xref: /linux/arch/riscv/net/bpf_jit_comp64.c (revision 0f7e753fc3851aac8aeea6b551cbbcf6ca9093dd)
1 // SPDX-License-Identifier: GPL-2.0
2 /* BPF JIT compiler for RV64G
3  *
4  * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
5  *
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/bpf.h>
10 #include <linux/filter.h>
11 #include <linux/memory.h>
12 #include <linux/stop_machine.h>
13 #include <asm/patch.h>
14 #include "bpf_jit.h"
15 
16 #define RV_FENTRY_NINSNS 2
17 
18 #define RV_REG_TCC RV_REG_A6
19 #define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
20 
21 static const int regmap[] = {
22 	[BPF_REG_0] =	RV_REG_A5,
23 	[BPF_REG_1] =	RV_REG_A0,
24 	[BPF_REG_2] =	RV_REG_A1,
25 	[BPF_REG_3] =	RV_REG_A2,
26 	[BPF_REG_4] =	RV_REG_A3,
27 	[BPF_REG_5] =	RV_REG_A4,
28 	[BPF_REG_6] =	RV_REG_S1,
29 	[BPF_REG_7] =	RV_REG_S2,
30 	[BPF_REG_8] =	RV_REG_S3,
31 	[BPF_REG_9] =	RV_REG_S4,
32 	[BPF_REG_FP] =	RV_REG_S5,
33 	[BPF_REG_AX] =	RV_REG_T0,
34 };
35 
36 static const int pt_regmap[] = {
37 	[RV_REG_A0] = offsetof(struct pt_regs, a0),
38 	[RV_REG_A1] = offsetof(struct pt_regs, a1),
39 	[RV_REG_A2] = offsetof(struct pt_regs, a2),
40 	[RV_REG_A3] = offsetof(struct pt_regs, a3),
41 	[RV_REG_A4] = offsetof(struct pt_regs, a4),
42 	[RV_REG_A5] = offsetof(struct pt_regs, a5),
43 	[RV_REG_S1] = offsetof(struct pt_regs, s1),
44 	[RV_REG_S2] = offsetof(struct pt_regs, s2),
45 	[RV_REG_S3] = offsetof(struct pt_regs, s3),
46 	[RV_REG_S4] = offsetof(struct pt_regs, s4),
47 	[RV_REG_S5] = offsetof(struct pt_regs, s5),
48 	[RV_REG_T0] = offsetof(struct pt_regs, t0),
49 };
50 
51 enum {
52 	RV_CTX_F_SEEN_TAIL_CALL =	0,
53 	RV_CTX_F_SEEN_CALL =		RV_REG_RA,
54 	RV_CTX_F_SEEN_S1 =		RV_REG_S1,
55 	RV_CTX_F_SEEN_S2 =		RV_REG_S2,
56 	RV_CTX_F_SEEN_S3 =		RV_REG_S3,
57 	RV_CTX_F_SEEN_S4 =		RV_REG_S4,
58 	RV_CTX_F_SEEN_S5 =		RV_REG_S5,
59 	RV_CTX_F_SEEN_S6 =		RV_REG_S6,
60 };
61 
62 static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
63 {
64 	u8 reg = regmap[bpf_reg];
65 
66 	switch (reg) {
67 	case RV_CTX_F_SEEN_S1:
68 	case RV_CTX_F_SEEN_S2:
69 	case RV_CTX_F_SEEN_S3:
70 	case RV_CTX_F_SEEN_S4:
71 	case RV_CTX_F_SEEN_S5:
72 	case RV_CTX_F_SEEN_S6:
73 		__set_bit(reg, &ctx->flags);
74 	}
75 	return reg;
76 };
77 
78 static bool seen_reg(int reg, struct rv_jit_context *ctx)
79 {
80 	switch (reg) {
81 	case RV_CTX_F_SEEN_CALL:
82 	case RV_CTX_F_SEEN_S1:
83 	case RV_CTX_F_SEEN_S2:
84 	case RV_CTX_F_SEEN_S3:
85 	case RV_CTX_F_SEEN_S4:
86 	case RV_CTX_F_SEEN_S5:
87 	case RV_CTX_F_SEEN_S6:
88 		return test_bit(reg, &ctx->flags);
89 	}
90 	return false;
91 }
92 
93 static void mark_fp(struct rv_jit_context *ctx)
94 {
95 	__set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
96 }
97 
98 static void mark_call(struct rv_jit_context *ctx)
99 {
100 	__set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
101 }
102 
103 static bool seen_call(struct rv_jit_context *ctx)
104 {
105 	return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
106 }
107 
108 static void mark_tail_call(struct rv_jit_context *ctx)
109 {
110 	__set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
111 }
112 
113 static bool seen_tail_call(struct rv_jit_context *ctx)
114 {
115 	return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
116 }
117 
118 static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
119 {
120 	mark_tail_call(ctx);
121 
122 	if (seen_call(ctx)) {
123 		__set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
124 		return RV_REG_S6;
125 	}
126 	return RV_REG_A6;
127 }
128 
129 static bool is_32b_int(s64 val)
130 {
131 	return -(1L << 31) <= val && val < (1L << 31);
132 }
133 
134 static bool in_auipc_jalr_range(s64 val)
135 {
136 	/*
137 	 * auipc+jalr can reach any signed PC-relative offset in the range
138 	 * [-2^31 - 2^11, 2^31 - 2^11).
139 	 */
140 	return (-(1L << 31) - (1L << 11)) <= val &&
141 		val < ((1L << 31) - (1L << 11));
142 }
143 
144 /* Emit fixed-length instructions for address */
145 static int emit_addr(u8 rd, u64 addr, bool extra_pass, struct rv_jit_context *ctx)
146 {
147 	/*
148 	 * Use the ro_insns(RX) to calculate the offset as the BPF program will
149 	 * finally run from this memory region.
150 	 */
151 	u64 ip = (u64)(ctx->ro_insns + ctx->ninsns);
152 	s64 off = addr - ip;
153 	s64 upper = (off + (1 << 11)) >> 12;
154 	s64 lower = off & 0xfff;
155 
156 	if (extra_pass && !in_auipc_jalr_range(off)) {
157 		pr_err("bpf-jit: target offset 0x%llx is out of range\n", off);
158 		return -ERANGE;
159 	}
160 
161 	emit(rv_auipc(rd, upper), ctx);
162 	emit(rv_addi(rd, rd, lower), ctx);
163 	return 0;
164 }
165 
166 /* Emit variable-length instructions for 32-bit and 64-bit imm */
167 static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
168 {
169 	/* Note that the immediate from the add is sign-extended,
170 	 * which means that we need to compensate this by adding 2^12,
171 	 * when the 12th bit is set. A simpler way of doing this, and
172 	 * getting rid of the check, is to just add 2**11 before the
173 	 * shift. The "Loading a 32-Bit constant" example from the
174 	 * "Computer Organization and Design, RISC-V edition" book by
175 	 * Patterson/Hennessy highlights this fact.
176 	 *
177 	 * This also means that we need to process LSB to MSB.
178 	 */
179 	s64 upper = (val + (1 << 11)) >> 12;
180 	/* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw,
181 	 * and addi are signed and RVC checks will perform signed comparisons.
182 	 */
183 	s64 lower = ((val & 0xfff) << 52) >> 52;
184 	int shift;
185 
186 	if (is_32b_int(val)) {
187 		if (upper)
188 			emit_lui(rd, upper, ctx);
189 
190 		if (!upper) {
191 			emit_li(rd, lower, ctx);
192 			return;
193 		}
194 
195 		emit_addiw(rd, rd, lower, ctx);
196 		return;
197 	}
198 
199 	shift = __ffs(upper);
200 	upper >>= shift;
201 	shift += 12;
202 
203 	emit_imm(rd, upper, ctx);
204 
205 	emit_slli(rd, rd, shift, ctx);
206 	if (lower)
207 		emit_addi(rd, rd, lower, ctx);
208 }
209 
210 static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
211 {
212 	int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
213 
214 	if (seen_reg(RV_REG_RA, ctx)) {
215 		emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx);
216 		store_offset -= 8;
217 	}
218 	emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx);
219 	store_offset -= 8;
220 	if (seen_reg(RV_REG_S1, ctx)) {
221 		emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx);
222 		store_offset -= 8;
223 	}
224 	if (seen_reg(RV_REG_S2, ctx)) {
225 		emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx);
226 		store_offset -= 8;
227 	}
228 	if (seen_reg(RV_REG_S3, ctx)) {
229 		emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx);
230 		store_offset -= 8;
231 	}
232 	if (seen_reg(RV_REG_S4, ctx)) {
233 		emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx);
234 		store_offset -= 8;
235 	}
236 	if (seen_reg(RV_REG_S5, ctx)) {
237 		emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx);
238 		store_offset -= 8;
239 	}
240 	if (seen_reg(RV_REG_S6, ctx)) {
241 		emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx);
242 		store_offset -= 8;
243 	}
244 
245 	emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx);
246 	/* Set return value. */
247 	if (!is_tail_call)
248 		emit_mv(RV_REG_A0, RV_REG_A5, ctx);
249 	emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
250 		  is_tail_call ? (RV_FENTRY_NINSNS + 1) * 4 : 0, /* skip reserved nops and TCC init */
251 		  ctx);
252 }
253 
254 static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
255 		     struct rv_jit_context *ctx)
256 {
257 	switch (cond) {
258 	case BPF_JEQ:
259 		emit(rv_beq(rd, rs, rvoff >> 1), ctx);
260 		return;
261 	case BPF_JGT:
262 		emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
263 		return;
264 	case BPF_JLT:
265 		emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
266 		return;
267 	case BPF_JGE:
268 		emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
269 		return;
270 	case BPF_JLE:
271 		emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
272 		return;
273 	case BPF_JNE:
274 		emit(rv_bne(rd, rs, rvoff >> 1), ctx);
275 		return;
276 	case BPF_JSGT:
277 		emit(rv_blt(rs, rd, rvoff >> 1), ctx);
278 		return;
279 	case BPF_JSLT:
280 		emit(rv_blt(rd, rs, rvoff >> 1), ctx);
281 		return;
282 	case BPF_JSGE:
283 		emit(rv_bge(rd, rs, rvoff >> 1), ctx);
284 		return;
285 	case BPF_JSLE:
286 		emit(rv_bge(rs, rd, rvoff >> 1), ctx);
287 	}
288 }
289 
290 static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
291 			struct rv_jit_context *ctx)
292 {
293 	s64 upper, lower;
294 
295 	if (is_13b_int(rvoff)) {
296 		emit_bcc(cond, rd, rs, rvoff, ctx);
297 		return;
298 	}
299 
300 	/* Adjust for jal */
301 	rvoff -= 4;
302 
303 	/* Transform, e.g.:
304 	 *   bne rd,rs,foo
305 	 * to
306 	 *   beq rd,rs,<.L1>
307 	 *   (auipc foo)
308 	 *   jal(r) foo
309 	 * .L1
310 	 */
311 	cond = invert_bpf_cond(cond);
312 	if (is_21b_int(rvoff)) {
313 		emit_bcc(cond, rd, rs, 8, ctx);
314 		emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
315 		return;
316 	}
317 
318 	/* 32b No need for an additional rvoff adjustment, since we
319 	 * get that from the auipc at PC', where PC = PC' + 4.
320 	 */
321 	upper = (rvoff + (1 << 11)) >> 12;
322 	lower = rvoff & 0xfff;
323 
324 	emit_bcc(cond, rd, rs, 12, ctx);
325 	emit(rv_auipc(RV_REG_T1, upper), ctx);
326 	emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
327 }
328 
329 static void emit_zext_32(u8 reg, struct rv_jit_context *ctx)
330 {
331 	emit_slli(reg, reg, 32, ctx);
332 	emit_srli(reg, reg, 32, ctx);
333 }
334 
335 static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
336 {
337 	int tc_ninsn, off, start_insn = ctx->ninsns;
338 	u8 tcc = rv_tail_call_reg(ctx);
339 
340 	/* a0: &ctx
341 	 * a1: &array
342 	 * a2: index
343 	 *
344 	 * if (index >= array->map.max_entries)
345 	 *	goto out;
346 	 */
347 	tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
348 		   ctx->offset[0];
349 	emit_zext_32(RV_REG_A2, ctx);
350 
351 	off = offsetof(struct bpf_array, map.max_entries);
352 	if (is_12b_check(off, insn))
353 		return -1;
354 	emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
355 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
356 	emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
357 
358 	/* if (--TCC < 0)
359 	 *     goto out;
360 	 */
361 	emit_addi(RV_REG_TCC, tcc, -1, ctx);
362 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
363 	emit_branch(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx);
364 
365 	/* prog = array->ptrs[index];
366 	 * if (!prog)
367 	 *     goto out;
368 	 */
369 	emit_slli(RV_REG_T2, RV_REG_A2, 3, ctx);
370 	emit_add(RV_REG_T2, RV_REG_T2, RV_REG_A1, ctx);
371 	off = offsetof(struct bpf_array, ptrs);
372 	if (is_12b_check(off, insn))
373 		return -1;
374 	emit_ld(RV_REG_T2, off, RV_REG_T2, ctx);
375 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
376 	emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
377 
378 	/* goto *(prog->bpf_func + 4); */
379 	off = offsetof(struct bpf_prog, bpf_func);
380 	if (is_12b_check(off, insn))
381 		return -1;
382 	emit_ld(RV_REG_T3, off, RV_REG_T2, ctx);
383 	__build_epilogue(true, ctx);
384 	return 0;
385 }
386 
387 static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
388 		      struct rv_jit_context *ctx)
389 {
390 	u8 code = insn->code;
391 
392 	switch (code) {
393 	case BPF_JMP | BPF_JA:
394 	case BPF_JMP | BPF_CALL:
395 	case BPF_JMP | BPF_EXIT:
396 	case BPF_JMP | BPF_TAIL_CALL:
397 		break;
398 	default:
399 		*rd = bpf_to_rv_reg(insn->dst_reg, ctx);
400 	}
401 
402 	if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
403 	    code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
404 	    code & BPF_LDX || code & BPF_STX)
405 		*rs = bpf_to_rv_reg(insn->src_reg, ctx);
406 }
407 
408 static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
409 {
410 	emit_mv(RV_REG_T2, *rd, ctx);
411 	emit_zext_32(RV_REG_T2, ctx);
412 	emit_mv(RV_REG_T1, *rs, ctx);
413 	emit_zext_32(RV_REG_T1, ctx);
414 	*rd = RV_REG_T2;
415 	*rs = RV_REG_T1;
416 }
417 
418 static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
419 {
420 	emit_addiw(RV_REG_T2, *rd, 0, ctx);
421 	emit_addiw(RV_REG_T1, *rs, 0, ctx);
422 	*rd = RV_REG_T2;
423 	*rs = RV_REG_T1;
424 }
425 
426 static void emit_zext_32_rd_t1(u8 *rd, struct rv_jit_context *ctx)
427 {
428 	emit_mv(RV_REG_T2, *rd, ctx);
429 	emit_zext_32(RV_REG_T2, ctx);
430 	emit_zext_32(RV_REG_T1, ctx);
431 	*rd = RV_REG_T2;
432 }
433 
434 static void emit_sext_32_rd(u8 *rd, struct rv_jit_context *ctx)
435 {
436 	emit_addiw(RV_REG_T2, *rd, 0, ctx);
437 	*rd = RV_REG_T2;
438 }
439 
440 static int emit_jump_and_link(u8 rd, s64 rvoff, bool fixed_addr,
441 			      struct rv_jit_context *ctx)
442 {
443 	s64 upper, lower;
444 
445 	if (rvoff && fixed_addr && is_21b_int(rvoff)) {
446 		emit(rv_jal(rd, rvoff >> 1), ctx);
447 		return 0;
448 	} else if (in_auipc_jalr_range(rvoff)) {
449 		upper = (rvoff + (1 << 11)) >> 12;
450 		lower = rvoff & 0xfff;
451 		emit(rv_auipc(RV_REG_T1, upper), ctx);
452 		emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
453 		return 0;
454 	}
455 
456 	pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff);
457 	return -ERANGE;
458 }
459 
460 static bool is_signed_bpf_cond(u8 cond)
461 {
462 	return cond == BPF_JSGT || cond == BPF_JSLT ||
463 		cond == BPF_JSGE || cond == BPF_JSLE;
464 }
465 
466 static int emit_call(u64 addr, bool fixed_addr, struct rv_jit_context *ctx)
467 {
468 	s64 off = 0;
469 	u64 ip;
470 
471 	if (addr && ctx->insns && ctx->ro_insns) {
472 		/*
473 		 * Use the ro_insns(RX) to calculate the offset as the BPF
474 		 * program will finally run from this memory region.
475 		 */
476 		ip = (u64)(long)(ctx->ro_insns + ctx->ninsns);
477 		off = addr - ip;
478 	}
479 
480 	return emit_jump_and_link(RV_REG_RA, off, fixed_addr, ctx);
481 }
482 
483 static void emit_atomic(u8 rd, u8 rs, s16 off, s32 imm, bool is64,
484 			struct rv_jit_context *ctx)
485 {
486 	u8 r0;
487 	int jmp_offset;
488 
489 	if (off) {
490 		if (is_12b_int(off)) {
491 			emit_addi(RV_REG_T1, rd, off, ctx);
492 		} else {
493 			emit_imm(RV_REG_T1, off, ctx);
494 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
495 		}
496 		rd = RV_REG_T1;
497 	}
498 
499 	switch (imm) {
500 	/* lock *(u32/u64 *)(dst_reg + off16) <op>= src_reg */
501 	case BPF_ADD:
502 		emit(is64 ? rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0) :
503 		     rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
504 		break;
505 	case BPF_AND:
506 		emit(is64 ? rv_amoand_d(RV_REG_ZERO, rs, rd, 0, 0) :
507 		     rv_amoand_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
508 		break;
509 	case BPF_OR:
510 		emit(is64 ? rv_amoor_d(RV_REG_ZERO, rs, rd, 0, 0) :
511 		     rv_amoor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
512 		break;
513 	case BPF_XOR:
514 		emit(is64 ? rv_amoxor_d(RV_REG_ZERO, rs, rd, 0, 0) :
515 		     rv_amoxor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
516 		break;
517 	/* src_reg = atomic_fetch_<op>(dst_reg + off16, src_reg) */
518 	case BPF_ADD | BPF_FETCH:
519 		emit(is64 ? rv_amoadd_d(rs, rs, rd, 0, 0) :
520 		     rv_amoadd_w(rs, rs, rd, 0, 0), ctx);
521 		if (!is64)
522 			emit_zext_32(rs, ctx);
523 		break;
524 	case BPF_AND | BPF_FETCH:
525 		emit(is64 ? rv_amoand_d(rs, rs, rd, 0, 0) :
526 		     rv_amoand_w(rs, rs, rd, 0, 0), ctx);
527 		if (!is64)
528 			emit_zext_32(rs, ctx);
529 		break;
530 	case BPF_OR | BPF_FETCH:
531 		emit(is64 ? rv_amoor_d(rs, rs, rd, 0, 0) :
532 		     rv_amoor_w(rs, rs, rd, 0, 0), ctx);
533 		if (!is64)
534 			emit_zext_32(rs, ctx);
535 		break;
536 	case BPF_XOR | BPF_FETCH:
537 		emit(is64 ? rv_amoxor_d(rs, rs, rd, 0, 0) :
538 		     rv_amoxor_w(rs, rs, rd, 0, 0), ctx);
539 		if (!is64)
540 			emit_zext_32(rs, ctx);
541 		break;
542 	/* src_reg = atomic_xchg(dst_reg + off16, src_reg); */
543 	case BPF_XCHG:
544 		emit(is64 ? rv_amoswap_d(rs, rs, rd, 0, 0) :
545 		     rv_amoswap_w(rs, rs, rd, 0, 0), ctx);
546 		if (!is64)
547 			emit_zext_32(rs, ctx);
548 		break;
549 	/* r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg); */
550 	case BPF_CMPXCHG:
551 		r0 = bpf_to_rv_reg(BPF_REG_0, ctx);
552 		emit(is64 ? rv_addi(RV_REG_T2, r0, 0) :
553 		     rv_addiw(RV_REG_T2, r0, 0), ctx);
554 		emit(is64 ? rv_lr_d(r0, 0, rd, 0, 0) :
555 		     rv_lr_w(r0, 0, rd, 0, 0), ctx);
556 		jmp_offset = ninsns_rvoff(8);
557 		emit(rv_bne(RV_REG_T2, r0, jmp_offset >> 1), ctx);
558 		emit(is64 ? rv_sc_d(RV_REG_T3, rs, rd, 0, 0) :
559 		     rv_sc_w(RV_REG_T3, rs, rd, 0, 0), ctx);
560 		jmp_offset = ninsns_rvoff(-6);
561 		emit(rv_bne(RV_REG_T3, 0, jmp_offset >> 1), ctx);
562 		emit(rv_fence(0x3, 0x3), ctx);
563 		break;
564 	}
565 }
566 
567 #define BPF_FIXUP_OFFSET_MASK   GENMASK(26, 0)
568 #define BPF_FIXUP_REG_MASK      GENMASK(31, 27)
569 
570 bool ex_handler_bpf(const struct exception_table_entry *ex,
571 		    struct pt_regs *regs)
572 {
573 	off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
574 	int regs_offset = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
575 
576 	*(unsigned long *)((void *)regs + pt_regmap[regs_offset]) = 0;
577 	regs->epc = (unsigned long)&ex->fixup - offset;
578 
579 	return true;
580 }
581 
582 /* For accesses to BTF pointers, add an entry to the exception table */
583 static int add_exception_handler(const struct bpf_insn *insn,
584 				 struct rv_jit_context *ctx,
585 				 int dst_reg, int insn_len)
586 {
587 	struct exception_table_entry *ex;
588 	unsigned long pc;
589 	off_t ins_offset;
590 	off_t fixup_offset;
591 
592 	if (!ctx->insns || !ctx->ro_insns || !ctx->prog->aux->extable ||
593 	    (BPF_MODE(insn->code) != BPF_PROBE_MEM && BPF_MODE(insn->code) != BPF_PROBE_MEMSX))
594 		return 0;
595 
596 	if (WARN_ON_ONCE(ctx->nexentries >= ctx->prog->aux->num_exentries))
597 		return -EINVAL;
598 
599 	if (WARN_ON_ONCE(insn_len > ctx->ninsns))
600 		return -EINVAL;
601 
602 	if (WARN_ON_ONCE(!rvc_enabled() && insn_len == 1))
603 		return -EINVAL;
604 
605 	ex = &ctx->prog->aux->extable[ctx->nexentries];
606 	pc = (unsigned long)&ctx->ro_insns[ctx->ninsns - insn_len];
607 
608 	/*
609 	 * This is the relative offset of the instruction that may fault from
610 	 * the exception table itself. This will be written to the exception
611 	 * table and if this instruction faults, the destination register will
612 	 * be set to '0' and the execution will jump to the next instruction.
613 	 */
614 	ins_offset = pc - (long)&ex->insn;
615 	if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
616 		return -ERANGE;
617 
618 	/*
619 	 * Since the extable follows the program, the fixup offset is always
620 	 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
621 	 * to keep things simple, and put the destination register in the upper
622 	 * bits. We don't need to worry about buildtime or runtime sort
623 	 * modifying the upper bits because the table is already sorted, and
624 	 * isn't part of the main exception table.
625 	 *
626 	 * The fixup_offset is set to the next instruction from the instruction
627 	 * that may fault. The execution will jump to this after handling the
628 	 * fault.
629 	 */
630 	fixup_offset = (long)&ex->fixup - (pc + insn_len * sizeof(u16));
631 	if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
632 		return -ERANGE;
633 
634 	/*
635 	 * The offsets above have been calculated using the RO buffer but we
636 	 * need to use the R/W buffer for writes.
637 	 * switch ex to rw buffer for writing.
638 	 */
639 	ex = (void *)ctx->insns + ((void *)ex - (void *)ctx->ro_insns);
640 
641 	ex->insn = ins_offset;
642 
643 	ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
644 		FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
645 	ex->type = EX_TYPE_BPF;
646 
647 	ctx->nexentries++;
648 	return 0;
649 }
650 
651 static int gen_jump_or_nops(void *target, void *ip, u32 *insns, bool is_call)
652 {
653 	s64 rvoff;
654 	struct rv_jit_context ctx;
655 
656 	ctx.ninsns = 0;
657 	ctx.insns = (u16 *)insns;
658 
659 	if (!target) {
660 		emit(rv_nop(), &ctx);
661 		emit(rv_nop(), &ctx);
662 		return 0;
663 	}
664 
665 	rvoff = (s64)(target - ip);
666 	return emit_jump_and_link(is_call ? RV_REG_T0 : RV_REG_ZERO, rvoff, false, &ctx);
667 }
668 
669 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
670 		       void *old_addr, void *new_addr)
671 {
672 	u32 old_insns[RV_FENTRY_NINSNS], new_insns[RV_FENTRY_NINSNS];
673 	bool is_call = poke_type == BPF_MOD_CALL;
674 	int ret;
675 
676 	if (!is_kernel_text((unsigned long)ip) &&
677 	    !is_bpf_text_address((unsigned long)ip))
678 		return -ENOTSUPP;
679 
680 	ret = gen_jump_or_nops(old_addr, ip, old_insns, is_call);
681 	if (ret)
682 		return ret;
683 
684 	if (memcmp(ip, old_insns, RV_FENTRY_NINSNS * 4))
685 		return -EFAULT;
686 
687 	ret = gen_jump_or_nops(new_addr, ip, new_insns, is_call);
688 	if (ret)
689 		return ret;
690 
691 	cpus_read_lock();
692 	mutex_lock(&text_mutex);
693 	if (memcmp(ip, new_insns, RV_FENTRY_NINSNS * 4))
694 		ret = patch_text(ip, new_insns, RV_FENTRY_NINSNS);
695 	mutex_unlock(&text_mutex);
696 	cpus_read_unlock();
697 
698 	return ret;
699 }
700 
701 static void store_args(int nregs, int args_off, struct rv_jit_context *ctx)
702 {
703 	int i;
704 
705 	for (i = 0; i < nregs; i++) {
706 		emit_sd(RV_REG_FP, -args_off, RV_REG_A0 + i, ctx);
707 		args_off -= 8;
708 	}
709 }
710 
711 static void restore_args(int nregs, int args_off, struct rv_jit_context *ctx)
712 {
713 	int i;
714 
715 	for (i = 0; i < nregs; i++) {
716 		emit_ld(RV_REG_A0 + i, -args_off, RV_REG_FP, ctx);
717 		args_off -= 8;
718 	}
719 }
720 
721 static int invoke_bpf_prog(struct bpf_tramp_link *l, int args_off, int retval_off,
722 			   int run_ctx_off, bool save_ret, struct rv_jit_context *ctx)
723 {
724 	int ret, branch_off;
725 	struct bpf_prog *p = l->link.prog;
726 	int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
727 
728 	if (l->cookie) {
729 		emit_imm(RV_REG_T1, l->cookie, ctx);
730 		emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_T1, ctx);
731 	} else {
732 		emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_ZERO, ctx);
733 	}
734 
735 	/* arg1: prog */
736 	emit_imm(RV_REG_A0, (const s64)p, ctx);
737 	/* arg2: &run_ctx */
738 	emit_addi(RV_REG_A1, RV_REG_FP, -run_ctx_off, ctx);
739 	ret = emit_call((const u64)bpf_trampoline_enter(p), true, ctx);
740 	if (ret)
741 		return ret;
742 
743 	/* if (__bpf_prog_enter(prog) == 0)
744 	 *	goto skip_exec_of_prog;
745 	 */
746 	branch_off = ctx->ninsns;
747 	/* nop reserved for conditional jump */
748 	emit(rv_nop(), ctx);
749 
750 	/* store prog start time */
751 	emit_mv(RV_REG_S1, RV_REG_A0, ctx);
752 
753 	/* arg1: &args_off */
754 	emit_addi(RV_REG_A0, RV_REG_FP, -args_off, ctx);
755 	if (!p->jited)
756 		/* arg2: progs[i]->insnsi for interpreter */
757 		emit_imm(RV_REG_A1, (const s64)p->insnsi, ctx);
758 	ret = emit_call((const u64)p->bpf_func, true, ctx);
759 	if (ret)
760 		return ret;
761 
762 	if (save_ret)
763 		emit_sd(RV_REG_FP, -retval_off, regmap[BPF_REG_0], ctx);
764 
765 	/* update branch with beqz */
766 	if (ctx->insns) {
767 		int offset = ninsns_rvoff(ctx->ninsns - branch_off);
768 		u32 insn = rv_beq(RV_REG_A0, RV_REG_ZERO, offset >> 1);
769 		*(u32 *)(ctx->insns + branch_off) = insn;
770 	}
771 
772 	/* arg1: prog */
773 	emit_imm(RV_REG_A0, (const s64)p, ctx);
774 	/* arg2: prog start time */
775 	emit_mv(RV_REG_A1, RV_REG_S1, ctx);
776 	/* arg3: &run_ctx */
777 	emit_addi(RV_REG_A2, RV_REG_FP, -run_ctx_off, ctx);
778 	ret = emit_call((const u64)bpf_trampoline_exit(p), true, ctx);
779 
780 	return ret;
781 }
782 
783 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
784 					 const struct btf_func_model *m,
785 					 struct bpf_tramp_links *tlinks,
786 					 void *func_addr, u32 flags,
787 					 struct rv_jit_context *ctx)
788 {
789 	int i, ret, offset;
790 	int *branches_off = NULL;
791 	int stack_size = 0, nregs = m->nr_args;
792 	int retval_off, args_off, nregs_off, ip_off, run_ctx_off, sreg_off;
793 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
794 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
795 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
796 	void *orig_call = func_addr;
797 	bool save_ret;
798 	u32 insn;
799 
800 	/* Two types of generated trampoline stack layout:
801 	 *
802 	 * 1. trampoline called from function entry
803 	 * --------------------------------------
804 	 * FP + 8	    [ RA to parent func	] return address to parent
805 	 *					  function
806 	 * FP + 0	    [ FP of parent func ] frame pointer of parent
807 	 *					  function
808 	 * FP - 8           [ T0 to traced func ] return address of traced
809 	 *					  function
810 	 * FP - 16	    [ FP of traced func ] frame pointer of traced
811 	 *					  function
812 	 * --------------------------------------
813 	 *
814 	 * 2. trampoline called directly
815 	 * --------------------------------------
816 	 * FP - 8	    [ RA to caller func ] return address to caller
817 	 *					  function
818 	 * FP - 16	    [ FP of caller func	] frame pointer of caller
819 	 *					  function
820 	 * --------------------------------------
821 	 *
822 	 * FP - retval_off  [ return value      ] BPF_TRAMP_F_CALL_ORIG or
823 	 *					  BPF_TRAMP_F_RET_FENTRY_RET
824 	 *                  [ argN              ]
825 	 *                  [ ...               ]
826 	 * FP - args_off    [ arg1              ]
827 	 *
828 	 * FP - nregs_off   [ regs count        ]
829 	 *
830 	 * FP - ip_off      [ traced func	] BPF_TRAMP_F_IP_ARG
831 	 *
832 	 * FP - run_ctx_off [ bpf_tramp_run_ctx ]
833 	 *
834 	 * FP - sreg_off    [ callee saved reg	]
835 	 *
836 	 *		    [ pads              ] pads for 16 bytes alignment
837 	 */
838 
839 	if (flags & (BPF_TRAMP_F_ORIG_STACK | BPF_TRAMP_F_SHARE_IPMODIFY))
840 		return -ENOTSUPP;
841 
842 	/* extra regiters for struct arguments */
843 	for (i = 0; i < m->nr_args; i++)
844 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
845 			nregs += round_up(m->arg_size[i], 8) / 8 - 1;
846 
847 	/* 8 arguments passed by registers */
848 	if (nregs > 8)
849 		return -ENOTSUPP;
850 
851 	/* room of trampoline frame to store return address and frame pointer */
852 	stack_size += 16;
853 
854 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
855 	if (save_ret) {
856 		stack_size += 8;
857 		retval_off = stack_size;
858 	}
859 
860 	stack_size += nregs * 8;
861 	args_off = stack_size;
862 
863 	stack_size += 8;
864 	nregs_off = stack_size;
865 
866 	if (flags & BPF_TRAMP_F_IP_ARG) {
867 		stack_size += 8;
868 		ip_off = stack_size;
869 	}
870 
871 	stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
872 	run_ctx_off = stack_size;
873 
874 	stack_size += 8;
875 	sreg_off = stack_size;
876 
877 	stack_size = round_up(stack_size, 16);
878 
879 	if (func_addr) {
880 		/* For the trampoline called from function entry,
881 		 * the frame of traced function and the frame of
882 		 * trampoline need to be considered.
883 		 */
884 		emit_addi(RV_REG_SP, RV_REG_SP, -16, ctx);
885 		emit_sd(RV_REG_SP, 8, RV_REG_RA, ctx);
886 		emit_sd(RV_REG_SP, 0, RV_REG_FP, ctx);
887 		emit_addi(RV_REG_FP, RV_REG_SP, 16, ctx);
888 
889 		emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
890 		emit_sd(RV_REG_SP, stack_size - 8, RV_REG_T0, ctx);
891 		emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
892 		emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
893 	} else {
894 		/* For the trampoline called directly, just handle
895 		 * the frame of trampoline.
896 		 */
897 		emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
898 		emit_sd(RV_REG_SP, stack_size - 8, RV_REG_RA, ctx);
899 		emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
900 		emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
901 	}
902 
903 	/* callee saved register S1 to pass start time */
904 	emit_sd(RV_REG_FP, -sreg_off, RV_REG_S1, ctx);
905 
906 	/* store ip address of the traced function */
907 	if (flags & BPF_TRAMP_F_IP_ARG) {
908 		emit_imm(RV_REG_T1, (const s64)func_addr, ctx);
909 		emit_sd(RV_REG_FP, -ip_off, RV_REG_T1, ctx);
910 	}
911 
912 	emit_li(RV_REG_T1, nregs, ctx);
913 	emit_sd(RV_REG_FP, -nregs_off, RV_REG_T1, ctx);
914 
915 	store_args(nregs, args_off, ctx);
916 
917 	/* skip to actual body of traced function */
918 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
919 		orig_call += RV_FENTRY_NINSNS * 4;
920 
921 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
922 		emit_imm(RV_REG_A0, (const s64)im, ctx);
923 		ret = emit_call((const u64)__bpf_tramp_enter, true, ctx);
924 		if (ret)
925 			return ret;
926 	}
927 
928 	for (i = 0; i < fentry->nr_links; i++) {
929 		ret = invoke_bpf_prog(fentry->links[i], args_off, retval_off, run_ctx_off,
930 				      flags & BPF_TRAMP_F_RET_FENTRY_RET, ctx);
931 		if (ret)
932 			return ret;
933 	}
934 
935 	if (fmod_ret->nr_links) {
936 		branches_off = kcalloc(fmod_ret->nr_links, sizeof(int), GFP_KERNEL);
937 		if (!branches_off)
938 			return -ENOMEM;
939 
940 		/* cleanup to avoid garbage return value confusion */
941 		emit_sd(RV_REG_FP, -retval_off, RV_REG_ZERO, ctx);
942 		for (i = 0; i < fmod_ret->nr_links; i++) {
943 			ret = invoke_bpf_prog(fmod_ret->links[i], args_off, retval_off,
944 					      run_ctx_off, true, ctx);
945 			if (ret)
946 				goto out;
947 			emit_ld(RV_REG_T1, -retval_off, RV_REG_FP, ctx);
948 			branches_off[i] = ctx->ninsns;
949 			/* nop reserved for conditional jump */
950 			emit(rv_nop(), ctx);
951 		}
952 	}
953 
954 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
955 		restore_args(nregs, args_off, ctx);
956 		ret = emit_call((const u64)orig_call, true, ctx);
957 		if (ret)
958 			goto out;
959 		emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
960 		im->ip_after_call = ctx->insns + ctx->ninsns;
961 		/* 2 nops reserved for auipc+jalr pair */
962 		emit(rv_nop(), ctx);
963 		emit(rv_nop(), ctx);
964 	}
965 
966 	/* update branches saved in invoke_bpf_mod_ret with bnez */
967 	for (i = 0; ctx->insns && i < fmod_ret->nr_links; i++) {
968 		offset = ninsns_rvoff(ctx->ninsns - branches_off[i]);
969 		insn = rv_bne(RV_REG_T1, RV_REG_ZERO, offset >> 1);
970 		*(u32 *)(ctx->insns + branches_off[i]) = insn;
971 	}
972 
973 	for (i = 0; i < fexit->nr_links; i++) {
974 		ret = invoke_bpf_prog(fexit->links[i], args_off, retval_off,
975 				      run_ctx_off, false, ctx);
976 		if (ret)
977 			goto out;
978 	}
979 
980 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
981 		im->ip_epilogue = ctx->insns + ctx->ninsns;
982 		emit_imm(RV_REG_A0, (const s64)im, ctx);
983 		ret = emit_call((const u64)__bpf_tramp_exit, true, ctx);
984 		if (ret)
985 			goto out;
986 	}
987 
988 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
989 		restore_args(nregs, args_off, ctx);
990 
991 	if (save_ret)
992 		emit_ld(RV_REG_A0, -retval_off, RV_REG_FP, ctx);
993 
994 	emit_ld(RV_REG_S1, -sreg_off, RV_REG_FP, ctx);
995 
996 	if (func_addr) {
997 		/* trampoline called from function entry */
998 		emit_ld(RV_REG_T0, stack_size - 8, RV_REG_SP, ctx);
999 		emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1000 		emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1001 
1002 		emit_ld(RV_REG_RA, 8, RV_REG_SP, ctx);
1003 		emit_ld(RV_REG_FP, 0, RV_REG_SP, ctx);
1004 		emit_addi(RV_REG_SP, RV_REG_SP, 16, ctx);
1005 
1006 		if (flags & BPF_TRAMP_F_SKIP_FRAME)
1007 			/* return to parent function */
1008 			emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1009 		else
1010 			/* return to traced function */
1011 			emit_jalr(RV_REG_ZERO, RV_REG_T0, 0, ctx);
1012 	} else {
1013 		/* trampoline called directly */
1014 		emit_ld(RV_REG_RA, stack_size - 8, RV_REG_SP, ctx);
1015 		emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1016 		emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1017 
1018 		emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1019 	}
1020 
1021 	ret = ctx->ninsns;
1022 out:
1023 	kfree(branches_off);
1024 	return ret;
1025 }
1026 
1027 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
1028 				void *image_end, const struct btf_func_model *m,
1029 				u32 flags, struct bpf_tramp_links *tlinks,
1030 				void *func_addr)
1031 {
1032 	int ret;
1033 	struct rv_jit_context ctx;
1034 
1035 	ctx.ninsns = 0;
1036 	ctx.insns = NULL;
1037 	ctx.ro_insns = NULL;
1038 	ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1039 	if (ret < 0)
1040 		return ret;
1041 
1042 	if (ninsns_rvoff(ret) > (long)image_end - (long)image)
1043 		return -EFBIG;
1044 
1045 	ctx.ninsns = 0;
1046 	/*
1047 	 * The bpf_int_jit_compile() uses a RW buffer (ctx.insns) to write the
1048 	 * JITed instructions and later copies it to a RX region (ctx.ro_insns).
1049 	 * It also uses ctx.ro_insns to calculate offsets for jumps etc. As the
1050 	 * trampoline image uses the same memory area for writing and execution,
1051 	 * both ctx.insns and ctx.ro_insns can be set to image.
1052 	 */
1053 	ctx.insns = image;
1054 	ctx.ro_insns = image;
1055 	ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1056 	if (ret < 0)
1057 		return ret;
1058 
1059 	bpf_flush_icache(ctx.insns, ctx.insns + ctx.ninsns);
1060 
1061 	return ninsns_rvoff(ret);
1062 }
1063 
1064 int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
1065 		      bool extra_pass)
1066 {
1067 	bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
1068 		    BPF_CLASS(insn->code) == BPF_JMP;
1069 	int s, e, rvoff, ret, i = insn - ctx->prog->insnsi;
1070 	struct bpf_prog_aux *aux = ctx->prog->aux;
1071 	u8 rd = -1, rs = -1, code = insn->code;
1072 	s16 off = insn->off;
1073 	s32 imm = insn->imm;
1074 
1075 	init_regs(&rd, &rs, insn, ctx);
1076 
1077 	switch (code) {
1078 	/* dst = src */
1079 	case BPF_ALU | BPF_MOV | BPF_X:
1080 	case BPF_ALU64 | BPF_MOV | BPF_X:
1081 		if (imm == 1) {
1082 			/* Special mov32 for zext */
1083 			emit_zext_32(rd, ctx);
1084 			break;
1085 		}
1086 		switch (insn->off) {
1087 		case 0:
1088 			emit_mv(rd, rs, ctx);
1089 			break;
1090 		case 8:
1091 		case 16:
1092 			emit_slli(RV_REG_T1, rs, 64 - insn->off, ctx);
1093 			emit_srai(rd, RV_REG_T1, 64 - insn->off, ctx);
1094 			break;
1095 		case 32:
1096 			emit_addiw(rd, rs, 0, ctx);
1097 			break;
1098 		}
1099 		if (!is64 && !aux->verifier_zext)
1100 			emit_zext_32(rd, ctx);
1101 		break;
1102 
1103 	/* dst = dst OP src */
1104 	case BPF_ALU | BPF_ADD | BPF_X:
1105 	case BPF_ALU64 | BPF_ADD | BPF_X:
1106 		emit_add(rd, rd, rs, ctx);
1107 		if (!is64 && !aux->verifier_zext)
1108 			emit_zext_32(rd, ctx);
1109 		break;
1110 	case BPF_ALU | BPF_SUB | BPF_X:
1111 	case BPF_ALU64 | BPF_SUB | BPF_X:
1112 		if (is64)
1113 			emit_sub(rd, rd, rs, ctx);
1114 		else
1115 			emit_subw(rd, rd, rs, ctx);
1116 
1117 		if (!is64 && !aux->verifier_zext)
1118 			emit_zext_32(rd, ctx);
1119 		break;
1120 	case BPF_ALU | BPF_AND | BPF_X:
1121 	case BPF_ALU64 | BPF_AND | BPF_X:
1122 		emit_and(rd, rd, rs, ctx);
1123 		if (!is64 && !aux->verifier_zext)
1124 			emit_zext_32(rd, ctx);
1125 		break;
1126 	case BPF_ALU | BPF_OR | BPF_X:
1127 	case BPF_ALU64 | BPF_OR | BPF_X:
1128 		emit_or(rd, rd, rs, ctx);
1129 		if (!is64 && !aux->verifier_zext)
1130 			emit_zext_32(rd, ctx);
1131 		break;
1132 	case BPF_ALU | BPF_XOR | BPF_X:
1133 	case BPF_ALU64 | BPF_XOR | BPF_X:
1134 		emit_xor(rd, rd, rs, ctx);
1135 		if (!is64 && !aux->verifier_zext)
1136 			emit_zext_32(rd, ctx);
1137 		break;
1138 	case BPF_ALU | BPF_MUL | BPF_X:
1139 	case BPF_ALU64 | BPF_MUL | BPF_X:
1140 		emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
1141 		if (!is64 && !aux->verifier_zext)
1142 			emit_zext_32(rd, ctx);
1143 		break;
1144 	case BPF_ALU | BPF_DIV | BPF_X:
1145 	case BPF_ALU64 | BPF_DIV | BPF_X:
1146 		if (off)
1147 			emit(is64 ? rv_div(rd, rd, rs) : rv_divw(rd, rd, rs), ctx);
1148 		else
1149 			emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
1150 		if (!is64 && !aux->verifier_zext)
1151 			emit_zext_32(rd, ctx);
1152 		break;
1153 	case BPF_ALU | BPF_MOD | BPF_X:
1154 	case BPF_ALU64 | BPF_MOD | BPF_X:
1155 		if (off)
1156 			emit(is64 ? rv_rem(rd, rd, rs) : rv_remw(rd, rd, rs), ctx);
1157 		else
1158 			emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
1159 		if (!is64 && !aux->verifier_zext)
1160 			emit_zext_32(rd, ctx);
1161 		break;
1162 	case BPF_ALU | BPF_LSH | BPF_X:
1163 	case BPF_ALU64 | BPF_LSH | BPF_X:
1164 		emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
1165 		if (!is64 && !aux->verifier_zext)
1166 			emit_zext_32(rd, ctx);
1167 		break;
1168 	case BPF_ALU | BPF_RSH | BPF_X:
1169 	case BPF_ALU64 | BPF_RSH | BPF_X:
1170 		emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
1171 		if (!is64 && !aux->verifier_zext)
1172 			emit_zext_32(rd, ctx);
1173 		break;
1174 	case BPF_ALU | BPF_ARSH | BPF_X:
1175 	case BPF_ALU64 | BPF_ARSH | BPF_X:
1176 		emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
1177 		if (!is64 && !aux->verifier_zext)
1178 			emit_zext_32(rd, ctx);
1179 		break;
1180 
1181 	/* dst = -dst */
1182 	case BPF_ALU | BPF_NEG:
1183 	case BPF_ALU64 | BPF_NEG:
1184 		emit_sub(rd, RV_REG_ZERO, rd, ctx);
1185 		if (!is64 && !aux->verifier_zext)
1186 			emit_zext_32(rd, ctx);
1187 		break;
1188 
1189 	/* dst = BSWAP##imm(dst) */
1190 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1191 		switch (imm) {
1192 		case 16:
1193 			emit_slli(rd, rd, 48, ctx);
1194 			emit_srli(rd, rd, 48, ctx);
1195 			break;
1196 		case 32:
1197 			if (!aux->verifier_zext)
1198 				emit_zext_32(rd, ctx);
1199 			break;
1200 		case 64:
1201 			/* Do nothing */
1202 			break;
1203 		}
1204 		break;
1205 
1206 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1207 	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1208 		emit_li(RV_REG_T2, 0, ctx);
1209 
1210 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1211 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1212 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1213 		emit_srli(rd, rd, 8, ctx);
1214 		if (imm == 16)
1215 			goto out_be;
1216 
1217 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1218 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1219 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1220 		emit_srli(rd, rd, 8, ctx);
1221 
1222 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1223 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1224 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1225 		emit_srli(rd, rd, 8, ctx);
1226 		if (imm == 32)
1227 			goto out_be;
1228 
1229 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1230 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1231 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1232 		emit_srli(rd, rd, 8, ctx);
1233 
1234 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1235 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1236 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1237 		emit_srli(rd, rd, 8, ctx);
1238 
1239 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1240 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1241 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1242 		emit_srli(rd, rd, 8, ctx);
1243 
1244 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1245 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1246 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1247 		emit_srli(rd, rd, 8, ctx);
1248 out_be:
1249 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1250 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1251 
1252 		emit_mv(rd, RV_REG_T2, ctx);
1253 		break;
1254 
1255 	/* dst = imm */
1256 	case BPF_ALU | BPF_MOV | BPF_K:
1257 	case BPF_ALU64 | BPF_MOV | BPF_K:
1258 		emit_imm(rd, imm, ctx);
1259 		if (!is64 && !aux->verifier_zext)
1260 			emit_zext_32(rd, ctx);
1261 		break;
1262 
1263 	/* dst = dst OP imm */
1264 	case BPF_ALU | BPF_ADD | BPF_K:
1265 	case BPF_ALU64 | BPF_ADD | BPF_K:
1266 		if (is_12b_int(imm)) {
1267 			emit_addi(rd, rd, imm, ctx);
1268 		} else {
1269 			emit_imm(RV_REG_T1, imm, ctx);
1270 			emit_add(rd, rd, RV_REG_T1, ctx);
1271 		}
1272 		if (!is64 && !aux->verifier_zext)
1273 			emit_zext_32(rd, ctx);
1274 		break;
1275 	case BPF_ALU | BPF_SUB | BPF_K:
1276 	case BPF_ALU64 | BPF_SUB | BPF_K:
1277 		if (is_12b_int(-imm)) {
1278 			emit_addi(rd, rd, -imm, ctx);
1279 		} else {
1280 			emit_imm(RV_REG_T1, imm, ctx);
1281 			emit_sub(rd, rd, RV_REG_T1, ctx);
1282 		}
1283 		if (!is64 && !aux->verifier_zext)
1284 			emit_zext_32(rd, ctx);
1285 		break;
1286 	case BPF_ALU | BPF_AND | BPF_K:
1287 	case BPF_ALU64 | BPF_AND | BPF_K:
1288 		if (is_12b_int(imm)) {
1289 			emit_andi(rd, rd, imm, ctx);
1290 		} else {
1291 			emit_imm(RV_REG_T1, imm, ctx);
1292 			emit_and(rd, rd, RV_REG_T1, ctx);
1293 		}
1294 		if (!is64 && !aux->verifier_zext)
1295 			emit_zext_32(rd, ctx);
1296 		break;
1297 	case BPF_ALU | BPF_OR | BPF_K:
1298 	case BPF_ALU64 | BPF_OR | BPF_K:
1299 		if (is_12b_int(imm)) {
1300 			emit(rv_ori(rd, rd, imm), ctx);
1301 		} else {
1302 			emit_imm(RV_REG_T1, imm, ctx);
1303 			emit_or(rd, rd, RV_REG_T1, ctx);
1304 		}
1305 		if (!is64 && !aux->verifier_zext)
1306 			emit_zext_32(rd, ctx);
1307 		break;
1308 	case BPF_ALU | BPF_XOR | BPF_K:
1309 	case BPF_ALU64 | BPF_XOR | BPF_K:
1310 		if (is_12b_int(imm)) {
1311 			emit(rv_xori(rd, rd, imm), ctx);
1312 		} else {
1313 			emit_imm(RV_REG_T1, imm, ctx);
1314 			emit_xor(rd, rd, RV_REG_T1, ctx);
1315 		}
1316 		if (!is64 && !aux->verifier_zext)
1317 			emit_zext_32(rd, ctx);
1318 		break;
1319 	case BPF_ALU | BPF_MUL | BPF_K:
1320 	case BPF_ALU64 | BPF_MUL | BPF_K:
1321 		emit_imm(RV_REG_T1, imm, ctx);
1322 		emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
1323 		     rv_mulw(rd, rd, RV_REG_T1), ctx);
1324 		if (!is64 && !aux->verifier_zext)
1325 			emit_zext_32(rd, ctx);
1326 		break;
1327 	case BPF_ALU | BPF_DIV | BPF_K:
1328 	case BPF_ALU64 | BPF_DIV | BPF_K:
1329 		emit_imm(RV_REG_T1, imm, ctx);
1330 		if (off)
1331 			emit(is64 ? rv_div(rd, rd, RV_REG_T1) :
1332 			     rv_divw(rd, rd, RV_REG_T1), ctx);
1333 		else
1334 			emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
1335 			     rv_divuw(rd, rd, RV_REG_T1), ctx);
1336 		if (!is64 && !aux->verifier_zext)
1337 			emit_zext_32(rd, ctx);
1338 		break;
1339 	case BPF_ALU | BPF_MOD | BPF_K:
1340 	case BPF_ALU64 | BPF_MOD | BPF_K:
1341 		emit_imm(RV_REG_T1, imm, ctx);
1342 		if (off)
1343 			emit(is64 ? rv_rem(rd, rd, RV_REG_T1) :
1344 			     rv_remw(rd, rd, RV_REG_T1), ctx);
1345 		else
1346 			emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
1347 			     rv_remuw(rd, rd, RV_REG_T1), ctx);
1348 		if (!is64 && !aux->verifier_zext)
1349 			emit_zext_32(rd, ctx);
1350 		break;
1351 	case BPF_ALU | BPF_LSH | BPF_K:
1352 	case BPF_ALU64 | BPF_LSH | BPF_K:
1353 		emit_slli(rd, rd, imm, ctx);
1354 
1355 		if (!is64 && !aux->verifier_zext)
1356 			emit_zext_32(rd, ctx);
1357 		break;
1358 	case BPF_ALU | BPF_RSH | BPF_K:
1359 	case BPF_ALU64 | BPF_RSH | BPF_K:
1360 		if (is64)
1361 			emit_srli(rd, rd, imm, ctx);
1362 		else
1363 			emit(rv_srliw(rd, rd, imm), ctx);
1364 
1365 		if (!is64 && !aux->verifier_zext)
1366 			emit_zext_32(rd, ctx);
1367 		break;
1368 	case BPF_ALU | BPF_ARSH | BPF_K:
1369 	case BPF_ALU64 | BPF_ARSH | BPF_K:
1370 		if (is64)
1371 			emit_srai(rd, rd, imm, ctx);
1372 		else
1373 			emit(rv_sraiw(rd, rd, imm), ctx);
1374 
1375 		if (!is64 && !aux->verifier_zext)
1376 			emit_zext_32(rd, ctx);
1377 		break;
1378 
1379 	/* JUMP off */
1380 	case BPF_JMP | BPF_JA:
1381 	case BPF_JMP32 | BPF_JA:
1382 		if (BPF_CLASS(code) == BPF_JMP)
1383 			rvoff = rv_offset(i, off, ctx);
1384 		else
1385 			rvoff = rv_offset(i, imm, ctx);
1386 		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1387 		if (ret)
1388 			return ret;
1389 		break;
1390 
1391 	/* IF (dst COND src) JUMP off */
1392 	case BPF_JMP | BPF_JEQ | BPF_X:
1393 	case BPF_JMP32 | BPF_JEQ | BPF_X:
1394 	case BPF_JMP | BPF_JGT | BPF_X:
1395 	case BPF_JMP32 | BPF_JGT | BPF_X:
1396 	case BPF_JMP | BPF_JLT | BPF_X:
1397 	case BPF_JMP32 | BPF_JLT | BPF_X:
1398 	case BPF_JMP | BPF_JGE | BPF_X:
1399 	case BPF_JMP32 | BPF_JGE | BPF_X:
1400 	case BPF_JMP | BPF_JLE | BPF_X:
1401 	case BPF_JMP32 | BPF_JLE | BPF_X:
1402 	case BPF_JMP | BPF_JNE | BPF_X:
1403 	case BPF_JMP32 | BPF_JNE | BPF_X:
1404 	case BPF_JMP | BPF_JSGT | BPF_X:
1405 	case BPF_JMP32 | BPF_JSGT | BPF_X:
1406 	case BPF_JMP | BPF_JSLT | BPF_X:
1407 	case BPF_JMP32 | BPF_JSLT | BPF_X:
1408 	case BPF_JMP | BPF_JSGE | BPF_X:
1409 	case BPF_JMP32 | BPF_JSGE | BPF_X:
1410 	case BPF_JMP | BPF_JSLE | BPF_X:
1411 	case BPF_JMP32 | BPF_JSLE | BPF_X:
1412 	case BPF_JMP | BPF_JSET | BPF_X:
1413 	case BPF_JMP32 | BPF_JSET | BPF_X:
1414 		rvoff = rv_offset(i, off, ctx);
1415 		if (!is64) {
1416 			s = ctx->ninsns;
1417 			if (is_signed_bpf_cond(BPF_OP(code)))
1418 				emit_sext_32_rd_rs(&rd, &rs, ctx);
1419 			else
1420 				emit_zext_32_rd_rs(&rd, &rs, ctx);
1421 			e = ctx->ninsns;
1422 
1423 			/* Adjust for extra insns */
1424 			rvoff -= ninsns_rvoff(e - s);
1425 		}
1426 
1427 		if (BPF_OP(code) == BPF_JSET) {
1428 			/* Adjust for and */
1429 			rvoff -= 4;
1430 			emit_and(RV_REG_T1, rd, rs, ctx);
1431 			emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff,
1432 				    ctx);
1433 		} else {
1434 			emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1435 		}
1436 		break;
1437 
1438 	/* IF (dst COND imm) JUMP off */
1439 	case BPF_JMP | BPF_JEQ | BPF_K:
1440 	case BPF_JMP32 | BPF_JEQ | BPF_K:
1441 	case BPF_JMP | BPF_JGT | BPF_K:
1442 	case BPF_JMP32 | BPF_JGT | BPF_K:
1443 	case BPF_JMP | BPF_JLT | BPF_K:
1444 	case BPF_JMP32 | BPF_JLT | BPF_K:
1445 	case BPF_JMP | BPF_JGE | BPF_K:
1446 	case BPF_JMP32 | BPF_JGE | BPF_K:
1447 	case BPF_JMP | BPF_JLE | BPF_K:
1448 	case BPF_JMP32 | BPF_JLE | BPF_K:
1449 	case BPF_JMP | BPF_JNE | BPF_K:
1450 	case BPF_JMP32 | BPF_JNE | BPF_K:
1451 	case BPF_JMP | BPF_JSGT | BPF_K:
1452 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1453 	case BPF_JMP | BPF_JSLT | BPF_K:
1454 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1455 	case BPF_JMP | BPF_JSGE | BPF_K:
1456 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1457 	case BPF_JMP | BPF_JSLE | BPF_K:
1458 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1459 		rvoff = rv_offset(i, off, ctx);
1460 		s = ctx->ninsns;
1461 		if (imm) {
1462 			emit_imm(RV_REG_T1, imm, ctx);
1463 			rs = RV_REG_T1;
1464 		} else {
1465 			/* If imm is 0, simply use zero register. */
1466 			rs = RV_REG_ZERO;
1467 		}
1468 		if (!is64) {
1469 			if (is_signed_bpf_cond(BPF_OP(code)))
1470 				emit_sext_32_rd(&rd, ctx);
1471 			else
1472 				emit_zext_32_rd_t1(&rd, ctx);
1473 		}
1474 		e = ctx->ninsns;
1475 
1476 		/* Adjust for extra insns */
1477 		rvoff -= ninsns_rvoff(e - s);
1478 		emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1479 		break;
1480 
1481 	case BPF_JMP | BPF_JSET | BPF_K:
1482 	case BPF_JMP32 | BPF_JSET | BPF_K:
1483 		rvoff = rv_offset(i, off, ctx);
1484 		s = ctx->ninsns;
1485 		if (is_12b_int(imm)) {
1486 			emit_andi(RV_REG_T1, rd, imm, ctx);
1487 		} else {
1488 			emit_imm(RV_REG_T1, imm, ctx);
1489 			emit_and(RV_REG_T1, rd, RV_REG_T1, ctx);
1490 		}
1491 		/* For jset32, we should clear the upper 32 bits of t1, but
1492 		 * sign-extension is sufficient here and saves one instruction,
1493 		 * as t1 is used only in comparison against zero.
1494 		 */
1495 		if (!is64 && imm < 0)
1496 			emit_addiw(RV_REG_T1, RV_REG_T1, 0, ctx);
1497 		e = ctx->ninsns;
1498 		rvoff -= ninsns_rvoff(e - s);
1499 		emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1500 		break;
1501 
1502 	/* function call */
1503 	case BPF_JMP | BPF_CALL:
1504 	{
1505 		bool fixed_addr;
1506 		u64 addr;
1507 
1508 		mark_call(ctx);
1509 		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1510 					    &addr, &fixed_addr);
1511 		if (ret < 0)
1512 			return ret;
1513 
1514 		ret = emit_call(addr, fixed_addr, ctx);
1515 		if (ret)
1516 			return ret;
1517 
1518 		emit_mv(bpf_to_rv_reg(BPF_REG_0, ctx), RV_REG_A0, ctx);
1519 		break;
1520 	}
1521 	/* tail call */
1522 	case BPF_JMP | BPF_TAIL_CALL:
1523 		if (emit_bpf_tail_call(i, ctx))
1524 			return -1;
1525 		break;
1526 
1527 	/* function return */
1528 	case BPF_JMP | BPF_EXIT:
1529 		if (i == ctx->prog->len - 1)
1530 			break;
1531 
1532 		rvoff = epilogue_offset(ctx);
1533 		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1534 		if (ret)
1535 			return ret;
1536 		break;
1537 
1538 	/* dst = imm64 */
1539 	case BPF_LD | BPF_IMM | BPF_DW:
1540 	{
1541 		struct bpf_insn insn1 = insn[1];
1542 		u64 imm64;
1543 
1544 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1545 		if (bpf_pseudo_func(insn)) {
1546 			/* fixed-length insns for extra jit pass */
1547 			ret = emit_addr(rd, imm64, extra_pass, ctx);
1548 			if (ret)
1549 				return ret;
1550 		} else {
1551 			emit_imm(rd, imm64, ctx);
1552 		}
1553 
1554 		return 1;
1555 	}
1556 
1557 	/* LDX: dst = *(unsigned size *)(src + off) */
1558 	case BPF_LDX | BPF_MEM | BPF_B:
1559 	case BPF_LDX | BPF_MEM | BPF_H:
1560 	case BPF_LDX | BPF_MEM | BPF_W:
1561 	case BPF_LDX | BPF_MEM | BPF_DW:
1562 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1563 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1564 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1565 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1566 	/* LDSX: dst = *(signed size *)(src + off) */
1567 	case BPF_LDX | BPF_MEMSX | BPF_B:
1568 	case BPF_LDX | BPF_MEMSX | BPF_H:
1569 	case BPF_LDX | BPF_MEMSX | BPF_W:
1570 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1571 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1572 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1573 	{
1574 		int insn_len, insns_start;
1575 		bool sign_ext;
1576 
1577 		sign_ext = BPF_MODE(insn->code) == BPF_MEMSX ||
1578 			   BPF_MODE(insn->code) == BPF_PROBE_MEMSX;
1579 
1580 		switch (BPF_SIZE(code)) {
1581 		case BPF_B:
1582 			if (is_12b_int(off)) {
1583 				insns_start = ctx->ninsns;
1584 				if (sign_ext)
1585 					emit(rv_lb(rd, off, rs), ctx);
1586 				else
1587 					emit(rv_lbu(rd, off, rs), ctx);
1588 				insn_len = ctx->ninsns - insns_start;
1589 				break;
1590 			}
1591 
1592 			emit_imm(RV_REG_T1, off, ctx);
1593 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1594 			insns_start = ctx->ninsns;
1595 			if (sign_ext)
1596 				emit(rv_lb(rd, 0, RV_REG_T1), ctx);
1597 			else
1598 				emit(rv_lbu(rd, 0, RV_REG_T1), ctx);
1599 			insn_len = ctx->ninsns - insns_start;
1600 			break;
1601 		case BPF_H:
1602 			if (is_12b_int(off)) {
1603 				insns_start = ctx->ninsns;
1604 				if (sign_ext)
1605 					emit(rv_lh(rd, off, rs), ctx);
1606 				else
1607 					emit(rv_lhu(rd, off, rs), ctx);
1608 				insn_len = ctx->ninsns - insns_start;
1609 				break;
1610 			}
1611 
1612 			emit_imm(RV_REG_T1, off, ctx);
1613 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1614 			insns_start = ctx->ninsns;
1615 			if (sign_ext)
1616 				emit(rv_lh(rd, 0, RV_REG_T1), ctx);
1617 			else
1618 				emit(rv_lhu(rd, 0, RV_REG_T1), ctx);
1619 			insn_len = ctx->ninsns - insns_start;
1620 			break;
1621 		case BPF_W:
1622 			if (is_12b_int(off)) {
1623 				insns_start = ctx->ninsns;
1624 				if (sign_ext)
1625 					emit(rv_lw(rd, off, rs), ctx);
1626 				else
1627 					emit(rv_lwu(rd, off, rs), ctx);
1628 				insn_len = ctx->ninsns - insns_start;
1629 				break;
1630 			}
1631 
1632 			emit_imm(RV_REG_T1, off, ctx);
1633 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1634 			insns_start = ctx->ninsns;
1635 			if (sign_ext)
1636 				emit(rv_lw(rd, 0, RV_REG_T1), ctx);
1637 			else
1638 				emit(rv_lwu(rd, 0, RV_REG_T1), ctx);
1639 			insn_len = ctx->ninsns - insns_start;
1640 			break;
1641 		case BPF_DW:
1642 			if (is_12b_int(off)) {
1643 				insns_start = ctx->ninsns;
1644 				emit_ld(rd, off, rs, ctx);
1645 				insn_len = ctx->ninsns - insns_start;
1646 				break;
1647 			}
1648 
1649 			emit_imm(RV_REG_T1, off, ctx);
1650 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1651 			insns_start = ctx->ninsns;
1652 			emit_ld(rd, 0, RV_REG_T1, ctx);
1653 			insn_len = ctx->ninsns - insns_start;
1654 			break;
1655 		}
1656 
1657 		ret = add_exception_handler(insn, ctx, rd, insn_len);
1658 		if (ret)
1659 			return ret;
1660 
1661 		if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
1662 			return 1;
1663 		break;
1664 	}
1665 	/* speculation barrier */
1666 	case BPF_ST | BPF_NOSPEC:
1667 		break;
1668 
1669 	/* ST: *(size *)(dst + off) = imm */
1670 	case BPF_ST | BPF_MEM | BPF_B:
1671 		emit_imm(RV_REG_T1, imm, ctx);
1672 		if (is_12b_int(off)) {
1673 			emit(rv_sb(rd, off, RV_REG_T1), ctx);
1674 			break;
1675 		}
1676 
1677 		emit_imm(RV_REG_T2, off, ctx);
1678 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1679 		emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1680 		break;
1681 
1682 	case BPF_ST | BPF_MEM | BPF_H:
1683 		emit_imm(RV_REG_T1, imm, ctx);
1684 		if (is_12b_int(off)) {
1685 			emit(rv_sh(rd, off, RV_REG_T1), ctx);
1686 			break;
1687 		}
1688 
1689 		emit_imm(RV_REG_T2, off, ctx);
1690 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1691 		emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1692 		break;
1693 	case BPF_ST | BPF_MEM | BPF_W:
1694 		emit_imm(RV_REG_T1, imm, ctx);
1695 		if (is_12b_int(off)) {
1696 			emit_sw(rd, off, RV_REG_T1, ctx);
1697 			break;
1698 		}
1699 
1700 		emit_imm(RV_REG_T2, off, ctx);
1701 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1702 		emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
1703 		break;
1704 	case BPF_ST | BPF_MEM | BPF_DW:
1705 		emit_imm(RV_REG_T1, imm, ctx);
1706 		if (is_12b_int(off)) {
1707 			emit_sd(rd, off, RV_REG_T1, ctx);
1708 			break;
1709 		}
1710 
1711 		emit_imm(RV_REG_T2, off, ctx);
1712 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1713 		emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
1714 		break;
1715 
1716 	/* STX: *(size *)(dst + off) = src */
1717 	case BPF_STX | BPF_MEM | BPF_B:
1718 		if (is_12b_int(off)) {
1719 			emit(rv_sb(rd, off, rs), ctx);
1720 			break;
1721 		}
1722 
1723 		emit_imm(RV_REG_T1, off, ctx);
1724 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1725 		emit(rv_sb(RV_REG_T1, 0, rs), ctx);
1726 		break;
1727 	case BPF_STX | BPF_MEM | BPF_H:
1728 		if (is_12b_int(off)) {
1729 			emit(rv_sh(rd, off, rs), ctx);
1730 			break;
1731 		}
1732 
1733 		emit_imm(RV_REG_T1, off, ctx);
1734 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1735 		emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1736 		break;
1737 	case BPF_STX | BPF_MEM | BPF_W:
1738 		if (is_12b_int(off)) {
1739 			emit_sw(rd, off, rs, ctx);
1740 			break;
1741 		}
1742 
1743 		emit_imm(RV_REG_T1, off, ctx);
1744 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1745 		emit_sw(RV_REG_T1, 0, rs, ctx);
1746 		break;
1747 	case BPF_STX | BPF_MEM | BPF_DW:
1748 		if (is_12b_int(off)) {
1749 			emit_sd(rd, off, rs, ctx);
1750 			break;
1751 		}
1752 
1753 		emit_imm(RV_REG_T1, off, ctx);
1754 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1755 		emit_sd(RV_REG_T1, 0, rs, ctx);
1756 		break;
1757 	case BPF_STX | BPF_ATOMIC | BPF_W:
1758 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1759 		emit_atomic(rd, rs, off, imm,
1760 			    BPF_SIZE(code) == BPF_DW, ctx);
1761 		break;
1762 	default:
1763 		pr_err("bpf-jit: unknown opcode %02x\n", code);
1764 		return -EINVAL;
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 void bpf_jit_build_prologue(struct rv_jit_context *ctx)
1771 {
1772 	int i, stack_adjust = 0, store_offset, bpf_stack_adjust;
1773 
1774 	bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
1775 	if (bpf_stack_adjust)
1776 		mark_fp(ctx);
1777 
1778 	if (seen_reg(RV_REG_RA, ctx))
1779 		stack_adjust += 8;
1780 	stack_adjust += 8; /* RV_REG_FP */
1781 	if (seen_reg(RV_REG_S1, ctx))
1782 		stack_adjust += 8;
1783 	if (seen_reg(RV_REG_S2, ctx))
1784 		stack_adjust += 8;
1785 	if (seen_reg(RV_REG_S3, ctx))
1786 		stack_adjust += 8;
1787 	if (seen_reg(RV_REG_S4, ctx))
1788 		stack_adjust += 8;
1789 	if (seen_reg(RV_REG_S5, ctx))
1790 		stack_adjust += 8;
1791 	if (seen_reg(RV_REG_S6, ctx))
1792 		stack_adjust += 8;
1793 
1794 	stack_adjust = round_up(stack_adjust, 16);
1795 	stack_adjust += bpf_stack_adjust;
1796 
1797 	store_offset = stack_adjust - 8;
1798 
1799 	/* nops reserved for auipc+jalr pair */
1800 	for (i = 0; i < RV_FENTRY_NINSNS; i++)
1801 		emit(rv_nop(), ctx);
1802 
1803 	/* First instruction is always setting the tail-call-counter
1804 	 * (TCC) register. This instruction is skipped for tail calls.
1805 	 * Force using a 4-byte (non-compressed) instruction.
1806 	 */
1807 	emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
1808 
1809 	emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx);
1810 
1811 	if (seen_reg(RV_REG_RA, ctx)) {
1812 		emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx);
1813 		store_offset -= 8;
1814 	}
1815 	emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx);
1816 	store_offset -= 8;
1817 	if (seen_reg(RV_REG_S1, ctx)) {
1818 		emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx);
1819 		store_offset -= 8;
1820 	}
1821 	if (seen_reg(RV_REG_S2, ctx)) {
1822 		emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx);
1823 		store_offset -= 8;
1824 	}
1825 	if (seen_reg(RV_REG_S3, ctx)) {
1826 		emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx);
1827 		store_offset -= 8;
1828 	}
1829 	if (seen_reg(RV_REG_S4, ctx)) {
1830 		emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx);
1831 		store_offset -= 8;
1832 	}
1833 	if (seen_reg(RV_REG_S5, ctx)) {
1834 		emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx);
1835 		store_offset -= 8;
1836 	}
1837 	if (seen_reg(RV_REG_S6, ctx)) {
1838 		emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx);
1839 		store_offset -= 8;
1840 	}
1841 
1842 	emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx);
1843 
1844 	if (bpf_stack_adjust)
1845 		emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx);
1846 
1847 	/* Program contains calls and tail calls, so RV_REG_TCC need
1848 	 * to be saved across calls.
1849 	 */
1850 	if (seen_tail_call(ctx) && seen_call(ctx))
1851 		emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx);
1852 
1853 	ctx->stack_size = stack_adjust;
1854 }
1855 
1856 void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
1857 {
1858 	__build_epilogue(false, ctx);
1859 }
1860 
1861 bool bpf_jit_supports_kfunc_call(void)
1862 {
1863 	return true;
1864 }
1865