 
868 	if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) {
869 		gw->ptr = gw->buf;
870 		gw->nbytes = gw->buf_bytes;
871 		goto out;
872 	}
873 
874 	if (gw->walk_bytes_remain == 0) {
875 		gw->ptr = NULL;
876 		gw->nbytes = 0;
877 		goto out;
878 	}
879 
880 	if (!_gcm_sg_clamp_and_map(gw)) {
881 		gw->ptr = NULL;
882 		gw->nbytes = 0;
883 		goto out;
884 	}
885 
886 	if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) {
887 		gw->ptr = gw->walk_ptr;
888 		gw->nbytes = gw->walk_bytes;
889 		goto out;
890 	}
891 
892 	while (1) {
893 		n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes);
894 		memcpy(gw->buf + gw->buf_bytes, gw->walk_ptr, n);
895 		gw->buf_bytes += n;
896 		_gcm_sg_unmap_and_advance(gw, n);
897 		if (gw->buf_bytes >= minbytesneeded) {
898 			gw->ptr = gw->buf;
899 			gw->nbytes = gw->buf_bytes;
900 			goto out;
901 		}
902 		if (!_gcm_sg_clamp_and_map(gw)) {
903 			gw->ptr = NULL;
904 			gw->nbytes = 0;
905 			goto out;
906 		}
907 	}
908 
909 out:
910 	return gw->nbytes;
911 }
912 
913 static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
914 {
915 	if (gw->walk_bytes_remain == 0) {
916 		gw->ptr = NULL;
917 		gw->nbytes = 0;
918 		goto out;
919 	}
920 
921 	if (!_gcm_sg_clamp_and_map(gw)) {
922 		gw->ptr = NULL;
923 		gw->nbytes = 0;
924 		goto out;
925 	}
926 
927 	if (gw->walk_bytes >= minbytesneeded) {
928 		gw->ptr = gw->walk_ptr;
929 		gw->nbytes = gw->walk_bytes;
930 		goto out;
931 	}
932 
933 	scatterwalk_unmap(&gw->walk);
934 	gw->walk_ptr = NULL;
935 
936 	gw->ptr = gw->buf;
937 	gw->nbytes = sizeof(gw->buf);
938 
939 out:
940 	return gw->nbytes;
941 }
942 
943 static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
944 {
945 	if (gw->ptr == NULL)
946 		return 0;
947 
948 	if (gw->ptr == gw->buf) {
949 		int n = gw->buf_bytes - bytesdone;
950 		if (n > 0) {
951 			memmove(gw->buf, gw->buf + bytesdone, n);
952 			gw->buf_bytes = n;
953 		} else
954 			gw->buf_bytes = 0;
955 	} else
956 		_gcm_sg_unmap_and_advance(gw, bytesdone);
957 
958 	return bytesdone;
959 }
960 
961 static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
962 {
963 	int i, n;
964 
965 	if (gw->ptr == NULL)
966 		return 0;
967 
968 	if (gw->ptr == gw->buf) {
969 		for (i = 0; i < bytesdone; i += n) {
970 			if (!_gcm_sg_clamp_and_map(gw))
971 				return i;
972 			n = min(gw->walk_bytes, bytesdone - i);
973 			memcpy(gw->walk_ptr, gw->buf + i, n);
974 			_gcm_sg_unmap_and_advance(gw, n);
975 		}
976 	} else
977 		_gcm_sg_unmap_and_advance(gw, bytesdone);
978 
979 	return bytesdone;
980 }
981 
982 static int gcm_aes_crypt(struct aead_request *req, unsigned int flags)
983 {
984 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
985 	struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
986 	unsigned int ivsize = crypto_aead_ivsize(tfm);
987 	unsigned int taglen = crypto_aead_authsize(tfm);
988 	unsigned int aadlen = req->assoclen;
989 	unsigned int pclen = req->cryptlen;
990 	int ret = 0;
991 
992 	unsigned int n, len, in_bytes, out_bytes,
993 		     min_bytes, bytes, aad_bytes, pc_bytes;
994 	struct gcm_sg_walk gw_in, gw_out;
995 	u8 tag[GHASH_DIGEST_SIZE];
996 
997 	struct {
998 		u32 _[3];		/* reserved */
999 		u32 cv;			/* Counter Value */
1000 		u8 t[GHASH_DIGEST_SIZE];/* Tag */
1001 		u8 h[AES_BLOCK_SIZE];	/* Hash-subkey */
1002 		u64 taadl;		/* Total AAD Length */
1003 		u64 tpcl;		/* Total Plain-/Cipher-text Length */
1004 		u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */
1005 		u8 k[AES_MAX_KEY_SIZE];	/* Key */
1006 	} param;
1007 
1008 	/*
1009 	 * encrypt
1010 	 *   req->src: aad||plaintext
1011 	 *   req->dst: aad||ciphertext||tag
1012 	 * decrypt
1013 	 *   req->src: aad||ciphertext||tag
1014 	 *   req->dst: aad||plaintext, return 0 or -EBADMSG
1015 	 * aad, plaintext and ciphertext may be empty.
1016 	 */
1017 	if (flags & CPACF_DECRYPT)
1018 		pclen -= taglen;
1019 	len = aadlen + pclen;
1020 
1021 	memset(&param, 0, sizeof(param));
1022 	param.cv = 1;
1023 	param.taadl = aadlen * 8;
1024 	param.tpcl = pclen * 8;
1025 	memcpy(param.j0, req->iv, ivsize);
1026 	*(u32 *)(param.j0 + ivsize) = 1;
1027 	memcpy(param.k, ctx->key, ctx->key_len);
1028 
1029 	gcm_walk_start(&gw_in, req->src, len);
1030 	gcm_walk_start(&gw_out, req->dst, len);
1031 
1032 	do {
1033 		min_bytes = min_t(unsigned int,
1034 				  aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE);
1035 		in_bytes = gcm_in_walk_go(&gw_in, min_bytes);
1036 		out_bytes = gcm_out_walk_go(&gw_out, min_bytes);
1037 		bytes = min(in_bytes, out_bytes);
1038 
1039 		if (aadlen + pclen <= bytes) {
1040 			aad_bytes = aadlen;
1041 			pc_bytes = pclen;
1042 			flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC;
1043 		} else {
1044 			if (aadlen <= bytes) {
1045 				aad_bytes = aadlen;
1046 				pc_bytes = (bytes - aadlen) &
1047 					   ~(AES_BLOCK_SIZE - 1);
1048 				flags |= CPACF_KMA_LAAD;
1049 			} else {
1050 				aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1);
1051 				pc_bytes = 0;
1052 			}
1053 		}
1054 
1055 		if (aad_bytes > 0)
1056 			memcpy(gw_out.ptr, gw_in.ptr, aad_bytes);
1057 
1058 		cpacf_kma(ctx->fc | flags, &param,
1059 			  gw_out.ptr + aad_bytes,
1060 			  gw_in.ptr + aad_bytes, pc_bytes,
1061 			  gw_in.ptr, aad_bytes);
1062 
1063 		n = aad_bytes + pc_bytes;
1064 		if (gcm_in_walk_done(&gw_in, n) != n)
1065 			return -ENOMEM;
1066 		if (gcm_out_walk_done(&gw_out, n) != n)
1067 			return -ENOMEM;
1068 		aadlen -= aad_bytes;
1069 		pclen -= pc_bytes;
1070 	} while (aadlen + pclen > 0);
1071 
1072 	if (flags & CPACF_DECRYPT) {
1073 		scatterwalk_map_and_copy(tag, req->src, len, taglen, 0);
1074 		if (crypto_memneq(tag, param.t, taglen))
1075 			ret = -EBADMSG;
1076 	} else
1077 		scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1);
1078 
1079 	memzero_explicit(&param, sizeof(param));
1080 	return ret;
1081 }
1082 
1083 static int gcm_aes_encrypt(struct aead_request *req)
1084 {
1085 	return gcm_aes_crypt(req, CPACF_ENCRYPT);
1086 }
1087 
1088 static int gcm_aes_decrypt(struct aead_request *req)
1089 {
1090 	return gcm_aes_crypt(req, CPACF_DECRYPT);
1091 }
1092 
1093 static struct aead_alg gcm_aes_aead = {
1094 	.setkey			= gcm_aes_setkey,
1095 	.setauthsize		= gcm_aes_setauthsize,
1096 	.encrypt		= gcm_aes_encrypt,
1097 	.decrypt		= gcm_aes_decrypt,
1098 
1099 	.ivsize			= GHASH_BLOCK_SIZE - sizeof(u32),
1100 	.maxauthsize		= GHASH_DIGEST_SIZE,
1101 	.chunksize		= AES_BLOCK_SIZE,
1102 
1103 	.base			= {
1104 		.cra_blocksize		= 1,
1105 		.cra_ctxsize		= sizeof(struct s390_aes_ctx),
1106 		.cra_priority		= 900,
1107 		.cra_name		= "gcm(aes)",
1108 		.cra_driver_name	= "gcm-aes-s390",
1109 		.cra_module		= THIS_MODULE,
1110 	},
1111 };
1112 
1113 static struct crypto_alg *aes_s390_algs_ptr[5];
1114 static int aes_s390_algs_num;
1115 static struct aead_alg *aes_s390_aead_alg;
1116 
1117 static int aes_s390_register_alg(struct crypto_alg *alg)
1118 {
1119 	int ret;
1120 
1121 	ret = crypto_register_alg(alg);
1122 	if (!ret)
1123 		aes_s390_algs_ptr[aes_s390_algs_num++] = alg;
1124 	return ret;
1125 }
1126 
1127 static void aes_s390_fini(void)
1128 {
1129 	while (aes_s390_algs_num--)
1130 		crypto_unregister_alg(aes_s390_algs_ptr[aes_s390_algs_num]);
1131 	if (ctrblk)
1132 		free_page((unsigned long) ctrblk);
1133 
1134 	if (aes_s390_aead_alg)
1135 		crypto_unregister_aead(aes_s390_aead_alg);
1136 }
1137 
1138 static int __init aes_s390_init(void)
1139 {
1140 	int ret;
1141 
1142 	/* Query available functions for KM, KMC, KMCTR and KMA */
1143 	cpacf_query(CPACF_KM, &km_functions);
1144 	cpacf_query(CPACF_KMC, &kmc_functions);
1145 	cpacf_query(CPACF_KMCTR, &kmctr_functions);
1146 	cpacf_query(CPACF_KMA, &kma_functions);
1147 
1148 	if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) ||
1149 	    cpacf_test_func(&km_functions, CPACF_KM_AES_192) ||
1150 	    cpacf_test_func(&km_functions, CPACF_KM_AES_256)) {
1151 		ret = aes_s390_register_alg(&aes_alg);
1152 		if (ret)
1153 			goto out_err;
1154 		ret = aes_s390_register_alg(&ecb_aes_alg);
1155 		if (ret)
1156 			goto out_err;
1157 	}
1158 
1159 	if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) ||
1160 	    cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) ||
1161 	    cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) {
1162 		ret = aes_s390_register_alg(&cbc_aes_alg);
1163 		if (ret)
1164 			goto out_err;
1165 	}
1166 
1167 	if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) ||
1168 	    cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) {
1169 		ret = aes_s390_register_alg(&xts_aes_alg);
1170 		if (ret)
1171 			goto out_err;
1172 	}
1173 
1174 	if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) ||
1175 	    cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) ||
1176 	    cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) {
1177 		ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
1178 		if (!ctrblk) {
1179 			ret = -ENOMEM;
1180 			goto out_err;
1181 		}
1182 		ret = aes_s390_register_alg(&ctr_aes_alg);
1183 		if (ret)
1184 			goto out_err;
1185 	}
1186 
1187 	if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) ||
1188 	    cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) ||
1189 	    cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) {
1190 		ret = crypto_register_aead(&gcm_aes_aead);
1191 		if (ret)
1192 			goto out_err;
1193 		aes_s390_aead_alg = &gcm_aes_aead;
1194 	}
1195 
1196 	return 0;
1197 out_err:
1198 	aes_s390_fini();
1199 	return ret;
1200 }
1201 
1202 module_cpu_feature_match(MSA, aes_s390_init);
1203 module_exit(aes_s390_fini);
1204 
1205 MODULE_ALIAS_CRYPTO("aes-all");
1206 
1207 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
1208 MODULE_LICENSE("GPL");
1209