xref: /linux/arch/riscv/net/bpf_jit_comp64.c (revision a6a6a98094116b60e5523a571d9443c53325f5b1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* BPF JIT compiler for RV64G
3  *
4  * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
5  *
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/bpf.h>
10 #include <linux/filter.h>
11 #include <linux/memory.h>
12 #include <linux/stop_machine.h>
13 #include <asm/patch.h>
14 #include <asm/cfi.h>
15 #include <asm/percpu.h>
16 #include "bpf_jit.h"
17 
18 #define RV_FENTRY_NINSNS 2
19 
20 #define RV_REG_TCC RV_REG_A6
21 #define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
22 #define RV_REG_ARENA RV_REG_S7 /* For storing arena_vm_start */
23 
24 static const int regmap[] = {
25 	[BPF_REG_0] =	RV_REG_A5,
26 	[BPF_REG_1] =	RV_REG_A0,
27 	[BPF_REG_2] =	RV_REG_A1,
28 	[BPF_REG_3] =	RV_REG_A2,
29 	[BPF_REG_4] =	RV_REG_A3,
30 	[BPF_REG_5] =	RV_REG_A4,
31 	[BPF_REG_6] =	RV_REG_S1,
32 	[BPF_REG_7] =	RV_REG_S2,
33 	[BPF_REG_8] =	RV_REG_S3,
34 	[BPF_REG_9] =	RV_REG_S4,
35 	[BPF_REG_FP] =	RV_REG_S5,
36 	[BPF_REG_AX] =	RV_REG_T0,
37 };
38 
39 static const int pt_regmap[] = {
40 	[RV_REG_A0] = offsetof(struct pt_regs, a0),
41 	[RV_REG_A1] = offsetof(struct pt_regs, a1),
42 	[RV_REG_A2] = offsetof(struct pt_regs, a2),
43 	[RV_REG_A3] = offsetof(struct pt_regs, a3),
44 	[RV_REG_A4] = offsetof(struct pt_regs, a4),
45 	[RV_REG_A5] = offsetof(struct pt_regs, a5),
46 	[RV_REG_S1] = offsetof(struct pt_regs, s1),
47 	[RV_REG_S2] = offsetof(struct pt_regs, s2),
48 	[RV_REG_S3] = offsetof(struct pt_regs, s3),
49 	[RV_REG_S4] = offsetof(struct pt_regs, s4),
50 	[RV_REG_S5] = offsetof(struct pt_regs, s5),
51 	[RV_REG_T0] = offsetof(struct pt_regs, t0),
52 };
53 
54 enum {
55 	RV_CTX_F_SEEN_TAIL_CALL =	0,
56 	RV_CTX_F_SEEN_CALL =		RV_REG_RA,
57 	RV_CTX_F_SEEN_S1 =		RV_REG_S1,
58 	RV_CTX_F_SEEN_S2 =		RV_REG_S2,
59 	RV_CTX_F_SEEN_S3 =		RV_REG_S3,
60 	RV_CTX_F_SEEN_S4 =		RV_REG_S4,
61 	RV_CTX_F_SEEN_S5 =		RV_REG_S5,
62 	RV_CTX_F_SEEN_S6 =		RV_REG_S6,
63 };
64 
65 static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
66 {
67 	u8 reg = regmap[bpf_reg];
68 
69 	switch (reg) {
70 	case RV_CTX_F_SEEN_S1:
71 	case RV_CTX_F_SEEN_S2:
72 	case RV_CTX_F_SEEN_S3:
73 	case RV_CTX_F_SEEN_S4:
74 	case RV_CTX_F_SEEN_S5:
75 	case RV_CTX_F_SEEN_S6:
76 		__set_bit(reg, &ctx->flags);
77 	}
78 	return reg;
79 };
80 
81 static bool seen_reg(int reg, struct rv_jit_context *ctx)
82 {
83 	switch (reg) {
84 	case RV_CTX_F_SEEN_CALL:
85 	case RV_CTX_F_SEEN_S1:
86 	case RV_CTX_F_SEEN_S2:
87 	case RV_CTX_F_SEEN_S3:
88 	case RV_CTX_F_SEEN_S4:
89 	case RV_CTX_F_SEEN_S5:
90 	case RV_CTX_F_SEEN_S6:
91 		return test_bit(reg, &ctx->flags);
92 	}
93 	return false;
94 }
95 
96 static void mark_fp(struct rv_jit_context *ctx)
97 {
98 	__set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
99 }
100 
101 static void mark_call(struct rv_jit_context *ctx)
102 {
103 	__set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
104 }
105 
106 static bool seen_call(struct rv_jit_context *ctx)
107 {
108 	return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
109 }
110 
111 static void mark_tail_call(struct rv_jit_context *ctx)
112 {
113 	__set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
114 }
115 
116 static bool seen_tail_call(struct rv_jit_context *ctx)
117 {
118 	return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
119 }
120 
121 static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
122 {
123 	mark_tail_call(ctx);
124 
125 	if (seen_call(ctx)) {
126 		__set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
127 		return RV_REG_S6;
128 	}
129 	return RV_REG_A6;
130 }
131 
132 static bool is_32b_int(s64 val)
133 {
134 	return -(1L << 31) <= val && val < (1L << 31);
135 }
136 
137 static bool in_auipc_jalr_range(s64 val)
138 {
139 	/*
140 	 * auipc+jalr can reach any signed PC-relative offset in the range
141 	 * [-2^31 - 2^11, 2^31 - 2^11).
142 	 */
143 	return (-(1L << 31) - (1L << 11)) <= val &&
144 		val < ((1L << 31) - (1L << 11));
145 }
146 
147 /* Modify rd pointer to alternate reg to avoid corrupting original reg */
148 static void emit_sextw_alt(u8 *rd, u8 ra, struct rv_jit_context *ctx)
149 {
150 	emit_sextw(ra, *rd, ctx);
151 	*rd = ra;
152 }
153 
154 static void emit_zextw_alt(u8 *rd, u8 ra, struct rv_jit_context *ctx)
155 {
156 	emit_zextw(ra, *rd, ctx);
157 	*rd = ra;
158 }
159 
160 /* Emit fixed-length instructions for address */
161 static int emit_addr(u8 rd, u64 addr, bool extra_pass, struct rv_jit_context *ctx)
162 {
163 	/*
164 	 * Use the ro_insns(RX) to calculate the offset as the BPF program will
165 	 * finally run from this memory region.
166 	 */
167 	u64 ip = (u64)(ctx->ro_insns + ctx->ninsns);
168 	s64 off = addr - ip;
169 	s64 upper = (off + (1 << 11)) >> 12;
170 	s64 lower = off & 0xfff;
171 
172 	if (extra_pass && !in_auipc_jalr_range(off)) {
173 		pr_err("bpf-jit: target offset 0x%llx is out of range\n", off);
174 		return -ERANGE;
175 	}
176 
177 	emit(rv_auipc(rd, upper), ctx);
178 	emit(rv_addi(rd, rd, lower), ctx);
179 	return 0;
180 }
181 
182 /* Emit variable-length instructions for 32-bit and 64-bit imm */
183 static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
184 {
185 	/* Note that the immediate from the add is sign-extended,
186 	 * which means that we need to compensate this by adding 2^12,
187 	 * when the 12th bit is set. A simpler way of doing this, and
188 	 * getting rid of the check, is to just add 2**11 before the
189 	 * shift. The "Loading a 32-Bit constant" example from the
190 	 * "Computer Organization and Design, RISC-V edition" book by
191 	 * Patterson/Hennessy highlights this fact.
192 	 *
193 	 * This also means that we need to process LSB to MSB.
194 	 */
195 	s64 upper = (val + (1 << 11)) >> 12;
196 	/* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw,
197 	 * and addi are signed and RVC checks will perform signed comparisons.
198 	 */
199 	s64 lower = ((val & 0xfff) << 52) >> 52;
200 	int shift;
201 
202 	if (is_32b_int(val)) {
203 		if (upper)
204 			emit_lui(rd, upper, ctx);
205 
206 		if (!upper) {
207 			emit_li(rd, lower, ctx);
208 			return;
209 		}
210 
211 		emit_addiw(rd, rd, lower, ctx);
212 		return;
213 	}
214 
215 	shift = __ffs(upper);
216 	upper >>= shift;
217 	shift += 12;
218 
219 	emit_imm(rd, upper, ctx);
220 
221 	emit_slli(rd, rd, shift, ctx);
222 	if (lower)
223 		emit_addi(rd, rd, lower, ctx);
224 }
225 
226 static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
227 {
228 	int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
229 
230 	if (seen_reg(RV_REG_RA, ctx)) {
231 		emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx);
232 		store_offset -= 8;
233 	}
234 	emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx);
235 	store_offset -= 8;
236 	if (seen_reg(RV_REG_S1, ctx)) {
237 		emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx);
238 		store_offset -= 8;
239 	}
240 	if (seen_reg(RV_REG_S2, ctx)) {
241 		emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx);
242 		store_offset -= 8;
243 	}
244 	if (seen_reg(RV_REG_S3, ctx)) {
245 		emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx);
246 		store_offset -= 8;
247 	}
248 	if (seen_reg(RV_REG_S4, ctx)) {
249 		emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx);
250 		store_offset -= 8;
251 	}
252 	if (seen_reg(RV_REG_S5, ctx)) {
253 		emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx);
254 		store_offset -= 8;
255 	}
256 	if (seen_reg(RV_REG_S6, ctx)) {
257 		emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx);
258 		store_offset -= 8;
259 	}
260 	if (ctx->arena_vm_start) {
261 		emit_ld(RV_REG_ARENA, store_offset, RV_REG_SP, ctx);
262 		store_offset -= 8;
263 	}
264 
265 	emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx);
266 	/* Set return value. */
267 	if (!is_tail_call)
268 		emit_addiw(RV_REG_A0, RV_REG_A5, 0, ctx);
269 	emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
270 		  is_tail_call ? (RV_FENTRY_NINSNS + 1) * 4 : 0, /* skip reserved nops and TCC init */
271 		  ctx);
272 }
273 
274 static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
275 		     struct rv_jit_context *ctx)
276 {
277 	switch (cond) {
278 	case BPF_JEQ:
279 		emit(rv_beq(rd, rs, rvoff >> 1), ctx);
280 		return;
281 	case BPF_JGT:
282 		emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
283 		return;
284 	case BPF_JLT:
285 		emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
286 		return;
287 	case BPF_JGE:
288 		emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
289 		return;
290 	case BPF_JLE:
291 		emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
292 		return;
293 	case BPF_JNE:
294 		emit(rv_bne(rd, rs, rvoff >> 1), ctx);
295 		return;
296 	case BPF_JSGT:
297 		emit(rv_blt(rs, rd, rvoff >> 1), ctx);
298 		return;
299 	case BPF_JSLT:
300 		emit(rv_blt(rd, rs, rvoff >> 1), ctx);
301 		return;
302 	case BPF_JSGE:
303 		emit(rv_bge(rd, rs, rvoff >> 1), ctx);
304 		return;
305 	case BPF_JSLE:
306 		emit(rv_bge(rs, rd, rvoff >> 1), ctx);
307 	}
308 }
309 
310 static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
311 			struct rv_jit_context *ctx)
312 {
313 	s64 upper, lower;
314 
315 	if (is_13b_int(rvoff)) {
316 		emit_bcc(cond, rd, rs, rvoff, ctx);
317 		return;
318 	}
319 
320 	/* Adjust for jal */
321 	rvoff -= 4;
322 
323 	/* Transform, e.g.:
324 	 *   bne rd,rs,foo
325 	 * to
326 	 *   beq rd,rs,<.L1>
327 	 *   (auipc foo)
328 	 *   jal(r) foo
329 	 * .L1
330 	 */
331 	cond = invert_bpf_cond(cond);
332 	if (is_21b_int(rvoff)) {
333 		emit_bcc(cond, rd, rs, 8, ctx);
334 		emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
335 		return;
336 	}
337 
338 	/* 32b No need for an additional rvoff adjustment, since we
339 	 * get that from the auipc at PC', where PC = PC' + 4.
340 	 */
341 	upper = (rvoff + (1 << 11)) >> 12;
342 	lower = rvoff & 0xfff;
343 
344 	emit_bcc(cond, rd, rs, 12, ctx);
345 	emit(rv_auipc(RV_REG_T1, upper), ctx);
346 	emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
347 }
348 
349 static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
350 {
351 	int tc_ninsn, off, start_insn = ctx->ninsns;
352 	u8 tcc = rv_tail_call_reg(ctx);
353 
354 	/* a0: &ctx
355 	 * a1: &array
356 	 * a2: index
357 	 *
358 	 * if (index >= array->map.max_entries)
359 	 *	goto out;
360 	 */
361 	tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
362 		   ctx->offset[0];
363 	emit_zextw(RV_REG_A2, RV_REG_A2, ctx);
364 
365 	off = offsetof(struct bpf_array, map.max_entries);
366 	if (is_12b_check(off, insn))
367 		return -1;
368 	emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
369 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
370 	emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
371 
372 	/* if (--TCC < 0)
373 	 *     goto out;
374 	 */
375 	emit_addi(RV_REG_TCC, tcc, -1, ctx);
376 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
377 	emit_branch(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx);
378 
379 	/* prog = array->ptrs[index];
380 	 * if (!prog)
381 	 *     goto out;
382 	 */
383 	emit_sh3add(RV_REG_T2, RV_REG_A2, RV_REG_A1, ctx);
384 	off = offsetof(struct bpf_array, ptrs);
385 	if (is_12b_check(off, insn))
386 		return -1;
387 	emit_ld(RV_REG_T2, off, RV_REG_T2, ctx);
388 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
389 	emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
390 
391 	/* goto *(prog->bpf_func + 4); */
392 	off = offsetof(struct bpf_prog, bpf_func);
393 	if (is_12b_check(off, insn))
394 		return -1;
395 	emit_ld(RV_REG_T3, off, RV_REG_T2, ctx);
396 	__build_epilogue(true, ctx);
397 	return 0;
398 }
399 
400 static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
401 		      struct rv_jit_context *ctx)
402 {
403 	u8 code = insn->code;
404 
405 	switch (code) {
406 	case BPF_JMP | BPF_JA:
407 	case BPF_JMP | BPF_CALL:
408 	case BPF_JMP | BPF_EXIT:
409 	case BPF_JMP | BPF_TAIL_CALL:
410 		break;
411 	default:
412 		*rd = bpf_to_rv_reg(insn->dst_reg, ctx);
413 	}
414 
415 	if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
416 	    code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
417 	    code & BPF_LDX || code & BPF_STX)
418 		*rs = bpf_to_rv_reg(insn->src_reg, ctx);
419 }
420 
421 static int emit_jump_and_link(u8 rd, s64 rvoff, bool fixed_addr,
422 			      struct rv_jit_context *ctx)
423 {
424 	s64 upper, lower;
425 
426 	if (rvoff && fixed_addr && is_21b_int(rvoff)) {
427 		emit(rv_jal(rd, rvoff >> 1), ctx);
428 		return 0;
429 	} else if (in_auipc_jalr_range(rvoff)) {
430 		upper = (rvoff + (1 << 11)) >> 12;
431 		lower = rvoff & 0xfff;
432 		emit(rv_auipc(RV_REG_T1, upper), ctx);
433 		emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
434 		return 0;
435 	}
436 
437 	pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff);
438 	return -ERANGE;
439 }
440 
441 static bool is_signed_bpf_cond(u8 cond)
442 {
443 	return cond == BPF_JSGT || cond == BPF_JSLT ||
444 		cond == BPF_JSGE || cond == BPF_JSLE;
445 }
446 
447 static int emit_call(u64 addr, bool fixed_addr, struct rv_jit_context *ctx)
448 {
449 	s64 off = 0;
450 	u64 ip;
451 
452 	if (addr && ctx->insns && ctx->ro_insns) {
453 		/*
454 		 * Use the ro_insns(RX) to calculate the offset as the BPF
455 		 * program will finally run from this memory region.
456 		 */
457 		ip = (u64)(long)(ctx->ro_insns + ctx->ninsns);
458 		off = addr - ip;
459 	}
460 
461 	return emit_jump_and_link(RV_REG_RA, off, fixed_addr, ctx);
462 }
463 
464 static inline void emit_kcfi(u32 hash, struct rv_jit_context *ctx)
465 {
466 	if (IS_ENABLED(CONFIG_CFI_CLANG))
467 		emit(hash, ctx);
468 }
469 
470 static void emit_atomic(u8 rd, u8 rs, s16 off, s32 imm, bool is64,
471 			struct rv_jit_context *ctx)
472 {
473 	u8 r0;
474 	int jmp_offset;
475 
476 	if (off) {
477 		if (is_12b_int(off)) {
478 			emit_addi(RV_REG_T1, rd, off, ctx);
479 		} else {
480 			emit_imm(RV_REG_T1, off, ctx);
481 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
482 		}
483 		rd = RV_REG_T1;
484 	}
485 
486 	switch (imm) {
487 	/* lock *(u32/u64 *)(dst_reg + off16) <op>= src_reg */
488 	case BPF_ADD:
489 		emit(is64 ? rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0) :
490 		     rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
491 		break;
492 	case BPF_AND:
493 		emit(is64 ? rv_amoand_d(RV_REG_ZERO, rs, rd, 0, 0) :
494 		     rv_amoand_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
495 		break;
496 	case BPF_OR:
497 		emit(is64 ? rv_amoor_d(RV_REG_ZERO, rs, rd, 0, 0) :
498 		     rv_amoor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
499 		break;
500 	case BPF_XOR:
501 		emit(is64 ? rv_amoxor_d(RV_REG_ZERO, rs, rd, 0, 0) :
502 		     rv_amoxor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
503 		break;
504 	/* src_reg = atomic_fetch_<op>(dst_reg + off16, src_reg) */
505 	case BPF_ADD | BPF_FETCH:
506 		emit(is64 ? rv_amoadd_d(rs, rs, rd, 1, 1) :
507 		     rv_amoadd_w(rs, rs, rd, 1, 1), ctx);
508 		if (!is64)
509 			emit_zextw(rs, rs, ctx);
510 		break;
511 	case BPF_AND | BPF_FETCH:
512 		emit(is64 ? rv_amoand_d(rs, rs, rd, 1, 1) :
513 		     rv_amoand_w(rs, rs, rd, 1, 1), ctx);
514 		if (!is64)
515 			emit_zextw(rs, rs, ctx);
516 		break;
517 	case BPF_OR | BPF_FETCH:
518 		emit(is64 ? rv_amoor_d(rs, rs, rd, 1, 1) :
519 		     rv_amoor_w(rs, rs, rd, 1, 1), ctx);
520 		if (!is64)
521 			emit_zextw(rs, rs, ctx);
522 		break;
523 	case BPF_XOR | BPF_FETCH:
524 		emit(is64 ? rv_amoxor_d(rs, rs, rd, 1, 1) :
525 		     rv_amoxor_w(rs, rs, rd, 1, 1), ctx);
526 		if (!is64)
527 			emit_zextw(rs, rs, ctx);
528 		break;
529 	/* src_reg = atomic_xchg(dst_reg + off16, src_reg); */
530 	case BPF_XCHG:
531 		emit(is64 ? rv_amoswap_d(rs, rs, rd, 1, 1) :
532 		     rv_amoswap_w(rs, rs, rd, 1, 1), ctx);
533 		if (!is64)
534 			emit_zextw(rs, rs, ctx);
535 		break;
536 	/* r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg); */
537 	case BPF_CMPXCHG:
538 		r0 = bpf_to_rv_reg(BPF_REG_0, ctx);
539 		if (is64)
540 			emit_mv(RV_REG_T2, r0, ctx);
541 		else
542 			emit_addiw(RV_REG_T2, r0, 0, ctx);
543 		emit(is64 ? rv_lr_d(r0, 0, rd, 0, 0) :
544 		     rv_lr_w(r0, 0, rd, 0, 0), ctx);
545 		jmp_offset = ninsns_rvoff(8);
546 		emit(rv_bne(RV_REG_T2, r0, jmp_offset >> 1), ctx);
547 		emit(is64 ? rv_sc_d(RV_REG_T3, rs, rd, 0, 0) :
548 		     rv_sc_w(RV_REG_T3, rs, rd, 0, 0), ctx);
549 		jmp_offset = ninsns_rvoff(-6);
550 		emit(rv_bne(RV_REG_T3, 0, jmp_offset >> 1), ctx);
551 		emit(rv_fence(0x3, 0x3), ctx);
552 		break;
553 	}
554 }
555 
556 #define BPF_FIXUP_OFFSET_MASK   GENMASK(26, 0)
557 #define BPF_FIXUP_REG_MASK      GENMASK(31, 27)
558 #define REG_DONT_CLEAR_MARKER	0	/* RV_REG_ZERO unused in pt_regmap */
559 
560 bool ex_handler_bpf(const struct exception_table_entry *ex,
561 		    struct pt_regs *regs)
562 {
563 	off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
564 	int regs_offset = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
565 
566 	if (regs_offset != REG_DONT_CLEAR_MARKER)
567 		*(unsigned long *)((void *)regs + pt_regmap[regs_offset]) = 0;
568 	regs->epc = (unsigned long)&ex->fixup - offset;
569 
570 	return true;
571 }
572 
573 /* For accesses to BTF pointers, add an entry to the exception table */
574 static int add_exception_handler(const struct bpf_insn *insn,
575 				 struct rv_jit_context *ctx,
576 				 int dst_reg, int insn_len)
577 {
578 	struct exception_table_entry *ex;
579 	unsigned long pc;
580 	off_t ins_offset;
581 	off_t fixup_offset;
582 
583 	if (!ctx->insns || !ctx->ro_insns || !ctx->prog->aux->extable ||
584 	    (BPF_MODE(insn->code) != BPF_PROBE_MEM && BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
585 	     BPF_MODE(insn->code) != BPF_PROBE_MEM32))
586 		return 0;
587 
588 	if (WARN_ON_ONCE(ctx->nexentries >= ctx->prog->aux->num_exentries))
589 		return -EINVAL;
590 
591 	if (WARN_ON_ONCE(insn_len > ctx->ninsns))
592 		return -EINVAL;
593 
594 	if (WARN_ON_ONCE(!rvc_enabled() && insn_len == 1))
595 		return -EINVAL;
596 
597 	ex = &ctx->prog->aux->extable[ctx->nexentries];
598 	pc = (unsigned long)&ctx->ro_insns[ctx->ninsns - insn_len];
599 
600 	/*
601 	 * This is the relative offset of the instruction that may fault from
602 	 * the exception table itself. This will be written to the exception
603 	 * table and if this instruction faults, the destination register will
604 	 * be set to '0' and the execution will jump to the next instruction.
605 	 */
606 	ins_offset = pc - (long)&ex->insn;
607 	if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
608 		return -ERANGE;
609 
610 	/*
611 	 * Since the extable follows the program, the fixup offset is always
612 	 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
613 	 * to keep things simple, and put the destination register in the upper
614 	 * bits. We don't need to worry about buildtime or runtime sort
615 	 * modifying the upper bits because the table is already sorted, and
616 	 * isn't part of the main exception table.
617 	 *
618 	 * The fixup_offset is set to the next instruction from the instruction
619 	 * that may fault. The execution will jump to this after handling the
620 	 * fault.
621 	 */
622 	fixup_offset = (long)&ex->fixup - (pc + insn_len * sizeof(u16));
623 	if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
624 		return -ERANGE;
625 
626 	/*
627 	 * The offsets above have been calculated using the RO buffer but we
628 	 * need to use the R/W buffer for writes.
629 	 * switch ex to rw buffer for writing.
630 	 */
631 	ex = (void *)ctx->insns + ((void *)ex - (void *)ctx->ro_insns);
632 
633 	ex->insn = ins_offset;
634 
635 	ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
636 		FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
637 	ex->type = EX_TYPE_BPF;
638 
639 	ctx->nexentries++;
640 	return 0;
641 }
642 
643 static int gen_jump_or_nops(void *target, void *ip, u32 *insns, bool is_call)
644 {
645 	s64 rvoff;
646 	struct rv_jit_context ctx;
647 
648 	ctx.ninsns = 0;
649 	ctx.insns = (u16 *)insns;
650 
651 	if (!target) {
652 		emit(rv_nop(), &ctx);
653 		emit(rv_nop(), &ctx);
654 		return 0;
655 	}
656 
657 	rvoff = (s64)(target - ip);
658 	return emit_jump_and_link(is_call ? RV_REG_T0 : RV_REG_ZERO, rvoff, false, &ctx);
659 }
660 
661 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
662 		       void *old_addr, void *new_addr)
663 {
664 	u32 old_insns[RV_FENTRY_NINSNS], new_insns[RV_FENTRY_NINSNS];
665 	bool is_call = poke_type == BPF_MOD_CALL;
666 	int ret;
667 
668 	if (!is_kernel_text((unsigned long)ip) &&
669 	    !is_bpf_text_address((unsigned long)ip))
670 		return -ENOTSUPP;
671 
672 	ret = gen_jump_or_nops(old_addr, ip, old_insns, is_call);
673 	if (ret)
674 		return ret;
675 
676 	if (memcmp(ip, old_insns, RV_FENTRY_NINSNS * 4))
677 		return -EFAULT;
678 
679 	ret = gen_jump_or_nops(new_addr, ip, new_insns, is_call);
680 	if (ret)
681 		return ret;
682 
683 	cpus_read_lock();
684 	mutex_lock(&text_mutex);
685 	if (memcmp(ip, new_insns, RV_FENTRY_NINSNS * 4))
686 		ret = patch_text(ip, new_insns, RV_FENTRY_NINSNS);
687 	mutex_unlock(&text_mutex);
688 	cpus_read_unlock();
689 
690 	return ret;
691 }
692 
693 static void store_args(int nregs, int args_off, struct rv_jit_context *ctx)
694 {
695 	int i;
696 
697 	for (i = 0; i < nregs; i++) {
698 		emit_sd(RV_REG_FP, -args_off, RV_REG_A0 + i, ctx);
699 		args_off -= 8;
700 	}
701 }
702 
703 static void restore_args(int nregs, int args_off, struct rv_jit_context *ctx)
704 {
705 	int i;
706 
707 	for (i = 0; i < nregs; i++) {
708 		emit_ld(RV_REG_A0 + i, -args_off, RV_REG_FP, ctx);
709 		args_off -= 8;
710 	}
711 }
712 
713 static int invoke_bpf_prog(struct bpf_tramp_link *l, int args_off, int retval_off,
714 			   int run_ctx_off, bool save_ret, struct rv_jit_context *ctx)
715 {
716 	int ret, branch_off;
717 	struct bpf_prog *p = l->link.prog;
718 	int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
719 
720 	if (l->cookie) {
721 		emit_imm(RV_REG_T1, l->cookie, ctx);
722 		emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_T1, ctx);
723 	} else {
724 		emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_ZERO, ctx);
725 	}
726 
727 	/* arg1: prog */
728 	emit_imm(RV_REG_A0, (const s64)p, ctx);
729 	/* arg2: &run_ctx */
730 	emit_addi(RV_REG_A1, RV_REG_FP, -run_ctx_off, ctx);
731 	ret = emit_call((const u64)bpf_trampoline_enter(p), true, ctx);
732 	if (ret)
733 		return ret;
734 
735 	/* store prog start time */
736 	emit_mv(RV_REG_S1, RV_REG_A0, ctx);
737 
738 	/* if (__bpf_prog_enter(prog) == 0)
739 	 *	goto skip_exec_of_prog;
740 	 */
741 	branch_off = ctx->ninsns;
742 	/* nop reserved for conditional jump */
743 	emit(rv_nop(), ctx);
744 
745 	/* arg1: &args_off */
746 	emit_addi(RV_REG_A0, RV_REG_FP, -args_off, ctx);
747 	if (!p->jited)
748 		/* arg2: progs[i]->insnsi for interpreter */
749 		emit_imm(RV_REG_A1, (const s64)p->insnsi, ctx);
750 	ret = emit_call((const u64)p->bpf_func, true, ctx);
751 	if (ret)
752 		return ret;
753 
754 	if (save_ret) {
755 		emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
756 		emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
757 	}
758 
759 	/* update branch with beqz */
760 	if (ctx->insns) {
761 		int offset = ninsns_rvoff(ctx->ninsns - branch_off);
762 		u32 insn = rv_beq(RV_REG_A0, RV_REG_ZERO, offset >> 1);
763 		*(u32 *)(ctx->insns + branch_off) = insn;
764 	}
765 
766 	/* arg1: prog */
767 	emit_imm(RV_REG_A0, (const s64)p, ctx);
768 	/* arg2: prog start time */
769 	emit_mv(RV_REG_A1, RV_REG_S1, ctx);
770 	/* arg3: &run_ctx */
771 	emit_addi(RV_REG_A2, RV_REG_FP, -run_ctx_off, ctx);
772 	ret = emit_call((const u64)bpf_trampoline_exit(p), true, ctx);
773 
774 	return ret;
775 }
776 
777 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
778 					 const struct btf_func_model *m,
779 					 struct bpf_tramp_links *tlinks,
780 					 void *func_addr, u32 flags,
781 					 struct rv_jit_context *ctx)
782 {
783 	int i, ret, offset;
784 	int *branches_off = NULL;
785 	int stack_size = 0, nregs = m->nr_args;
786 	int retval_off, args_off, nregs_off, ip_off, run_ctx_off, sreg_off;
787 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
788 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
789 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
790 	bool is_struct_ops = flags & BPF_TRAMP_F_INDIRECT;
791 	void *orig_call = func_addr;
792 	bool save_ret;
793 	u32 insn;
794 
795 	/* Two types of generated trampoline stack layout:
796 	 *
797 	 * 1. trampoline called from function entry
798 	 * --------------------------------------
799 	 * FP + 8	    [ RA to parent func	] return address to parent
800 	 *					  function
801 	 * FP + 0	    [ FP of parent func ] frame pointer of parent
802 	 *					  function
803 	 * FP - 8           [ T0 to traced func ] return address of traced
804 	 *					  function
805 	 * FP - 16	    [ FP of traced func ] frame pointer of traced
806 	 *					  function
807 	 * --------------------------------------
808 	 *
809 	 * 2. trampoline called directly
810 	 * --------------------------------------
811 	 * FP - 8	    [ RA to caller func ] return address to caller
812 	 *					  function
813 	 * FP - 16	    [ FP of caller func	] frame pointer of caller
814 	 *					  function
815 	 * --------------------------------------
816 	 *
817 	 * FP - retval_off  [ return value      ] BPF_TRAMP_F_CALL_ORIG or
818 	 *					  BPF_TRAMP_F_RET_FENTRY_RET
819 	 *                  [ argN              ]
820 	 *                  [ ...               ]
821 	 * FP - args_off    [ arg1              ]
822 	 *
823 	 * FP - nregs_off   [ regs count        ]
824 	 *
825 	 * FP - ip_off      [ traced func	] BPF_TRAMP_F_IP_ARG
826 	 *
827 	 * FP - run_ctx_off [ bpf_tramp_run_ctx ]
828 	 *
829 	 * FP - sreg_off    [ callee saved reg	]
830 	 *
831 	 *		    [ pads              ] pads for 16 bytes alignment
832 	 */
833 
834 	if (flags & (BPF_TRAMP_F_ORIG_STACK | BPF_TRAMP_F_SHARE_IPMODIFY))
835 		return -ENOTSUPP;
836 
837 	/* extra regiters for struct arguments */
838 	for (i = 0; i < m->nr_args; i++)
839 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
840 			nregs += round_up(m->arg_size[i], 8) / 8 - 1;
841 
842 	/* 8 arguments passed by registers */
843 	if (nregs > 8)
844 		return -ENOTSUPP;
845 
846 	/* room of trampoline frame to store return address and frame pointer */
847 	stack_size += 16;
848 
849 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
850 	if (save_ret) {
851 		stack_size += 16; /* Save both A5 (BPF R0) and A0 */
852 		retval_off = stack_size;
853 	}
854 
855 	stack_size += nregs * 8;
856 	args_off = stack_size;
857 
858 	stack_size += 8;
859 	nregs_off = stack_size;
860 
861 	if (flags & BPF_TRAMP_F_IP_ARG) {
862 		stack_size += 8;
863 		ip_off = stack_size;
864 	}
865 
866 	stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
867 	run_ctx_off = stack_size;
868 
869 	stack_size += 8;
870 	sreg_off = stack_size;
871 
872 	stack_size = round_up(stack_size, STACK_ALIGN);
873 
874 	if (!is_struct_ops) {
875 		/* For the trampoline called from function entry,
876 		 * the frame of traced function and the frame of
877 		 * trampoline need to be considered.
878 		 */
879 		emit_addi(RV_REG_SP, RV_REG_SP, -16, ctx);
880 		emit_sd(RV_REG_SP, 8, RV_REG_RA, ctx);
881 		emit_sd(RV_REG_SP, 0, RV_REG_FP, ctx);
882 		emit_addi(RV_REG_FP, RV_REG_SP, 16, ctx);
883 
884 		emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
885 		emit_sd(RV_REG_SP, stack_size - 8, RV_REG_T0, ctx);
886 		emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
887 		emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
888 	} else {
889 		/* emit kcfi hash */
890 		emit_kcfi(cfi_get_func_hash(func_addr), ctx);
891 		/* For the trampoline called directly, just handle
892 		 * the frame of trampoline.
893 		 */
894 		emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
895 		emit_sd(RV_REG_SP, stack_size - 8, RV_REG_RA, ctx);
896 		emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
897 		emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
898 	}
899 
900 	/* callee saved register S1 to pass start time */
901 	emit_sd(RV_REG_FP, -sreg_off, RV_REG_S1, ctx);
902 
903 	/* store ip address of the traced function */
904 	if (flags & BPF_TRAMP_F_IP_ARG) {
905 		emit_imm(RV_REG_T1, (const s64)func_addr, ctx);
906 		emit_sd(RV_REG_FP, -ip_off, RV_REG_T1, ctx);
907 	}
908 
909 	emit_li(RV_REG_T1, nregs, ctx);
910 	emit_sd(RV_REG_FP, -nregs_off, RV_REG_T1, ctx);
911 
912 	store_args(nregs, args_off, ctx);
913 
914 	/* skip to actual body of traced function */
915 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
916 		orig_call += RV_FENTRY_NINSNS * 4;
917 
918 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
919 		emit_imm(RV_REG_A0, (const s64)im, ctx);
920 		ret = emit_call((const u64)__bpf_tramp_enter, true, ctx);
921 		if (ret)
922 			return ret;
923 	}
924 
925 	for (i = 0; i < fentry->nr_links; i++) {
926 		ret = invoke_bpf_prog(fentry->links[i], args_off, retval_off, run_ctx_off,
927 				      flags & BPF_TRAMP_F_RET_FENTRY_RET, ctx);
928 		if (ret)
929 			return ret;
930 	}
931 
932 	if (fmod_ret->nr_links) {
933 		branches_off = kcalloc(fmod_ret->nr_links, sizeof(int), GFP_KERNEL);
934 		if (!branches_off)
935 			return -ENOMEM;
936 
937 		/* cleanup to avoid garbage return value confusion */
938 		emit_sd(RV_REG_FP, -retval_off, RV_REG_ZERO, ctx);
939 		for (i = 0; i < fmod_ret->nr_links; i++) {
940 			ret = invoke_bpf_prog(fmod_ret->links[i], args_off, retval_off,
941 					      run_ctx_off, true, ctx);
942 			if (ret)
943 				goto out;
944 			emit_ld(RV_REG_T1, -retval_off, RV_REG_FP, ctx);
945 			branches_off[i] = ctx->ninsns;
946 			/* nop reserved for conditional jump */
947 			emit(rv_nop(), ctx);
948 		}
949 	}
950 
951 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
952 		restore_args(nregs, args_off, ctx);
953 		ret = emit_call((const u64)orig_call, true, ctx);
954 		if (ret)
955 			goto out;
956 		emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
957 		emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
958 		im->ip_after_call = ctx->insns + ctx->ninsns;
959 		/* 2 nops reserved for auipc+jalr pair */
960 		emit(rv_nop(), ctx);
961 		emit(rv_nop(), ctx);
962 	}
963 
964 	/* update branches saved in invoke_bpf_mod_ret with bnez */
965 	for (i = 0; ctx->insns && i < fmod_ret->nr_links; i++) {
966 		offset = ninsns_rvoff(ctx->ninsns - branches_off[i]);
967 		insn = rv_bne(RV_REG_T1, RV_REG_ZERO, offset >> 1);
968 		*(u32 *)(ctx->insns + branches_off[i]) = insn;
969 	}
970 
971 	for (i = 0; i < fexit->nr_links; i++) {
972 		ret = invoke_bpf_prog(fexit->links[i], args_off, retval_off,
973 				      run_ctx_off, false, ctx);
974 		if (ret)
975 			goto out;
976 	}
977 
978 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
979 		im->ip_epilogue = ctx->insns + ctx->ninsns;
980 		emit_imm(RV_REG_A0, (const s64)im, ctx);
981 		ret = emit_call((const u64)__bpf_tramp_exit, true, ctx);
982 		if (ret)
983 			goto out;
984 	}
985 
986 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
987 		restore_args(nregs, args_off, ctx);
988 
989 	if (save_ret) {
990 		emit_ld(RV_REG_A0, -retval_off, RV_REG_FP, ctx);
991 		emit_ld(regmap[BPF_REG_0], -(retval_off - 8), RV_REG_FP, ctx);
992 	}
993 
994 	emit_ld(RV_REG_S1, -sreg_off, RV_REG_FP, ctx);
995 
996 	if (!is_struct_ops) {
997 		/* trampoline called from function entry */
998 		emit_ld(RV_REG_T0, stack_size - 8, RV_REG_SP, ctx);
999 		emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1000 		emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1001 
1002 		emit_ld(RV_REG_RA, 8, RV_REG_SP, ctx);
1003 		emit_ld(RV_REG_FP, 0, RV_REG_SP, ctx);
1004 		emit_addi(RV_REG_SP, RV_REG_SP, 16, ctx);
1005 
1006 		if (flags & BPF_TRAMP_F_SKIP_FRAME)
1007 			/* return to parent function */
1008 			emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1009 		else
1010 			/* return to traced function */
1011 			emit_jalr(RV_REG_ZERO, RV_REG_T0, 0, ctx);
1012 	} else {
1013 		/* trampoline called directly */
1014 		emit_ld(RV_REG_RA, stack_size - 8, RV_REG_SP, ctx);
1015 		emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1016 		emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1017 
1018 		emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1019 	}
1020 
1021 	ret = ctx->ninsns;
1022 out:
1023 	kfree(branches_off);
1024 	return ret;
1025 }
1026 
1027 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1028 			     struct bpf_tramp_links *tlinks, void *func_addr)
1029 {
1030 	struct bpf_tramp_image im;
1031 	struct rv_jit_context ctx;
1032 	int ret;
1033 
1034 	ctx.ninsns = 0;
1035 	ctx.insns = NULL;
1036 	ctx.ro_insns = NULL;
1037 	ret = __arch_prepare_bpf_trampoline(&im, m, tlinks, func_addr, flags, &ctx);
1038 
1039 	return ret < 0 ? ret : ninsns_rvoff(ctx.ninsns);
1040 }
1041 
1042 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
1043 				void *image_end, const struct btf_func_model *m,
1044 				u32 flags, struct bpf_tramp_links *tlinks,
1045 				void *func_addr)
1046 {
1047 	int ret;
1048 	struct rv_jit_context ctx;
1049 
1050 	ctx.ninsns = 0;
1051 	/*
1052 	 * The bpf_int_jit_compile() uses a RW buffer (ctx.insns) to write the
1053 	 * JITed instructions and later copies it to a RX region (ctx.ro_insns).
1054 	 * It also uses ctx.ro_insns to calculate offsets for jumps etc. As the
1055 	 * trampoline image uses the same memory area for writing and execution,
1056 	 * both ctx.insns and ctx.ro_insns can be set to image.
1057 	 */
1058 	ctx.insns = image;
1059 	ctx.ro_insns = image;
1060 	ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1061 	if (ret < 0)
1062 		return ret;
1063 
1064 	bpf_flush_icache(ctx.insns, ctx.insns + ctx.ninsns);
1065 
1066 	return ninsns_rvoff(ret);
1067 }
1068 
1069 int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
1070 		      bool extra_pass)
1071 {
1072 	bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
1073 		    BPF_CLASS(insn->code) == BPF_JMP;
1074 	int s, e, rvoff, ret, i = insn - ctx->prog->insnsi;
1075 	struct bpf_prog_aux *aux = ctx->prog->aux;
1076 	u8 rd = -1, rs = -1, code = insn->code;
1077 	s16 off = insn->off;
1078 	s32 imm = insn->imm;
1079 
1080 	init_regs(&rd, &rs, insn, ctx);
1081 
1082 	switch (code) {
1083 	/* dst = src */
1084 	case BPF_ALU | BPF_MOV | BPF_X:
1085 	case BPF_ALU64 | BPF_MOV | BPF_X:
1086 		if (insn_is_cast_user(insn)) {
1087 			emit_mv(RV_REG_T1, rs, ctx);
1088 			emit_zextw(RV_REG_T1, RV_REG_T1, ctx);
1089 			emit_imm(rd, (ctx->user_vm_start >> 32) << 32, ctx);
1090 			emit(rv_beq(RV_REG_T1, RV_REG_ZERO, 4), ctx);
1091 			emit_or(RV_REG_T1, rd, RV_REG_T1, ctx);
1092 			emit_mv(rd, RV_REG_T1, ctx);
1093 			break;
1094 		} else if (insn_is_mov_percpu_addr(insn)) {
1095 			if (rd != rs)
1096 				emit_mv(rd, rs, ctx);
1097 #ifdef CONFIG_SMP
1098 			/* Load current CPU number in T1 */
1099 			emit_ld(RV_REG_T1, offsetof(struct thread_info, cpu),
1100 				RV_REG_TP, ctx);
1101 			/* Load address of __per_cpu_offset array in T2 */
1102 			emit_addr(RV_REG_T2, (u64)&__per_cpu_offset, extra_pass, ctx);
1103 			/* Get address of __per_cpu_offset[cpu] in T1 */
1104 			emit_sh3add(RV_REG_T1, RV_REG_T1, RV_REG_T2, ctx);
1105 			/* Load __per_cpu_offset[cpu] in T1 */
1106 			emit_ld(RV_REG_T1, 0, RV_REG_T1, ctx);
1107 			/* Add the offset to Rd */
1108 			emit_add(rd, rd, RV_REG_T1, ctx);
1109 #endif
1110 		}
1111 		if (imm == 1) {
1112 			/* Special mov32 for zext */
1113 			emit_zextw(rd, rd, ctx);
1114 			break;
1115 		}
1116 		switch (insn->off) {
1117 		case 0:
1118 			emit_mv(rd, rs, ctx);
1119 			break;
1120 		case 8:
1121 			emit_sextb(rd, rs, ctx);
1122 			break;
1123 		case 16:
1124 			emit_sexth(rd, rs, ctx);
1125 			break;
1126 		case 32:
1127 			emit_sextw(rd, rs, ctx);
1128 			break;
1129 		}
1130 		if (!is64 && !aux->verifier_zext)
1131 			emit_zextw(rd, rd, ctx);
1132 		break;
1133 
1134 	/* dst = dst OP src */
1135 	case BPF_ALU | BPF_ADD | BPF_X:
1136 	case BPF_ALU64 | BPF_ADD | BPF_X:
1137 		emit_add(rd, rd, rs, ctx);
1138 		if (!is64 && !aux->verifier_zext)
1139 			emit_zextw(rd, rd, ctx);
1140 		break;
1141 	case BPF_ALU | BPF_SUB | BPF_X:
1142 	case BPF_ALU64 | BPF_SUB | BPF_X:
1143 		if (is64)
1144 			emit_sub(rd, rd, rs, ctx);
1145 		else
1146 			emit_subw(rd, rd, rs, ctx);
1147 
1148 		if (!is64 && !aux->verifier_zext)
1149 			emit_zextw(rd, rd, ctx);
1150 		break;
1151 	case BPF_ALU | BPF_AND | BPF_X:
1152 	case BPF_ALU64 | BPF_AND | BPF_X:
1153 		emit_and(rd, rd, rs, ctx);
1154 		if (!is64 && !aux->verifier_zext)
1155 			emit_zextw(rd, rd, ctx);
1156 		break;
1157 	case BPF_ALU | BPF_OR | BPF_X:
1158 	case BPF_ALU64 | BPF_OR | BPF_X:
1159 		emit_or(rd, rd, rs, ctx);
1160 		if (!is64 && !aux->verifier_zext)
1161 			emit_zextw(rd, rd, ctx);
1162 		break;
1163 	case BPF_ALU | BPF_XOR | BPF_X:
1164 	case BPF_ALU64 | BPF_XOR | BPF_X:
1165 		emit_xor(rd, rd, rs, ctx);
1166 		if (!is64 && !aux->verifier_zext)
1167 			emit_zextw(rd, rd, ctx);
1168 		break;
1169 	case BPF_ALU | BPF_MUL | BPF_X:
1170 	case BPF_ALU64 | BPF_MUL | BPF_X:
1171 		emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
1172 		if (!is64 && !aux->verifier_zext)
1173 			emit_zextw(rd, rd, ctx);
1174 		break;
1175 	case BPF_ALU | BPF_DIV | BPF_X:
1176 	case BPF_ALU64 | BPF_DIV | BPF_X:
1177 		if (off)
1178 			emit(is64 ? rv_div(rd, rd, rs) : rv_divw(rd, rd, rs), ctx);
1179 		else
1180 			emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
1181 		if (!is64 && !aux->verifier_zext)
1182 			emit_zextw(rd, rd, ctx);
1183 		break;
1184 	case BPF_ALU | BPF_MOD | BPF_X:
1185 	case BPF_ALU64 | BPF_MOD | BPF_X:
1186 		if (off)
1187 			emit(is64 ? rv_rem(rd, rd, rs) : rv_remw(rd, rd, rs), ctx);
1188 		else
1189 			emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
1190 		if (!is64 && !aux->verifier_zext)
1191 			emit_zextw(rd, rd, ctx);
1192 		break;
1193 	case BPF_ALU | BPF_LSH | BPF_X:
1194 	case BPF_ALU64 | BPF_LSH | BPF_X:
1195 		emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
1196 		if (!is64 && !aux->verifier_zext)
1197 			emit_zextw(rd, rd, ctx);
1198 		break;
1199 	case BPF_ALU | BPF_RSH | BPF_X:
1200 	case BPF_ALU64 | BPF_RSH | BPF_X:
1201 		emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
1202 		if (!is64 && !aux->verifier_zext)
1203 			emit_zextw(rd, rd, ctx);
1204 		break;
1205 	case BPF_ALU | BPF_ARSH | BPF_X:
1206 	case BPF_ALU64 | BPF_ARSH | BPF_X:
1207 		emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
1208 		if (!is64 && !aux->verifier_zext)
1209 			emit_zextw(rd, rd, ctx);
1210 		break;
1211 
1212 	/* dst = -dst */
1213 	case BPF_ALU | BPF_NEG:
1214 	case BPF_ALU64 | BPF_NEG:
1215 		emit_sub(rd, RV_REG_ZERO, rd, ctx);
1216 		if (!is64 && !aux->verifier_zext)
1217 			emit_zextw(rd, rd, ctx);
1218 		break;
1219 
1220 	/* dst = BSWAP##imm(dst) */
1221 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1222 		switch (imm) {
1223 		case 16:
1224 			emit_zexth(rd, rd, ctx);
1225 			break;
1226 		case 32:
1227 			if (!aux->verifier_zext)
1228 				emit_zextw(rd, rd, ctx);
1229 			break;
1230 		case 64:
1231 			/* Do nothing */
1232 			break;
1233 		}
1234 		break;
1235 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1236 	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1237 		emit_bswap(rd, imm, ctx);
1238 		break;
1239 
1240 	/* dst = imm */
1241 	case BPF_ALU | BPF_MOV | BPF_K:
1242 	case BPF_ALU64 | BPF_MOV | BPF_K:
1243 		emit_imm(rd, imm, ctx);
1244 		if (!is64 && !aux->verifier_zext)
1245 			emit_zextw(rd, rd, ctx);
1246 		break;
1247 
1248 	/* dst = dst OP imm */
1249 	case BPF_ALU | BPF_ADD | BPF_K:
1250 	case BPF_ALU64 | BPF_ADD | BPF_K:
1251 		if (is_12b_int(imm)) {
1252 			emit_addi(rd, rd, imm, ctx);
1253 		} else {
1254 			emit_imm(RV_REG_T1, imm, ctx);
1255 			emit_add(rd, rd, RV_REG_T1, ctx);
1256 		}
1257 		if (!is64 && !aux->verifier_zext)
1258 			emit_zextw(rd, rd, ctx);
1259 		break;
1260 	case BPF_ALU | BPF_SUB | BPF_K:
1261 	case BPF_ALU64 | BPF_SUB | BPF_K:
1262 		if (is_12b_int(-imm)) {
1263 			emit_addi(rd, rd, -imm, ctx);
1264 		} else {
1265 			emit_imm(RV_REG_T1, imm, ctx);
1266 			emit_sub(rd, rd, RV_REG_T1, ctx);
1267 		}
1268 		if (!is64 && !aux->verifier_zext)
1269 			emit_zextw(rd, rd, ctx);
1270 		break;
1271 	case BPF_ALU | BPF_AND | BPF_K:
1272 	case BPF_ALU64 | BPF_AND | BPF_K:
1273 		if (is_12b_int(imm)) {
1274 			emit_andi(rd, rd, imm, ctx);
1275 		} else {
1276 			emit_imm(RV_REG_T1, imm, ctx);
1277 			emit_and(rd, rd, RV_REG_T1, ctx);
1278 		}
1279 		if (!is64 && !aux->verifier_zext)
1280 			emit_zextw(rd, rd, ctx);
1281 		break;
1282 	case BPF_ALU | BPF_OR | BPF_K:
1283 	case BPF_ALU64 | BPF_OR | BPF_K:
1284 		if (is_12b_int(imm)) {
1285 			emit(rv_ori(rd, rd, imm), ctx);
1286 		} else {
1287 			emit_imm(RV_REG_T1, imm, ctx);
1288 			emit_or(rd, rd, RV_REG_T1, ctx);
1289 		}
1290 		if (!is64 && !aux->verifier_zext)
1291 			emit_zextw(rd, rd, ctx);
1292 		break;
1293 	case BPF_ALU | BPF_XOR | BPF_K:
1294 	case BPF_ALU64 | BPF_XOR | BPF_K:
1295 		if (is_12b_int(imm)) {
1296 			emit(rv_xori(rd, rd, imm), ctx);
1297 		} else {
1298 			emit_imm(RV_REG_T1, imm, ctx);
1299 			emit_xor(rd, rd, RV_REG_T1, ctx);
1300 		}
1301 		if (!is64 && !aux->verifier_zext)
1302 			emit_zextw(rd, rd, ctx);
1303 		break;
1304 	case BPF_ALU | BPF_MUL | BPF_K:
1305 	case BPF_ALU64 | BPF_MUL | BPF_K:
1306 		emit_imm(RV_REG_T1, imm, ctx);
1307 		emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
1308 		     rv_mulw(rd, rd, RV_REG_T1), ctx);
1309 		if (!is64 && !aux->verifier_zext)
1310 			emit_zextw(rd, rd, ctx);
1311 		break;
1312 	case BPF_ALU | BPF_DIV | BPF_K:
1313 	case BPF_ALU64 | BPF_DIV | BPF_K:
1314 		emit_imm(RV_REG_T1, imm, ctx);
1315 		if (off)
1316 			emit(is64 ? rv_div(rd, rd, RV_REG_T1) :
1317 			     rv_divw(rd, rd, RV_REG_T1), ctx);
1318 		else
1319 			emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
1320 			     rv_divuw(rd, rd, RV_REG_T1), ctx);
1321 		if (!is64 && !aux->verifier_zext)
1322 			emit_zextw(rd, rd, ctx);
1323 		break;
1324 	case BPF_ALU | BPF_MOD | BPF_K:
1325 	case BPF_ALU64 | BPF_MOD | BPF_K:
1326 		emit_imm(RV_REG_T1, imm, ctx);
1327 		if (off)
1328 			emit(is64 ? rv_rem(rd, rd, RV_REG_T1) :
1329 			     rv_remw(rd, rd, RV_REG_T1), ctx);
1330 		else
1331 			emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
1332 			     rv_remuw(rd, rd, RV_REG_T1), ctx);
1333 		if (!is64 && !aux->verifier_zext)
1334 			emit_zextw(rd, rd, ctx);
1335 		break;
1336 	case BPF_ALU | BPF_LSH | BPF_K:
1337 	case BPF_ALU64 | BPF_LSH | BPF_K:
1338 		emit_slli(rd, rd, imm, ctx);
1339 
1340 		if (!is64 && !aux->verifier_zext)
1341 			emit_zextw(rd, rd, ctx);
1342 		break;
1343 	case BPF_ALU | BPF_RSH | BPF_K:
1344 	case BPF_ALU64 | BPF_RSH | BPF_K:
1345 		if (is64)
1346 			emit_srli(rd, rd, imm, ctx);
1347 		else
1348 			emit(rv_srliw(rd, rd, imm), ctx);
1349 
1350 		if (!is64 && !aux->verifier_zext)
1351 			emit_zextw(rd, rd, ctx);
1352 		break;
1353 	case BPF_ALU | BPF_ARSH | BPF_K:
1354 	case BPF_ALU64 | BPF_ARSH | BPF_K:
1355 		if (is64)
1356 			emit_srai(rd, rd, imm, ctx);
1357 		else
1358 			emit(rv_sraiw(rd, rd, imm), ctx);
1359 
1360 		if (!is64 && !aux->verifier_zext)
1361 			emit_zextw(rd, rd, ctx);
1362 		break;
1363 
1364 	/* JUMP off */
1365 	case BPF_JMP | BPF_JA:
1366 	case BPF_JMP32 | BPF_JA:
1367 		if (BPF_CLASS(code) == BPF_JMP)
1368 			rvoff = rv_offset(i, off, ctx);
1369 		else
1370 			rvoff = rv_offset(i, imm, ctx);
1371 		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1372 		if (ret)
1373 			return ret;
1374 		break;
1375 
1376 	/* IF (dst COND src) JUMP off */
1377 	case BPF_JMP | BPF_JEQ | BPF_X:
1378 	case BPF_JMP32 | BPF_JEQ | BPF_X:
1379 	case BPF_JMP | BPF_JGT | BPF_X:
1380 	case BPF_JMP32 | BPF_JGT | BPF_X:
1381 	case BPF_JMP | BPF_JLT | BPF_X:
1382 	case BPF_JMP32 | BPF_JLT | BPF_X:
1383 	case BPF_JMP | BPF_JGE | BPF_X:
1384 	case BPF_JMP32 | BPF_JGE | BPF_X:
1385 	case BPF_JMP | BPF_JLE | BPF_X:
1386 	case BPF_JMP32 | BPF_JLE | BPF_X:
1387 	case BPF_JMP | BPF_JNE | BPF_X:
1388 	case BPF_JMP32 | BPF_JNE | BPF_X:
1389 	case BPF_JMP | BPF_JSGT | BPF_X:
1390 	case BPF_JMP32 | BPF_JSGT | BPF_X:
1391 	case BPF_JMP | BPF_JSLT | BPF_X:
1392 	case BPF_JMP32 | BPF_JSLT | BPF_X:
1393 	case BPF_JMP | BPF_JSGE | BPF_X:
1394 	case BPF_JMP32 | BPF_JSGE | BPF_X:
1395 	case BPF_JMP | BPF_JSLE | BPF_X:
1396 	case BPF_JMP32 | BPF_JSLE | BPF_X:
1397 	case BPF_JMP | BPF_JSET | BPF_X:
1398 	case BPF_JMP32 | BPF_JSET | BPF_X:
1399 		rvoff = rv_offset(i, off, ctx);
1400 		if (!is64) {
1401 			s = ctx->ninsns;
1402 			if (is_signed_bpf_cond(BPF_OP(code))) {
1403 				emit_sextw_alt(&rs, RV_REG_T1, ctx);
1404 				emit_sextw_alt(&rd, RV_REG_T2, ctx);
1405 			} else {
1406 				emit_zextw_alt(&rs, RV_REG_T1, ctx);
1407 				emit_zextw_alt(&rd, RV_REG_T2, ctx);
1408 			}
1409 			e = ctx->ninsns;
1410 
1411 			/* Adjust for extra insns */
1412 			rvoff -= ninsns_rvoff(e - s);
1413 		}
1414 
1415 		if (BPF_OP(code) == BPF_JSET) {
1416 			/* Adjust for and */
1417 			rvoff -= 4;
1418 			emit_and(RV_REG_T1, rd, rs, ctx);
1419 			emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1420 		} else {
1421 			emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1422 		}
1423 		break;
1424 
1425 	/* IF (dst COND imm) JUMP off */
1426 	case BPF_JMP | BPF_JEQ | BPF_K:
1427 	case BPF_JMP32 | BPF_JEQ | BPF_K:
1428 	case BPF_JMP | BPF_JGT | BPF_K:
1429 	case BPF_JMP32 | BPF_JGT | BPF_K:
1430 	case BPF_JMP | BPF_JLT | BPF_K:
1431 	case BPF_JMP32 | BPF_JLT | BPF_K:
1432 	case BPF_JMP | BPF_JGE | BPF_K:
1433 	case BPF_JMP32 | BPF_JGE | BPF_K:
1434 	case BPF_JMP | BPF_JLE | BPF_K:
1435 	case BPF_JMP32 | BPF_JLE | BPF_K:
1436 	case BPF_JMP | BPF_JNE | BPF_K:
1437 	case BPF_JMP32 | BPF_JNE | BPF_K:
1438 	case BPF_JMP | BPF_JSGT | BPF_K:
1439 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1440 	case BPF_JMP | BPF_JSLT | BPF_K:
1441 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1442 	case BPF_JMP | BPF_JSGE | BPF_K:
1443 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1444 	case BPF_JMP | BPF_JSLE | BPF_K:
1445 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1446 		rvoff = rv_offset(i, off, ctx);
1447 		s = ctx->ninsns;
1448 		if (imm)
1449 			emit_imm(RV_REG_T1, imm, ctx);
1450 		rs = imm ? RV_REG_T1 : RV_REG_ZERO;
1451 		if (!is64) {
1452 			if (is_signed_bpf_cond(BPF_OP(code))) {
1453 				emit_sextw_alt(&rd, RV_REG_T2, ctx);
1454 				/* rs has been sign extended */
1455 			} else {
1456 				emit_zextw_alt(&rd, RV_REG_T2, ctx);
1457 				if (imm)
1458 					emit_zextw(rs, rs, ctx);
1459 			}
1460 		}
1461 		e = ctx->ninsns;
1462 
1463 		/* Adjust for extra insns */
1464 		rvoff -= ninsns_rvoff(e - s);
1465 		emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1466 		break;
1467 
1468 	case BPF_JMP | BPF_JSET | BPF_K:
1469 	case BPF_JMP32 | BPF_JSET | BPF_K:
1470 		rvoff = rv_offset(i, off, ctx);
1471 		s = ctx->ninsns;
1472 		if (is_12b_int(imm)) {
1473 			emit_andi(RV_REG_T1, rd, imm, ctx);
1474 		} else {
1475 			emit_imm(RV_REG_T1, imm, ctx);
1476 			emit_and(RV_REG_T1, rd, RV_REG_T1, ctx);
1477 		}
1478 		/* For jset32, we should clear the upper 32 bits of t1, but
1479 		 * sign-extension is sufficient here and saves one instruction,
1480 		 * as t1 is used only in comparison against zero.
1481 		 */
1482 		if (!is64 && imm < 0)
1483 			emit_sextw(RV_REG_T1, RV_REG_T1, ctx);
1484 		e = ctx->ninsns;
1485 		rvoff -= ninsns_rvoff(e - s);
1486 		emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1487 		break;
1488 
1489 	/* function call */
1490 	case BPF_JMP | BPF_CALL:
1491 	{
1492 		bool fixed_addr;
1493 		u64 addr;
1494 
1495 		/* Inline calls to bpf_get_smp_processor_id()
1496 		 *
1497 		 * RV_REG_TP holds the address of the current CPU's task_struct and thread_info is
1498 		 * at offset 0 in task_struct.
1499 		 * Load cpu from thread_info:
1500 		 *     Set R0 to ((struct thread_info *)(RV_REG_TP))->cpu
1501 		 *
1502 		 * This replicates the implementation of raw_smp_processor_id() on RISCV
1503 		 */
1504 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) {
1505 			/* Load current CPU number in R0 */
1506 			emit_ld(bpf_to_rv_reg(BPF_REG_0, ctx), offsetof(struct thread_info, cpu),
1507 				RV_REG_TP, ctx);
1508 			break;
1509 		}
1510 
1511 		mark_call(ctx);
1512 		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1513 					    &addr, &fixed_addr);
1514 		if (ret < 0)
1515 			return ret;
1516 
1517 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1518 			const struct btf_func_model *fm;
1519 			int idx;
1520 
1521 			fm = bpf_jit_find_kfunc_model(ctx->prog, insn);
1522 			if (!fm)
1523 				return -EINVAL;
1524 
1525 			for (idx = 0; idx < fm->nr_args; idx++) {
1526 				u8 reg = bpf_to_rv_reg(BPF_REG_1 + idx, ctx);
1527 
1528 				if (fm->arg_size[idx] == sizeof(int))
1529 					emit_sextw(reg, reg, ctx);
1530 			}
1531 		}
1532 
1533 		ret = emit_call(addr, fixed_addr, ctx);
1534 		if (ret)
1535 			return ret;
1536 
1537 		if (insn->src_reg != BPF_PSEUDO_CALL)
1538 			emit_mv(bpf_to_rv_reg(BPF_REG_0, ctx), RV_REG_A0, ctx);
1539 		break;
1540 	}
1541 	/* tail call */
1542 	case BPF_JMP | BPF_TAIL_CALL:
1543 		if (emit_bpf_tail_call(i, ctx))
1544 			return -1;
1545 		break;
1546 
1547 	/* function return */
1548 	case BPF_JMP | BPF_EXIT:
1549 		if (i == ctx->prog->len - 1)
1550 			break;
1551 
1552 		rvoff = epilogue_offset(ctx);
1553 		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1554 		if (ret)
1555 			return ret;
1556 		break;
1557 
1558 	/* dst = imm64 */
1559 	case BPF_LD | BPF_IMM | BPF_DW:
1560 	{
1561 		struct bpf_insn insn1 = insn[1];
1562 		u64 imm64;
1563 
1564 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1565 		if (bpf_pseudo_func(insn)) {
1566 			/* fixed-length insns for extra jit pass */
1567 			ret = emit_addr(rd, imm64, extra_pass, ctx);
1568 			if (ret)
1569 				return ret;
1570 		} else {
1571 			emit_imm(rd, imm64, ctx);
1572 		}
1573 
1574 		return 1;
1575 	}
1576 
1577 	/* LDX: dst = *(unsigned size *)(src + off) */
1578 	case BPF_LDX | BPF_MEM | BPF_B:
1579 	case BPF_LDX | BPF_MEM | BPF_H:
1580 	case BPF_LDX | BPF_MEM | BPF_W:
1581 	case BPF_LDX | BPF_MEM | BPF_DW:
1582 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1583 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1584 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1585 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1586 	/* LDSX: dst = *(signed size *)(src + off) */
1587 	case BPF_LDX | BPF_MEMSX | BPF_B:
1588 	case BPF_LDX | BPF_MEMSX | BPF_H:
1589 	case BPF_LDX | BPF_MEMSX | BPF_W:
1590 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1591 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1592 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1593 	/* LDX | PROBE_MEM32: dst = *(unsigned size *)(src + RV_REG_ARENA + off) */
1594 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1595 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1596 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1597 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1598 	{
1599 		int insn_len, insns_start;
1600 		bool sign_ext;
1601 
1602 		sign_ext = BPF_MODE(insn->code) == BPF_MEMSX ||
1603 			   BPF_MODE(insn->code) == BPF_PROBE_MEMSX;
1604 
1605 		if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1606 			emit_add(RV_REG_T2, rs, RV_REG_ARENA, ctx);
1607 			rs = RV_REG_T2;
1608 		}
1609 
1610 		switch (BPF_SIZE(code)) {
1611 		case BPF_B:
1612 			if (is_12b_int(off)) {
1613 				insns_start = ctx->ninsns;
1614 				if (sign_ext)
1615 					emit(rv_lb(rd, off, rs), ctx);
1616 				else
1617 					emit(rv_lbu(rd, off, rs), ctx);
1618 				insn_len = ctx->ninsns - insns_start;
1619 				break;
1620 			}
1621 
1622 			emit_imm(RV_REG_T1, off, ctx);
1623 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1624 			insns_start = ctx->ninsns;
1625 			if (sign_ext)
1626 				emit(rv_lb(rd, 0, RV_REG_T1), ctx);
1627 			else
1628 				emit(rv_lbu(rd, 0, RV_REG_T1), ctx);
1629 			insn_len = ctx->ninsns - insns_start;
1630 			break;
1631 		case BPF_H:
1632 			if (is_12b_int(off)) {
1633 				insns_start = ctx->ninsns;
1634 				if (sign_ext)
1635 					emit(rv_lh(rd, off, rs), ctx);
1636 				else
1637 					emit(rv_lhu(rd, off, rs), ctx);
1638 				insn_len = ctx->ninsns - insns_start;
1639 				break;
1640 			}
1641 
1642 			emit_imm(RV_REG_T1, off, ctx);
1643 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1644 			insns_start = ctx->ninsns;
1645 			if (sign_ext)
1646 				emit(rv_lh(rd, 0, RV_REG_T1), ctx);
1647 			else
1648 				emit(rv_lhu(rd, 0, RV_REG_T1), ctx);
1649 			insn_len = ctx->ninsns - insns_start;
1650 			break;
1651 		case BPF_W:
1652 			if (is_12b_int(off)) {
1653 				insns_start = ctx->ninsns;
1654 				if (sign_ext)
1655 					emit(rv_lw(rd, off, rs), ctx);
1656 				else
1657 					emit(rv_lwu(rd, off, rs), ctx);
1658 				insn_len = ctx->ninsns - insns_start;
1659 				break;
1660 			}
1661 
1662 			emit_imm(RV_REG_T1, off, ctx);
1663 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1664 			insns_start = ctx->ninsns;
1665 			if (sign_ext)
1666 				emit(rv_lw(rd, 0, RV_REG_T1), ctx);
1667 			else
1668 				emit(rv_lwu(rd, 0, RV_REG_T1), ctx);
1669 			insn_len = ctx->ninsns - insns_start;
1670 			break;
1671 		case BPF_DW:
1672 			if (is_12b_int(off)) {
1673 				insns_start = ctx->ninsns;
1674 				emit_ld(rd, off, rs, ctx);
1675 				insn_len = ctx->ninsns - insns_start;
1676 				break;
1677 			}
1678 
1679 			emit_imm(RV_REG_T1, off, ctx);
1680 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1681 			insns_start = ctx->ninsns;
1682 			emit_ld(rd, 0, RV_REG_T1, ctx);
1683 			insn_len = ctx->ninsns - insns_start;
1684 			break;
1685 		}
1686 
1687 		ret = add_exception_handler(insn, ctx, rd, insn_len);
1688 		if (ret)
1689 			return ret;
1690 
1691 		if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
1692 			return 1;
1693 		break;
1694 	}
1695 	/* speculation barrier */
1696 	case BPF_ST | BPF_NOSPEC:
1697 		break;
1698 
1699 	/* ST: *(size *)(dst + off) = imm */
1700 	case BPF_ST | BPF_MEM | BPF_B:
1701 		emit_imm(RV_REG_T1, imm, ctx);
1702 		if (is_12b_int(off)) {
1703 			emit(rv_sb(rd, off, RV_REG_T1), ctx);
1704 			break;
1705 		}
1706 
1707 		emit_imm(RV_REG_T2, off, ctx);
1708 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1709 		emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1710 		break;
1711 
1712 	case BPF_ST | BPF_MEM | BPF_H:
1713 		emit_imm(RV_REG_T1, imm, ctx);
1714 		if (is_12b_int(off)) {
1715 			emit(rv_sh(rd, off, RV_REG_T1), ctx);
1716 			break;
1717 		}
1718 
1719 		emit_imm(RV_REG_T2, off, ctx);
1720 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1721 		emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1722 		break;
1723 	case BPF_ST | BPF_MEM | BPF_W:
1724 		emit_imm(RV_REG_T1, imm, ctx);
1725 		if (is_12b_int(off)) {
1726 			emit_sw(rd, off, RV_REG_T1, ctx);
1727 			break;
1728 		}
1729 
1730 		emit_imm(RV_REG_T2, off, ctx);
1731 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1732 		emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
1733 		break;
1734 	case BPF_ST | BPF_MEM | BPF_DW:
1735 		emit_imm(RV_REG_T1, imm, ctx);
1736 		if (is_12b_int(off)) {
1737 			emit_sd(rd, off, RV_REG_T1, ctx);
1738 			break;
1739 		}
1740 
1741 		emit_imm(RV_REG_T2, off, ctx);
1742 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1743 		emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
1744 		break;
1745 
1746 	case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1747 	case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1748 	case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1749 	case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1750 	{
1751 		int insn_len, insns_start;
1752 
1753 		emit_add(RV_REG_T3, rd, RV_REG_ARENA, ctx);
1754 		rd = RV_REG_T3;
1755 
1756 		/* Load imm to a register then store it */
1757 		emit_imm(RV_REG_T1, imm, ctx);
1758 
1759 		switch (BPF_SIZE(code)) {
1760 		case BPF_B:
1761 			if (is_12b_int(off)) {
1762 				insns_start = ctx->ninsns;
1763 				emit(rv_sb(rd, off, RV_REG_T1), ctx);
1764 				insn_len = ctx->ninsns - insns_start;
1765 				break;
1766 			}
1767 
1768 			emit_imm(RV_REG_T2, off, ctx);
1769 			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1770 			insns_start = ctx->ninsns;
1771 			emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1772 			insn_len = ctx->ninsns - insns_start;
1773 			break;
1774 		case BPF_H:
1775 			if (is_12b_int(off)) {
1776 				insns_start = ctx->ninsns;
1777 				emit(rv_sh(rd, off, RV_REG_T1), ctx);
1778 				insn_len = ctx->ninsns - insns_start;
1779 				break;
1780 			}
1781 
1782 			emit_imm(RV_REG_T2, off, ctx);
1783 			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1784 			insns_start = ctx->ninsns;
1785 			emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1786 			insn_len = ctx->ninsns - insns_start;
1787 			break;
1788 		case BPF_W:
1789 			if (is_12b_int(off)) {
1790 				insns_start = ctx->ninsns;
1791 				emit_sw(rd, off, RV_REG_T1, ctx);
1792 				insn_len = ctx->ninsns - insns_start;
1793 				break;
1794 			}
1795 
1796 			emit_imm(RV_REG_T2, off, ctx);
1797 			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1798 			insns_start = ctx->ninsns;
1799 			emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
1800 			insn_len = ctx->ninsns - insns_start;
1801 			break;
1802 		case BPF_DW:
1803 			if (is_12b_int(off)) {
1804 				insns_start = ctx->ninsns;
1805 				emit_sd(rd, off, RV_REG_T1, ctx);
1806 				insn_len = ctx->ninsns - insns_start;
1807 				break;
1808 			}
1809 
1810 			emit_imm(RV_REG_T2, off, ctx);
1811 			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1812 			insns_start = ctx->ninsns;
1813 			emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
1814 			insn_len = ctx->ninsns - insns_start;
1815 			break;
1816 		}
1817 
1818 		ret = add_exception_handler(insn, ctx, REG_DONT_CLEAR_MARKER,
1819 					    insn_len);
1820 		if (ret)
1821 			return ret;
1822 
1823 		break;
1824 	}
1825 
1826 	/* STX: *(size *)(dst + off) = src */
1827 	case BPF_STX | BPF_MEM | BPF_B:
1828 		if (is_12b_int(off)) {
1829 			emit(rv_sb(rd, off, rs), ctx);
1830 			break;
1831 		}
1832 
1833 		emit_imm(RV_REG_T1, off, ctx);
1834 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1835 		emit(rv_sb(RV_REG_T1, 0, rs), ctx);
1836 		break;
1837 	case BPF_STX | BPF_MEM | BPF_H:
1838 		if (is_12b_int(off)) {
1839 			emit(rv_sh(rd, off, rs), ctx);
1840 			break;
1841 		}
1842 
1843 		emit_imm(RV_REG_T1, off, ctx);
1844 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1845 		emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1846 		break;
1847 	case BPF_STX | BPF_MEM | BPF_W:
1848 		if (is_12b_int(off)) {
1849 			emit_sw(rd, off, rs, ctx);
1850 			break;
1851 		}
1852 
1853 		emit_imm(RV_REG_T1, off, ctx);
1854 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1855 		emit_sw(RV_REG_T1, 0, rs, ctx);
1856 		break;
1857 	case BPF_STX | BPF_MEM | BPF_DW:
1858 		if (is_12b_int(off)) {
1859 			emit_sd(rd, off, rs, ctx);
1860 			break;
1861 		}
1862 
1863 		emit_imm(RV_REG_T1, off, ctx);
1864 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1865 		emit_sd(RV_REG_T1, 0, rs, ctx);
1866 		break;
1867 	case BPF_STX | BPF_ATOMIC | BPF_W:
1868 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1869 		emit_atomic(rd, rs, off, imm,
1870 			    BPF_SIZE(code) == BPF_DW, ctx);
1871 		break;
1872 
1873 	case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1874 	case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1875 	case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1876 	case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1877 	{
1878 		int insn_len, insns_start;
1879 
1880 		emit_add(RV_REG_T2, rd, RV_REG_ARENA, ctx);
1881 		rd = RV_REG_T2;
1882 
1883 		switch (BPF_SIZE(code)) {
1884 		case BPF_B:
1885 			if (is_12b_int(off)) {
1886 				insns_start = ctx->ninsns;
1887 				emit(rv_sb(rd, off, rs), ctx);
1888 				insn_len = ctx->ninsns - insns_start;
1889 				break;
1890 			}
1891 
1892 			emit_imm(RV_REG_T1, off, ctx);
1893 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1894 			insns_start = ctx->ninsns;
1895 			emit(rv_sb(RV_REG_T1, 0, rs), ctx);
1896 			insn_len = ctx->ninsns - insns_start;
1897 			break;
1898 		case BPF_H:
1899 			if (is_12b_int(off)) {
1900 				insns_start = ctx->ninsns;
1901 				emit(rv_sh(rd, off, rs), ctx);
1902 				insn_len = ctx->ninsns - insns_start;
1903 				break;
1904 			}
1905 
1906 			emit_imm(RV_REG_T1, off, ctx);
1907 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1908 			insns_start = ctx->ninsns;
1909 			emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1910 			insn_len = ctx->ninsns - insns_start;
1911 			break;
1912 		case BPF_W:
1913 			if (is_12b_int(off)) {
1914 				insns_start = ctx->ninsns;
1915 				emit_sw(rd, off, rs, ctx);
1916 				insn_len = ctx->ninsns - insns_start;
1917 				break;
1918 			}
1919 
1920 			emit_imm(RV_REG_T1, off, ctx);
1921 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1922 			insns_start = ctx->ninsns;
1923 			emit_sw(RV_REG_T1, 0, rs, ctx);
1924 			insn_len = ctx->ninsns - insns_start;
1925 			break;
1926 		case BPF_DW:
1927 			if (is_12b_int(off)) {
1928 				insns_start = ctx->ninsns;
1929 				emit_sd(rd, off, rs, ctx);
1930 				insn_len = ctx->ninsns - insns_start;
1931 				break;
1932 			}
1933 
1934 			emit_imm(RV_REG_T1, off, ctx);
1935 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1936 			insns_start = ctx->ninsns;
1937 			emit_sd(RV_REG_T1, 0, rs, ctx);
1938 			insn_len = ctx->ninsns - insns_start;
1939 			break;
1940 		}
1941 
1942 		ret = add_exception_handler(insn, ctx, REG_DONT_CLEAR_MARKER,
1943 					    insn_len);
1944 		if (ret)
1945 			return ret;
1946 
1947 		break;
1948 	}
1949 
1950 	default:
1951 		pr_err("bpf-jit: unknown opcode %02x\n", code);
1952 		return -EINVAL;
1953 	}
1954 
1955 	return 0;
1956 }
1957 
1958 void bpf_jit_build_prologue(struct rv_jit_context *ctx, bool is_subprog)
1959 {
1960 	int i, stack_adjust = 0, store_offset, bpf_stack_adjust;
1961 
1962 	bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, STACK_ALIGN);
1963 	if (bpf_stack_adjust)
1964 		mark_fp(ctx);
1965 
1966 	if (seen_reg(RV_REG_RA, ctx))
1967 		stack_adjust += 8;
1968 	stack_adjust += 8; /* RV_REG_FP */
1969 	if (seen_reg(RV_REG_S1, ctx))
1970 		stack_adjust += 8;
1971 	if (seen_reg(RV_REG_S2, ctx))
1972 		stack_adjust += 8;
1973 	if (seen_reg(RV_REG_S3, ctx))
1974 		stack_adjust += 8;
1975 	if (seen_reg(RV_REG_S4, ctx))
1976 		stack_adjust += 8;
1977 	if (seen_reg(RV_REG_S5, ctx))
1978 		stack_adjust += 8;
1979 	if (seen_reg(RV_REG_S6, ctx))
1980 		stack_adjust += 8;
1981 	if (ctx->arena_vm_start)
1982 		stack_adjust += 8;
1983 
1984 	stack_adjust = round_up(stack_adjust, STACK_ALIGN);
1985 	stack_adjust += bpf_stack_adjust;
1986 
1987 	store_offset = stack_adjust - 8;
1988 
1989 	/* emit kcfi type preamble immediately before the  first insn */
1990 	emit_kcfi(is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash, ctx);
1991 
1992 	/* nops reserved for auipc+jalr pair */
1993 	for (i = 0; i < RV_FENTRY_NINSNS; i++)
1994 		emit(rv_nop(), ctx);
1995 
1996 	/* First instruction is always setting the tail-call-counter
1997 	 * (TCC) register. This instruction is skipped for tail calls.
1998 	 * Force using a 4-byte (non-compressed) instruction.
1999 	 */
2000 	emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
2001 
2002 	emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx);
2003 
2004 	if (seen_reg(RV_REG_RA, ctx)) {
2005 		emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx);
2006 		store_offset -= 8;
2007 	}
2008 	emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx);
2009 	store_offset -= 8;
2010 	if (seen_reg(RV_REG_S1, ctx)) {
2011 		emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx);
2012 		store_offset -= 8;
2013 	}
2014 	if (seen_reg(RV_REG_S2, ctx)) {
2015 		emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx);
2016 		store_offset -= 8;
2017 	}
2018 	if (seen_reg(RV_REG_S3, ctx)) {
2019 		emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx);
2020 		store_offset -= 8;
2021 	}
2022 	if (seen_reg(RV_REG_S4, ctx)) {
2023 		emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx);
2024 		store_offset -= 8;
2025 	}
2026 	if (seen_reg(RV_REG_S5, ctx)) {
2027 		emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx);
2028 		store_offset -= 8;
2029 	}
2030 	if (seen_reg(RV_REG_S6, ctx)) {
2031 		emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx);
2032 		store_offset -= 8;
2033 	}
2034 	if (ctx->arena_vm_start) {
2035 		emit_sd(RV_REG_SP, store_offset, RV_REG_ARENA, ctx);
2036 		store_offset -= 8;
2037 	}
2038 
2039 	emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx);
2040 
2041 	if (bpf_stack_adjust)
2042 		emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx);
2043 
2044 	/* Program contains calls and tail calls, so RV_REG_TCC need
2045 	 * to be saved across calls.
2046 	 */
2047 	if (seen_tail_call(ctx) && seen_call(ctx))
2048 		emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx);
2049 
2050 	ctx->stack_size = stack_adjust;
2051 
2052 	if (ctx->arena_vm_start)
2053 		emit_imm(RV_REG_ARENA, ctx->arena_vm_start, ctx);
2054 }
2055 
2056 void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
2057 {
2058 	__build_epilogue(false, ctx);
2059 }
2060 
2061 bool bpf_jit_supports_kfunc_call(void)
2062 {
2063 	return true;
2064 }
2065 
2066 bool bpf_jit_supports_ptr_xchg(void)
2067 {
2068 	return true;
2069 }
2070 
2071 bool bpf_jit_supports_arena(void)
2072 {
2073 	return true;
2074 }
2075 
2076 bool bpf_jit_supports_percpu_insn(void)
2077 {
2078 	return true;
2079 }
2080 
2081 bool bpf_jit_inlines_helper_call(s32 imm)
2082 {
2083 	switch (imm) {
2084 	case BPF_FUNC_get_smp_processor_id:
2085 		return true;
2086 	default:
2087 		return false;
2088 	}
2089 }
2090