xref: /linux/arch/s390/crypto/aes_s390.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Cryptographic API.
4  *
5  * s390 implementation of the AES Cipher Algorithm.
6  *
7  * s390 Version:
8  *   Copyright IBM Corp. 2005, 2017
9  *   Author(s): Jan Glauber (jang@de.ibm.com)
10  *		Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
11  *		Patrick Steuer <patrick.steuer@de.ibm.com>
12  *		Harald Freudenberger <freude@de.ibm.com>
13  *
14  * Derived from "crypto/aes_generic.c"
15  */
16 
17 #define pr_fmt(fmt) "aes_s390: " fmt
18 
19 #include <crypto/aes.h>
20 #include <crypto/algapi.h>
21 #include <crypto/ghash.h>
22 #include <crypto/internal/aead.h>
23 #include <crypto/internal/cipher.h>
24 #include <crypto/internal/skcipher.h>
25 #include <crypto/scatterwalk.h>
26 #include <linux/err.h>
27 #include <linux/module.h>
28 #include <linux/cpufeature.h>
29 #include <linux/init.h>
30 #include <linux/mutex.h>
31 #include <linux/fips.h>
32 #include <linux/string.h>
33 #include <crypto/xts.h>
34 #include <asm/cpacf.h>
35 
36 static u8 *ctrblk;
37 static DEFINE_MUTEX(ctrblk_lock);
38 
39 static cpacf_mask_t km_functions, kmc_functions, kmctr_functions,
40 		    kma_functions;
41 
42 struct s390_aes_ctx {
43 	u8 key[AES_MAX_KEY_SIZE];
44 	int key_len;
45 	unsigned long fc;
46 	union {
47 		struct crypto_skcipher *skcipher;
48 		struct crypto_cipher *cip;
49 	} fallback;
50 };
51 
52 struct s390_xts_ctx {
53 	union {
54 		u8 keys[64];
55 		struct {
56 			u8 key[32];
57 			u8 pcc_key[32];
58 		};
59 	};
60 	int key_len;
61 	unsigned long fc;
62 	struct crypto_skcipher *fallback;
63 };
64 
65 struct gcm_sg_walk {
66 	struct scatter_walk walk;
67 	unsigned int walk_bytes;
68 	unsigned int walk_bytes_remain;
69 	u8 buf[AES_BLOCK_SIZE];
70 	unsigned int buf_bytes;
71 	u8 *ptr;
72 	unsigned int nbytes;
73 };
74 
75 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
76 		unsigned int key_len)
77 {
78 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
79 
80 	sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
81 	sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
82 			CRYPTO_TFM_REQ_MASK);
83 
84 	return crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
85 }
86 
87 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
88 		       unsigned int key_len)
89 {
90 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
91 	unsigned long fc;
92 
93 	/* Pick the correct function code based on the key length */
94 	fc = (key_len == 16) ? CPACF_KM_AES_128 :
95 	     (key_len == 24) ? CPACF_KM_AES_192 :
96 	     (key_len == 32) ? CPACF_KM_AES_256 : 0;
97 
98 	/* Check if the function code is available */
99 	sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
100 	if (!sctx->fc)
101 		return setkey_fallback_cip(tfm, in_key, key_len);
102 
103 	sctx->key_len = key_len;
104 	memcpy(sctx->key, in_key, key_len);
105 	return 0;
106 }
107 
108 static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
109 {
110 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
111 
112 	if (unlikely(!sctx->fc)) {
113 		crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
114 		return;
115 	}
116 	cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE);
117 }
118 
119 static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
120 {
121 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
122 
123 	if (unlikely(!sctx->fc)) {
124 		crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
125 		return;
126 	}
127 	cpacf_km(sctx->fc | CPACF_DECRYPT,
128 		 &sctx->key, out, in, AES_BLOCK_SIZE);
129 }
130 
131 static int fallback_init_cip(struct crypto_tfm *tfm)
132 {
133 	const char *name = tfm->__crt_alg->cra_name;
134 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
135 
136 	sctx->fallback.cip = crypto_alloc_cipher(name, 0,
137 						 CRYPTO_ALG_NEED_FALLBACK);
138 
139 	if (IS_ERR(sctx->fallback.cip)) {
140 		pr_err("Allocating AES fallback algorithm %s failed\n",
141 		       name);
142 		return PTR_ERR(sctx->fallback.cip);
143 	}
144 
145 	return 0;
146 }
147 
148 static void fallback_exit_cip(struct crypto_tfm *tfm)
149 {
150 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
151 
152 	crypto_free_cipher(sctx->fallback.cip);
153 	sctx->fallback.cip = NULL;
154 }
155 
156 static struct crypto_alg aes_alg = {
157 	.cra_name		=	"aes",
158 	.cra_driver_name	=	"aes-s390",
159 	.cra_priority		=	300,
160 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER |
161 					CRYPTO_ALG_NEED_FALLBACK,
162 	.cra_blocksize		=	AES_BLOCK_SIZE,
163 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
164 	.cra_module		=	THIS_MODULE,
165 	.cra_init               =       fallback_init_cip,
166 	.cra_exit               =       fallback_exit_cip,
167 	.cra_u			=	{
168 		.cipher = {
169 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
170 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
171 			.cia_setkey		=	aes_set_key,
172 			.cia_encrypt		=	crypto_aes_encrypt,
173 			.cia_decrypt		=	crypto_aes_decrypt,
174 		}
175 	}
176 };
177 
178 static int setkey_fallback_skcipher(struct crypto_skcipher *tfm, const u8 *key,
179 				    unsigned int len)
180 {
181 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
182 
183 	crypto_skcipher_clear_flags(sctx->fallback.skcipher,
184 				    CRYPTO_TFM_REQ_MASK);
185 	crypto_skcipher_set_flags(sctx->fallback.skcipher,
186 				  crypto_skcipher_get_flags(tfm) &
187 				  CRYPTO_TFM_REQ_MASK);
188 	return crypto_skcipher_setkey(sctx->fallback.skcipher, key, len);
189 }
190 
191 static int fallback_skcipher_crypt(struct s390_aes_ctx *sctx,
192 				   struct skcipher_request *req,
193 				   unsigned long modifier)
194 {
195 	struct skcipher_request *subreq = skcipher_request_ctx(req);
196 
197 	*subreq = *req;
198 	skcipher_request_set_tfm(subreq, sctx->fallback.skcipher);
199 	return (modifier & CPACF_DECRYPT) ?
200 		crypto_skcipher_decrypt(subreq) :
201 		crypto_skcipher_encrypt(subreq);
202 }
203 
204 static int ecb_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
205 			   unsigned int key_len)
206 {
207 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
208 	unsigned long fc;
209 
210 	/* Pick the correct function code based on the key length */
211 	fc = (key_len == 16) ? CPACF_KM_AES_128 :
212 	     (key_len == 24) ? CPACF_KM_AES_192 :
213 	     (key_len == 32) ? CPACF_KM_AES_256 : 0;
214 
215 	/* Check if the function code is available */
216 	sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
217 	if (!sctx->fc)
218 		return setkey_fallback_skcipher(tfm, in_key, key_len);
219 
220 	sctx->key_len = key_len;
221 	memcpy(sctx->key, in_key, key_len);
222 	return 0;
223 }
224 
225 static int ecb_aes_crypt(struct skcipher_request *req, unsigned long modifier)
226 {
227 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
228 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
229 	struct skcipher_walk walk;
230 	unsigned int nbytes, n;
231 	int ret;
232 
233 	if (unlikely(!sctx->fc))
234 		return fallback_skcipher_crypt(sctx, req, modifier);
235 
236 	ret = skcipher_walk_virt(&walk, req, false);
237 	while ((nbytes = walk.nbytes) != 0) {
238 		/* only use complete blocks */
239 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
240 		cpacf_km(sctx->fc | modifier, sctx->key,
241 			 walk.dst.virt.addr, walk.src.virt.addr, n);
242 		ret = skcipher_walk_done(&walk, nbytes - n);
243 	}
244 	return ret;
245 }
246 
247 static int ecb_aes_encrypt(struct skcipher_request *req)
248 {
249 	return ecb_aes_crypt(req, 0);
250 }
251 
252 static int ecb_aes_decrypt(struct skcipher_request *req)
253 {
254 	return ecb_aes_crypt(req, CPACF_DECRYPT);
255 }
256 
257 static int fallback_init_skcipher(struct crypto_skcipher *tfm)
258 {
259 	const char *name = crypto_tfm_alg_name(&tfm->base);
260 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
261 
262 	sctx->fallback.skcipher = crypto_alloc_skcipher(name, 0,
263 				CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
264 
265 	if (IS_ERR(sctx->fallback.skcipher)) {
266 		pr_err("Allocating AES fallback algorithm %s failed\n",
267 		       name);
268 		return PTR_ERR(sctx->fallback.skcipher);
269 	}
270 
271 	crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
272 				    crypto_skcipher_reqsize(sctx->fallback.skcipher));
273 	return 0;
274 }
275 
276 static void fallback_exit_skcipher(struct crypto_skcipher *tfm)
277 {
278 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
279 
280 	crypto_free_skcipher(sctx->fallback.skcipher);
281 }
282 
283 static struct skcipher_alg ecb_aes_alg = {
284 	.base.cra_name		=	"ecb(aes)",
285 	.base.cra_driver_name	=	"ecb-aes-s390",
286 	.base.cra_priority	=	401,	/* combo: aes + ecb + 1 */
287 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
288 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
289 	.base.cra_ctxsize	=	sizeof(struct s390_aes_ctx),
290 	.base.cra_module	=	THIS_MODULE,
291 	.init			=	fallback_init_skcipher,
292 	.exit			=	fallback_exit_skcipher,
293 	.min_keysize		=	AES_MIN_KEY_SIZE,
294 	.max_keysize		=	AES_MAX_KEY_SIZE,
295 	.setkey			=	ecb_aes_set_key,
296 	.encrypt		=	ecb_aes_encrypt,
297 	.decrypt		=	ecb_aes_decrypt,
298 };
299 
300 static int cbc_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
301 			   unsigned int key_len)
302 {
303 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
304 	unsigned long fc;
305 
306 	/* Pick the correct function code based on the key length */
307 	fc = (key_len == 16) ? CPACF_KMC_AES_128 :
308 	     (key_len == 24) ? CPACF_KMC_AES_192 :
309 	     (key_len == 32) ? CPACF_KMC_AES_256 : 0;
310 
311 	/* Check if the function code is available */
312 	sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
313 	if (!sctx->fc)
314 		return setkey_fallback_skcipher(tfm, in_key, key_len);
315 
316 	sctx->key_len = key_len;
317 	memcpy(sctx->key, in_key, key_len);
318 	return 0;
319 }
320 
321 static int cbc_aes_crypt(struct skcipher_request *req, unsigned long modifier)
322 {
323 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
324 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
325 	struct skcipher_walk walk;
326 	unsigned int nbytes, n;
327 	int ret;
328 	struct {
329 		u8 iv[AES_BLOCK_SIZE];
330 		u8 key[AES_MAX_KEY_SIZE];
331 	} param;
332 
333 	if (unlikely(!sctx->fc))
334 		return fallback_skcipher_crypt(sctx, req, modifier);
335 
336 	ret = skcipher_walk_virt(&walk, req, false);
337 	if (ret)
338 		return ret;
339 	memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
340 	memcpy(param.key, sctx->key, sctx->key_len);
341 	while ((nbytes = walk.nbytes) != 0) {
342 		/* only use complete blocks */
343 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
344 		cpacf_kmc(sctx->fc | modifier, &param,
345 			  walk.dst.virt.addr, walk.src.virt.addr, n);
346 		memcpy(walk.iv, param.iv, AES_BLOCK_SIZE);
347 		ret = skcipher_walk_done(&walk, nbytes - n);
348 	}
349 	memzero_explicit(&param, sizeof(param));
350 	return ret;
351 }
352 
353 static int cbc_aes_encrypt(struct skcipher_request *req)
354 {
355 	return cbc_aes_crypt(req, 0);
356 }
357 
358 static int cbc_aes_decrypt(struct skcipher_request *req)
359 {
360 	return cbc_aes_crypt(req, CPACF_DECRYPT);
361 }
362 
363 static struct skcipher_alg cbc_aes_alg = {
364 	.base.cra_name		=	"cbc(aes)",
365 	.base.cra_driver_name	=	"cbc-aes-s390",
366 	.base.cra_priority	=	402,	/* ecb-aes-s390 + 1 */
367 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
368 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
369 	.base.cra_ctxsize	=	sizeof(struct s390_aes_ctx),
370 	.base.cra_module	=	THIS_MODULE,
371 	.init			=	fallback_init_skcipher,
372 	.exit			=	fallback_exit_skcipher,
373 	.min_keysize		=	AES_MIN_KEY_SIZE,
374 	.max_keysize		=	AES_MAX_KEY_SIZE,
375 	.ivsize			=	AES_BLOCK_SIZE,
376 	.setkey			=	cbc_aes_set_key,
377 	.encrypt		=	cbc_aes_encrypt,
378 	.decrypt		=	cbc_aes_decrypt,
379 };
380 
381 static int xts_fallback_setkey(struct crypto_skcipher *tfm, const u8 *key,
382 			       unsigned int len)
383 {
384 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
385 
386 	crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK);
387 	crypto_skcipher_set_flags(xts_ctx->fallback,
388 				  crypto_skcipher_get_flags(tfm) &
389 				  CRYPTO_TFM_REQ_MASK);
390 	return crypto_skcipher_setkey(xts_ctx->fallback, key, len);
391 }
392 
393 static int xts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
394 			   unsigned int key_len)
395 {
396 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
397 	unsigned long fc;
398 	int err;
399 
400 	err = xts_fallback_setkey(tfm, in_key, key_len);
401 	if (err)
402 		return err;
403 
404 	/* Pick the correct function code based on the key length */
405 	fc = (key_len == 32) ? CPACF_KM_XTS_128 :
406 	     (key_len == 64) ? CPACF_KM_XTS_256 : 0;
407 
408 	/* Check if the function code is available */
409 	xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
410 	if (!xts_ctx->fc)
411 		return 0;
412 
413 	/* Split the XTS key into the two subkeys */
414 	key_len = key_len / 2;
415 	xts_ctx->key_len = key_len;
416 	memcpy(xts_ctx->key, in_key, key_len);
417 	memcpy(xts_ctx->pcc_key, in_key + key_len, key_len);
418 	return 0;
419 }
420 
421 static int xts_aes_crypt(struct skcipher_request *req, unsigned long modifier)
422 {
423 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
424 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
425 	struct skcipher_walk walk;
426 	unsigned int offset, nbytes, n;
427 	int ret;
428 	struct {
429 		u8 key[32];
430 		u8 tweak[16];
431 		u8 block[16];
432 		u8 bit[16];
433 		u8 xts[16];
434 	} pcc_param;
435 	struct {
436 		u8 key[32];
437 		u8 init[16];
438 	} xts_param;
439 
440 	if (req->cryptlen < AES_BLOCK_SIZE)
441 		return -EINVAL;
442 
443 	if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
444 		struct skcipher_request *subreq = skcipher_request_ctx(req);
445 
446 		*subreq = *req;
447 		skcipher_request_set_tfm(subreq, xts_ctx->fallback);
448 		return (modifier & CPACF_DECRYPT) ?
449 			crypto_skcipher_decrypt(subreq) :
450 			crypto_skcipher_encrypt(subreq);
451 	}
452 
453 	ret = skcipher_walk_virt(&walk, req, false);
454 	if (ret)
455 		return ret;
456 	offset = xts_ctx->key_len & 0x10;
457 	memset(pcc_param.block, 0, sizeof(pcc_param.block));
458 	memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
459 	memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
460 	memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak));
461 	memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len);
462 	cpacf_pcc(xts_ctx->fc, pcc_param.key + offset);
463 
464 	memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len);
465 	memcpy(xts_param.init, pcc_param.xts, 16);
466 
467 	while ((nbytes = walk.nbytes) != 0) {
468 		/* only use complete blocks */
469 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
470 		cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset,
471 			 walk.dst.virt.addr, walk.src.virt.addr, n);
472 		ret = skcipher_walk_done(&walk, nbytes - n);
473 	}
474 	memzero_explicit(&pcc_param, sizeof(pcc_param));
475 	memzero_explicit(&xts_param, sizeof(xts_param));
476 	return ret;
477 }
478 
479 static int xts_aes_encrypt(struct skcipher_request *req)
480 {
481 	return xts_aes_crypt(req, 0);
482 }
483 
484 static int xts_aes_decrypt(struct skcipher_request *req)
485 {
486 	return xts_aes_crypt(req, CPACF_DECRYPT);
487 }
488 
489 static int xts_fallback_init(struct crypto_skcipher *tfm)
490 {
491 	const char *name = crypto_tfm_alg_name(&tfm->base);
492 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
493 
494 	xts_ctx->fallback = crypto_alloc_skcipher(name, 0,
495 				CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
496 
497 	if (IS_ERR(xts_ctx->fallback)) {
498 		pr_err("Allocating XTS fallback algorithm %s failed\n",
499 		       name);
500 		return PTR_ERR(xts_ctx->fallback);
501 	}
502 	crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
503 				    crypto_skcipher_reqsize(xts_ctx->fallback));
504 	return 0;
505 }
506 
507 static void xts_fallback_exit(struct crypto_skcipher *tfm)
508 {
509 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
510 
511 	crypto_free_skcipher(xts_ctx->fallback);
512 }
513 
514 static struct skcipher_alg xts_aes_alg = {
515 	.base.cra_name		=	"xts(aes)",
516 	.base.cra_driver_name	=	"xts-aes-s390",
517 	.base.cra_priority	=	402,	/* ecb-aes-s390 + 1 */
518 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
519 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
520 	.base.cra_ctxsize	=	sizeof(struct s390_xts_ctx),
521 	.base.cra_module	=	THIS_MODULE,
522 	.init			=	xts_fallback_init,
523 	.exit			=	xts_fallback_exit,
524 	.min_keysize		=	2 * AES_MIN_KEY_SIZE,
525 	.max_keysize		=	2 * AES_MAX_KEY_SIZE,
526 	.ivsize			=	AES_BLOCK_SIZE,
527 	.setkey			=	xts_aes_set_key,
528 	.encrypt		=	xts_aes_encrypt,
529 	.decrypt		=	xts_aes_decrypt,
530 };
531 
532 static int fullxts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
533 			       unsigned int key_len)
534 {
535 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
536 	unsigned long fc;
537 	int err;
538 
539 	err = xts_fallback_setkey(tfm, in_key, key_len);
540 	if (err)
541 		return err;
542 
543 	/* Pick the correct function code based on the key length */
544 	fc = (key_len == 32) ? CPACF_KM_XTS_128_FULL :
545 	     (key_len == 64) ? CPACF_KM_XTS_256_FULL : 0;
546 
547 	/* Check if the function code is available */
548 	xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
549 	if (!xts_ctx->fc)
550 		return 0;
551 
552 	/* Store double-key */
553 	memcpy(xts_ctx->keys, in_key, key_len);
554 	xts_ctx->key_len = key_len;
555 	return 0;
556 }
557 
558 static int fullxts_aes_crypt(struct skcipher_request *req,  unsigned long modifier)
559 {
560 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
561 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
562 	unsigned int offset, nbytes, n;
563 	struct skcipher_walk walk;
564 	int ret;
565 	struct {
566 		__u8 key[64];
567 		__u8 tweak[16];
568 		__u8 nap[16];
569 	} fxts_param = {
570 		.nap = {0},
571 	};
572 
573 	if (req->cryptlen < AES_BLOCK_SIZE)
574 		return -EINVAL;
575 
576 	if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
577 		struct skcipher_request *subreq = skcipher_request_ctx(req);
578 
579 		*subreq = *req;
580 		skcipher_request_set_tfm(subreq, xts_ctx->fallback);
581 		return (modifier & CPACF_DECRYPT) ?
582 			crypto_skcipher_decrypt(subreq) :
583 			crypto_skcipher_encrypt(subreq);
584 	}
585 
586 	ret = skcipher_walk_virt(&walk, req, false);
587 	if (ret)
588 		return ret;
589 
590 	offset = xts_ctx->key_len & 0x20;
591 	memcpy(fxts_param.key + offset, xts_ctx->keys, xts_ctx->key_len);
592 	memcpy(fxts_param.tweak, req->iv, AES_BLOCK_SIZE);
593 	fxts_param.nap[0] = 0x01; /* initial alpha power (1, little-endian) */
594 
595 	while ((nbytes = walk.nbytes) != 0) {
596 		/* only use complete blocks */
597 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
598 		cpacf_km(xts_ctx->fc | modifier, fxts_param.key + offset,
599 			 walk.dst.virt.addr, walk.src.virt.addr, n);
600 		ret = skcipher_walk_done(&walk, nbytes - n);
601 	}
602 	memzero_explicit(&fxts_param, sizeof(fxts_param));
603 	return ret;
604 }
605 
606 static int fullxts_aes_encrypt(struct skcipher_request *req)
607 {
608 	return fullxts_aes_crypt(req, 0);
609 }
610 
611 static int fullxts_aes_decrypt(struct skcipher_request *req)
612 {
613 	return fullxts_aes_crypt(req, CPACF_DECRYPT);
614 }
615 
616 static struct skcipher_alg fullxts_aes_alg = {
617 	.base.cra_name		=	"xts(aes)",
618 	.base.cra_driver_name	=	"full-xts-aes-s390",
619 	.base.cra_priority	=	403,	/* aes-xts-s390 + 1 */
620 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
621 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
622 	.base.cra_ctxsize	=	sizeof(struct s390_xts_ctx),
623 	.base.cra_module	=	THIS_MODULE,
624 	.init			=	xts_fallback_init,
625 	.exit			=	xts_fallback_exit,
626 	.min_keysize		=	2 * AES_MIN_KEY_SIZE,
627 	.max_keysize		=	2 * AES_MAX_KEY_SIZE,
628 	.ivsize			=	AES_BLOCK_SIZE,
629 	.setkey			=	fullxts_aes_set_key,
630 	.encrypt		=	fullxts_aes_encrypt,
631 	.decrypt		=	fullxts_aes_decrypt,
632 };
633 
634 static int ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
635 			   unsigned int key_len)
636 {
637 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
638 	unsigned long fc;
639 
640 	/* Pick the correct function code based on the key length */
641 	fc = (key_len == 16) ? CPACF_KMCTR_AES_128 :
642 	     (key_len == 24) ? CPACF_KMCTR_AES_192 :
643 	     (key_len == 32) ? CPACF_KMCTR_AES_256 : 0;
644 
645 	/* Check if the function code is available */
646 	sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
647 	if (!sctx->fc)
648 		return setkey_fallback_skcipher(tfm, in_key, key_len);
649 
650 	sctx->key_len = key_len;
651 	memcpy(sctx->key, in_key, key_len);
652 	return 0;
653 }
654 
655 static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
656 {
657 	unsigned int i, n;
658 
659 	/* only use complete blocks, max. PAGE_SIZE */
660 	memcpy(ctrptr, iv, AES_BLOCK_SIZE);
661 	n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
662 	for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
663 		memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
664 		crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
665 		ctrptr += AES_BLOCK_SIZE;
666 	}
667 	return n;
668 }
669 
670 static int ctr_aes_crypt(struct skcipher_request *req)
671 {
672 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
673 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
674 	u8 buf[AES_BLOCK_SIZE], *ctrptr;
675 	struct skcipher_walk walk;
676 	unsigned int n, nbytes;
677 	int ret, locked;
678 
679 	if (unlikely(!sctx->fc))
680 		return fallback_skcipher_crypt(sctx, req, 0);
681 
682 	locked = mutex_trylock(&ctrblk_lock);
683 
684 	ret = skcipher_walk_virt(&walk, req, false);
685 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
686 		n = AES_BLOCK_SIZE;
687 
688 		if (nbytes >= 2*AES_BLOCK_SIZE && locked)
689 			n = __ctrblk_init(ctrblk, walk.iv, nbytes);
690 		ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv;
691 		cpacf_kmctr(sctx->fc, sctx->key, walk.dst.virt.addr,
692 			    walk.src.virt.addr, n, ctrptr);
693 		if (ctrptr == ctrblk)
694 			memcpy(walk.iv, ctrptr + n - AES_BLOCK_SIZE,
695 			       AES_BLOCK_SIZE);
696 		crypto_inc(walk.iv, AES_BLOCK_SIZE);
697 		ret = skcipher_walk_done(&walk, nbytes - n);
698 	}
699 	if (locked)
700 		mutex_unlock(&ctrblk_lock);
701 	/*
702 	 * final block may be < AES_BLOCK_SIZE, copy only nbytes
703 	 */
704 	if (nbytes) {
705 		memset(buf, 0, AES_BLOCK_SIZE);
706 		memcpy(buf, walk.src.virt.addr, nbytes);
707 		cpacf_kmctr(sctx->fc, sctx->key, buf, buf,
708 			    AES_BLOCK_SIZE, walk.iv);
709 		memcpy(walk.dst.virt.addr, buf, nbytes);
710 		crypto_inc(walk.iv, AES_BLOCK_SIZE);
711 		ret = skcipher_walk_done(&walk, 0);
712 	}
713 
714 	return ret;
715 }
716 
717 static struct skcipher_alg ctr_aes_alg = {
718 	.base.cra_name		=	"ctr(aes)",
719 	.base.cra_driver_name	=	"ctr-aes-s390",
720 	.base.cra_priority	=	402,	/* ecb-aes-s390 + 1 */
721 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
722 	.base.cra_blocksize	=	1,
723 	.base.cra_ctxsize	=	sizeof(struct s390_aes_ctx),
724 	.base.cra_module	=	THIS_MODULE,
725 	.init			=	fallback_init_skcipher,
726 	.exit			=	fallback_exit_skcipher,
727 	.min_keysize		=	AES_MIN_KEY_SIZE,
728 	.max_keysize		=	AES_MAX_KEY_SIZE,
729 	.ivsize			=	AES_BLOCK_SIZE,
730 	.setkey			=	ctr_aes_set_key,
731 	.encrypt		=	ctr_aes_crypt,
732 	.decrypt		=	ctr_aes_crypt,
733 	.chunksize		=	AES_BLOCK_SIZE,
734 };
735 
736 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key,
737 			  unsigned int keylen)
738 {
739 	struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
740 
741 	switch (keylen) {
742 	case AES_KEYSIZE_128:
743 		ctx->fc = CPACF_KMA_GCM_AES_128;
744 		break;
745 	case AES_KEYSIZE_192:
746 		ctx->fc = CPACF_KMA_GCM_AES_192;
747 		break;
748 	case AES_KEYSIZE_256:
749 		ctx->fc = CPACF_KMA_GCM_AES_256;
750 		break;
751 	default:
752 		return -EINVAL;
753 	}
754 
755 	memcpy(ctx->key, key, keylen);
756 	ctx->key_len = keylen;
757 	return 0;
758 }
759 
760 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
761 {
762 	switch (authsize) {
763 	case 4:
764 	case 8:
765 	case 12:
766 	case 13:
767 	case 14:
768 	case 15:
769 	case 16:
770 		break;
771 	default:
772 		return -EINVAL;
773 	}
774 
775 	return 0;
776 }
777 
778 static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg,
779 			   unsigned int len)
780 {
781 	memset(gw, 0, sizeof(*gw));
782 	gw->walk_bytes_remain = len;
783 	scatterwalk_start(&gw->walk, sg);
784 }
785 
786 static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)
787 {
788 	if (gw->walk_bytes_remain == 0)
789 		return 0;
790 	gw->walk_bytes = scatterwalk_next(&gw->walk, gw->walk_bytes_remain);
791 	return gw->walk_bytes;
792 }
793 
794 static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw,
795 					     unsigned int nbytes, bool out)
796 {
797 	gw->walk_bytes_remain -= nbytes;
798 	if (out)
799 		scatterwalk_done_dst(&gw->walk, nbytes);
800 	else
801 		scatterwalk_done_src(&gw->walk, nbytes);
802 }
803 
804 static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
805 {
806 	int n;
807 
808 	if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) {
809 		gw->ptr = gw->buf;
810 		gw->nbytes = gw->buf_bytes;
811 		goto out;
812 	}
813 
814 	if (gw->walk_bytes_remain == 0) {
815 		gw->ptr = NULL;
816 		gw->nbytes = 0;
817 		goto out;
818 	}
819 
820 	if (!_gcm_sg_clamp_and_map(gw)) {
821 		gw->ptr = NULL;
822 		gw->nbytes = 0;
823 		goto out;
824 	}
825 
826 	if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) {
827 		gw->ptr = gw->walk.addr;
828 		gw->nbytes = gw->walk_bytes;
829 		goto out;
830 	}
831 
832 	while (1) {
833 		n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes);
834 		memcpy(gw->buf + gw->buf_bytes, gw->walk.addr, n);
835 		gw->buf_bytes += n;
836 		_gcm_sg_unmap_and_advance(gw, n, false);
837 		if (gw->buf_bytes >= minbytesneeded) {
838 			gw->ptr = gw->buf;
839 			gw->nbytes = gw->buf_bytes;
840 			goto out;
841 		}
842 		if (!_gcm_sg_clamp_and_map(gw)) {
843 			gw->ptr = NULL;
844 			gw->nbytes = 0;
845 			goto out;
846 		}
847 	}
848 
849 out:
850 	return gw->nbytes;
851 }
852 
853 static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
854 {
855 	if (gw->walk_bytes_remain == 0) {
856 		gw->ptr = NULL;
857 		gw->nbytes = 0;
858 		goto out;
859 	}
860 
861 	if (!_gcm_sg_clamp_and_map(gw)) {
862 		gw->ptr = NULL;
863 		gw->nbytes = 0;
864 		goto out;
865 	}
866 
867 	if (gw->walk_bytes >= minbytesneeded) {
868 		gw->ptr = gw->walk.addr;
869 		gw->nbytes = gw->walk_bytes;
870 		goto out;
871 	}
872 
873 	scatterwalk_unmap(&gw->walk);
874 
875 	gw->ptr = gw->buf;
876 	gw->nbytes = sizeof(gw->buf);
877 
878 out:
879 	return gw->nbytes;
880 }
881 
882 static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
883 {
884 	if (gw->ptr == NULL)
885 		return 0;
886 
887 	if (gw->ptr == gw->buf) {
888 		int n = gw->buf_bytes - bytesdone;
889 		if (n > 0) {
890 			memmove(gw->buf, gw->buf + bytesdone, n);
891 			gw->buf_bytes = n;
892 		} else
893 			gw->buf_bytes = 0;
894 	} else
895 		_gcm_sg_unmap_and_advance(gw, bytesdone, false);
896 
897 	return bytesdone;
898 }
899 
900 static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
901 {
902 	int i, n;
903 
904 	if (gw->ptr == NULL)
905 		return 0;
906 
907 	if (gw->ptr == gw->buf) {
908 		for (i = 0; i < bytesdone; i += n) {
909 			if (!_gcm_sg_clamp_and_map(gw))
910 				return i;
911 			n = min(gw->walk_bytes, bytesdone - i);
912 			memcpy(gw->walk.addr, gw->buf + i, n);
913 			_gcm_sg_unmap_and_advance(gw, n, true);
914 		}
915 	} else
916 		_gcm_sg_unmap_and_advance(gw, bytesdone, true);
917 
918 	return bytesdone;
919 }
920 
921 static int gcm_aes_crypt(struct aead_request *req, unsigned int flags)
922 {
923 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
924 	struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
925 	unsigned int ivsize = crypto_aead_ivsize(tfm);
926 	unsigned int taglen = crypto_aead_authsize(tfm);
927 	unsigned int aadlen = req->assoclen;
928 	unsigned int pclen = req->cryptlen;
929 	int ret = 0;
930 
931 	unsigned int n, len, in_bytes, out_bytes,
932 		     min_bytes, bytes, aad_bytes, pc_bytes;
933 	struct gcm_sg_walk gw_in, gw_out;
934 	u8 tag[GHASH_DIGEST_SIZE];
935 
936 	struct {
937 		u32 _[3];		/* reserved */
938 		u32 cv;			/* Counter Value */
939 		u8 t[GHASH_DIGEST_SIZE];/* Tag */
940 		u8 h[AES_BLOCK_SIZE];	/* Hash-subkey */
941 		u64 taadl;		/* Total AAD Length */
942 		u64 tpcl;		/* Total Plain-/Cipher-text Length */
943 		u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */
944 		u8 k[AES_MAX_KEY_SIZE];	/* Key */
945 	} param;
946 
947 	/*
948 	 * encrypt
949 	 *   req->src: aad||plaintext
950 	 *   req->dst: aad||ciphertext||tag
951 	 * decrypt
952 	 *   req->src: aad||ciphertext||tag
953 	 *   req->dst: aad||plaintext, return 0 or -EBADMSG
954 	 * aad, plaintext and ciphertext may be empty.
955 	 */
956 	if (flags & CPACF_DECRYPT)
957 		pclen -= taglen;
958 	len = aadlen + pclen;
959 
960 	memset(&param, 0, sizeof(param));
961 	param.cv = 1;
962 	param.taadl = aadlen * 8;
963 	param.tpcl = pclen * 8;
964 	memcpy(param.j0, req->iv, ivsize);
965 	*(u32 *)(param.j0 + ivsize) = 1;
966 	memcpy(param.k, ctx->key, ctx->key_len);
967 
968 	gcm_walk_start(&gw_in, req->src, len);
969 	gcm_walk_start(&gw_out, req->dst, len);
970 
971 	do {
972 		min_bytes = min_t(unsigned int,
973 				  aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE);
974 		in_bytes = gcm_in_walk_go(&gw_in, min_bytes);
975 		out_bytes = gcm_out_walk_go(&gw_out, min_bytes);
976 		bytes = min(in_bytes, out_bytes);
977 
978 		if (aadlen + pclen <= bytes) {
979 			aad_bytes = aadlen;
980 			pc_bytes = pclen;
981 			flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC;
982 		} else {
983 			if (aadlen <= bytes) {
984 				aad_bytes = aadlen;
985 				pc_bytes = (bytes - aadlen) &
986 					   ~(AES_BLOCK_SIZE - 1);
987 				flags |= CPACF_KMA_LAAD;
988 			} else {
989 				aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1);
990 				pc_bytes = 0;
991 			}
992 		}
993 
994 		if (aad_bytes > 0)
995 			memcpy(gw_out.ptr, gw_in.ptr, aad_bytes);
996 
997 		cpacf_kma(ctx->fc | flags, &param,
998 			  gw_out.ptr + aad_bytes,
999 			  gw_in.ptr + aad_bytes, pc_bytes,
1000 			  gw_in.ptr, aad_bytes);
1001 
1002 		n = aad_bytes + pc_bytes;
1003 		if (gcm_in_walk_done(&gw_in, n) != n)
1004 			return -ENOMEM;
1005 		if (gcm_out_walk_done(&gw_out, n) != n)
1006 			return -ENOMEM;
1007 		aadlen -= aad_bytes;
1008 		pclen -= pc_bytes;
1009 	} while (aadlen + pclen > 0);
1010 
1011 	if (flags & CPACF_DECRYPT) {
1012 		scatterwalk_map_and_copy(tag, req->src, len, taglen, 0);
1013 		if (crypto_memneq(tag, param.t, taglen))
1014 			ret = -EBADMSG;
1015 	} else
1016 		scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1);
1017 
1018 	memzero_explicit(&param, sizeof(param));
1019 	return ret;
1020 }
1021 
1022 static int gcm_aes_encrypt(struct aead_request *req)
1023 {
1024 	return gcm_aes_crypt(req, CPACF_ENCRYPT);
1025 }
1026 
1027 static int gcm_aes_decrypt(struct aead_request *req)
1028 {
1029 	return gcm_aes_crypt(req, CPACF_DECRYPT);
1030 }
1031 
1032 static struct aead_alg gcm_aes_aead = {
1033 	.setkey			= gcm_aes_setkey,
1034 	.setauthsize		= gcm_aes_setauthsize,
1035 	.encrypt		= gcm_aes_encrypt,
1036 	.decrypt		= gcm_aes_decrypt,
1037 
1038 	.ivsize			= GHASH_BLOCK_SIZE - sizeof(u32),
1039 	.maxauthsize		= GHASH_DIGEST_SIZE,
1040 	.chunksize		= AES_BLOCK_SIZE,
1041 
1042 	.base			= {
1043 		.cra_blocksize		= 1,
1044 		.cra_ctxsize		= sizeof(struct s390_aes_ctx),
1045 		.cra_priority		= 900,
1046 		.cra_name		= "gcm(aes)",
1047 		.cra_driver_name	= "gcm-aes-s390",
1048 		.cra_module		= THIS_MODULE,
1049 	},
1050 };
1051 
1052 static struct crypto_alg *aes_s390_alg;
1053 static struct skcipher_alg *aes_s390_skcipher_algs[5];
1054 static int aes_s390_skciphers_num;
1055 static struct aead_alg *aes_s390_aead_alg;
1056 
1057 static int aes_s390_register_skcipher(struct skcipher_alg *alg)
1058 {
1059 	int ret;
1060 
1061 	ret = crypto_register_skcipher(alg);
1062 	if (!ret)
1063 		aes_s390_skcipher_algs[aes_s390_skciphers_num++] = alg;
1064 	return ret;
1065 }
1066 
1067 static void aes_s390_fini(void)
1068 {
1069 	if (aes_s390_alg)
1070 		crypto_unregister_alg(aes_s390_alg);
1071 	while (aes_s390_skciphers_num--)
1072 		crypto_unregister_skcipher(aes_s390_skcipher_algs[aes_s390_skciphers_num]);
1073 	if (ctrblk)
1074 		free_page((unsigned long) ctrblk);
1075 
1076 	if (aes_s390_aead_alg)
1077 		crypto_unregister_aead(aes_s390_aead_alg);
1078 }
1079 
1080 static int __init aes_s390_init(void)
1081 {
1082 	int ret;
1083 
1084 	/* Query available functions for KM, KMC, KMCTR and KMA */
1085 	cpacf_query(CPACF_KM, &km_functions);
1086 	cpacf_query(CPACF_KMC, &kmc_functions);
1087 	cpacf_query(CPACF_KMCTR, &kmctr_functions);
1088 	cpacf_query(CPACF_KMA, &kma_functions);
1089 
1090 	if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) ||
1091 	    cpacf_test_func(&km_functions, CPACF_KM_AES_192) ||
1092 	    cpacf_test_func(&km_functions, CPACF_KM_AES_256)) {
1093 		ret = crypto_register_alg(&aes_alg);
1094 		if (ret)
1095 			goto out_err;
1096 		aes_s390_alg = &aes_alg;
1097 		ret = aes_s390_register_skcipher(&ecb_aes_alg);
1098 		if (ret)
1099 			goto out_err;
1100 	}
1101 
1102 	if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) ||
1103 	    cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) ||
1104 	    cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) {
1105 		ret = aes_s390_register_skcipher(&cbc_aes_alg);
1106 		if (ret)
1107 			goto out_err;
1108 	}
1109 
1110 	if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128_FULL) ||
1111 	    cpacf_test_func(&km_functions, CPACF_KM_XTS_256_FULL)) {
1112 		ret = aes_s390_register_skcipher(&fullxts_aes_alg);
1113 		if (ret)
1114 			goto out_err;
1115 	}
1116 
1117 	if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) ||
1118 	    cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) {
1119 		ret = aes_s390_register_skcipher(&xts_aes_alg);
1120 		if (ret)
1121 			goto out_err;
1122 	}
1123 
1124 	if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) ||
1125 	    cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) ||
1126 	    cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) {
1127 		ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
1128 		if (!ctrblk) {
1129 			ret = -ENOMEM;
1130 			goto out_err;
1131 		}
1132 		ret = aes_s390_register_skcipher(&ctr_aes_alg);
1133 		if (ret)
1134 			goto out_err;
1135 	}
1136 
1137 	if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) ||
1138 	    cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) ||
1139 	    cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) {
1140 		ret = crypto_register_aead(&gcm_aes_aead);
1141 		if (ret)
1142 			goto out_err;
1143 		aes_s390_aead_alg = &gcm_aes_aead;
1144 	}
1145 
1146 	return 0;
1147 out_err:
1148 	aes_s390_fini();
1149 	return ret;
1150 }
1151 
1152 module_cpu_feature_match(S390_CPU_FEATURE_MSA, aes_s390_init);
1153 module_exit(aes_s390_fini);
1154 
1155 MODULE_ALIAS_CRYPTO("aes-all");
1156 
1157 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
1158 MODULE_LICENSE("GPL");
1159 MODULE_IMPORT_NS("CRYPTO_INTERNAL");
1160