xref: /linux/arch/riscv/net/bpf_jit_comp64.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /* BPF JIT compiler for RV64G
3  *
4  * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
5  *
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/bpf.h>
10 #include <linux/filter.h>
11 #include <linux/memory.h>
12 #include <linux/stop_machine.h>
13 #include <asm/patch.h>
14 #include <asm/cfi.h>
15 #include <asm/percpu.h>
16 #include "bpf_jit.h"
17 
18 #define RV_FENTRY_NINSNS 2
19 
20 #define RV_REG_TCC RV_REG_A6
21 #define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
22 #define RV_REG_ARENA RV_REG_S7 /* For storing arena_vm_start */
23 
24 static const int regmap[] = {
25 	[BPF_REG_0] =	RV_REG_A5,
26 	[BPF_REG_1] =	RV_REG_A0,
27 	[BPF_REG_2] =	RV_REG_A1,
28 	[BPF_REG_3] =	RV_REG_A2,
29 	[BPF_REG_4] =	RV_REG_A3,
30 	[BPF_REG_5] =	RV_REG_A4,
31 	[BPF_REG_6] =	RV_REG_S1,
32 	[BPF_REG_7] =	RV_REG_S2,
33 	[BPF_REG_8] =	RV_REG_S3,
34 	[BPF_REG_9] =	RV_REG_S4,
35 	[BPF_REG_FP] =	RV_REG_S5,
36 	[BPF_REG_AX] =	RV_REG_T0,
37 };
38 
39 static const int pt_regmap[] = {
40 	[RV_REG_A0] = offsetof(struct pt_regs, a0),
41 	[RV_REG_A1] = offsetof(struct pt_regs, a1),
42 	[RV_REG_A2] = offsetof(struct pt_regs, a2),
43 	[RV_REG_A3] = offsetof(struct pt_regs, a3),
44 	[RV_REG_A4] = offsetof(struct pt_regs, a4),
45 	[RV_REG_A5] = offsetof(struct pt_regs, a5),
46 	[RV_REG_S1] = offsetof(struct pt_regs, s1),
47 	[RV_REG_S2] = offsetof(struct pt_regs, s2),
48 	[RV_REG_S3] = offsetof(struct pt_regs, s3),
49 	[RV_REG_S4] = offsetof(struct pt_regs, s4),
50 	[RV_REG_S5] = offsetof(struct pt_regs, s5),
51 	[RV_REG_T0] = offsetof(struct pt_regs, t0),
52 };
53 
54 enum {
55 	RV_CTX_F_SEEN_TAIL_CALL =	0,
56 	RV_CTX_F_SEEN_CALL =		RV_REG_RA,
57 	RV_CTX_F_SEEN_S1 =		RV_REG_S1,
58 	RV_CTX_F_SEEN_S2 =		RV_REG_S2,
59 	RV_CTX_F_SEEN_S3 =		RV_REG_S3,
60 	RV_CTX_F_SEEN_S4 =		RV_REG_S4,
61 	RV_CTX_F_SEEN_S5 =		RV_REG_S5,
62 	RV_CTX_F_SEEN_S6 =		RV_REG_S6,
63 };
64 
65 static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
66 {
67 	u8 reg = regmap[bpf_reg];
68 
69 	switch (reg) {
70 	case RV_CTX_F_SEEN_S1:
71 	case RV_CTX_F_SEEN_S2:
72 	case RV_CTX_F_SEEN_S3:
73 	case RV_CTX_F_SEEN_S4:
74 	case RV_CTX_F_SEEN_S5:
75 	case RV_CTX_F_SEEN_S6:
76 		__set_bit(reg, &ctx->flags);
77 	}
78 	return reg;
79 };
80 
81 static bool seen_reg(int reg, struct rv_jit_context *ctx)
82 {
83 	switch (reg) {
84 	case RV_CTX_F_SEEN_CALL:
85 	case RV_CTX_F_SEEN_S1:
86 	case RV_CTX_F_SEEN_S2:
87 	case RV_CTX_F_SEEN_S3:
88 	case RV_CTX_F_SEEN_S4:
89 	case RV_CTX_F_SEEN_S5:
90 	case RV_CTX_F_SEEN_S6:
91 		return test_bit(reg, &ctx->flags);
92 	}
93 	return false;
94 }
95 
96 static void mark_fp(struct rv_jit_context *ctx)
97 {
98 	__set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
99 }
100 
101 static void mark_call(struct rv_jit_context *ctx)
102 {
103 	__set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
104 }
105 
106 static bool seen_call(struct rv_jit_context *ctx)
107 {
108 	return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
109 }
110 
111 static void mark_tail_call(struct rv_jit_context *ctx)
112 {
113 	__set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
114 }
115 
116 static bool seen_tail_call(struct rv_jit_context *ctx)
117 {
118 	return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
119 }
120 
121 static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
122 {
123 	mark_tail_call(ctx);
124 
125 	if (seen_call(ctx)) {
126 		__set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
127 		return RV_REG_S6;
128 	}
129 	return RV_REG_A6;
130 }
131 
132 static bool is_32b_int(s64 val)
133 {
134 	return -(1L << 31) <= val && val < (1L << 31);
135 }
136 
137 static bool in_auipc_jalr_range(s64 val)
138 {
139 	/*
140 	 * auipc+jalr can reach any signed PC-relative offset in the range
141 	 * [-2^31 - 2^11, 2^31 - 2^11).
142 	 */
143 	return (-(1L << 31) - (1L << 11)) <= val &&
144 		val < ((1L << 31) - (1L << 11));
145 }
146 
147 /* Modify rd pointer to alternate reg to avoid corrupting original reg */
148 static void emit_sextw_alt(u8 *rd, u8 ra, struct rv_jit_context *ctx)
149 {
150 	emit_sextw(ra, *rd, ctx);
151 	*rd = ra;
152 }
153 
154 static void emit_zextw_alt(u8 *rd, u8 ra, struct rv_jit_context *ctx)
155 {
156 	emit_zextw(ra, *rd, ctx);
157 	*rd = ra;
158 }
159 
160 /* Emit fixed-length instructions for address */
161 static int emit_addr(u8 rd, u64 addr, bool extra_pass, struct rv_jit_context *ctx)
162 {
163 	/*
164 	 * Use the ro_insns(RX) to calculate the offset as the BPF program will
165 	 * finally run from this memory region.
166 	 */
167 	u64 ip = (u64)(ctx->ro_insns + ctx->ninsns);
168 	s64 off = addr - ip;
169 	s64 upper = (off + (1 << 11)) >> 12;
170 	s64 lower = off & 0xfff;
171 
172 	if (extra_pass && !in_auipc_jalr_range(off)) {
173 		pr_err("bpf-jit: target offset 0x%llx is out of range\n", off);
174 		return -ERANGE;
175 	}
176 
177 	emit(rv_auipc(rd, upper), ctx);
178 	emit(rv_addi(rd, rd, lower), ctx);
179 	return 0;
180 }
181 
182 /* Emit variable-length instructions for 32-bit and 64-bit imm */
183 static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
184 {
185 	/* Note that the immediate from the add is sign-extended,
186 	 * which means that we need to compensate this by adding 2^12,
187 	 * when the 12th bit is set. A simpler way of doing this, and
188 	 * getting rid of the check, is to just add 2**11 before the
189 	 * shift. The "Loading a 32-Bit constant" example from the
190 	 * "Computer Organization and Design, RISC-V edition" book by
191 	 * Patterson/Hennessy highlights this fact.
192 	 *
193 	 * This also means that we need to process LSB to MSB.
194 	 */
195 	s64 upper = (val + (1 << 11)) >> 12;
196 	/* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw,
197 	 * and addi are signed and RVC checks will perform signed comparisons.
198 	 */
199 	s64 lower = ((val & 0xfff) << 52) >> 52;
200 	int shift;
201 
202 	if (is_32b_int(val)) {
203 		if (upper)
204 			emit_lui(rd, upper, ctx);
205 
206 		if (!upper) {
207 			emit_li(rd, lower, ctx);
208 			return;
209 		}
210 
211 		emit_addiw(rd, rd, lower, ctx);
212 		return;
213 	}
214 
215 	shift = __ffs(upper);
216 	upper >>= shift;
217 	shift += 12;
218 
219 	emit_imm(rd, upper, ctx);
220 
221 	emit_slli(rd, rd, shift, ctx);
222 	if (lower)
223 		emit_addi(rd, rd, lower, ctx);
224 }
225 
226 static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
227 {
228 	int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
229 
230 	if (seen_reg(RV_REG_RA, ctx)) {
231 		emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx);
232 		store_offset -= 8;
233 	}
234 	emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx);
235 	store_offset -= 8;
236 	if (seen_reg(RV_REG_S1, ctx)) {
237 		emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx);
238 		store_offset -= 8;
239 	}
240 	if (seen_reg(RV_REG_S2, ctx)) {
241 		emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx);
242 		store_offset -= 8;
243 	}
244 	if (seen_reg(RV_REG_S3, ctx)) {
245 		emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx);
246 		store_offset -= 8;
247 	}
248 	if (seen_reg(RV_REG_S4, ctx)) {
249 		emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx);
250 		store_offset -= 8;
251 	}
252 	if (seen_reg(RV_REG_S5, ctx)) {
253 		emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx);
254 		store_offset -= 8;
255 	}
256 	if (seen_reg(RV_REG_S6, ctx)) {
257 		emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx);
258 		store_offset -= 8;
259 	}
260 	if (ctx->arena_vm_start) {
261 		emit_ld(RV_REG_ARENA, store_offset, RV_REG_SP, ctx);
262 		store_offset -= 8;
263 	}
264 
265 	emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx);
266 	/* Set return value. */
267 	if (!is_tail_call)
268 		emit_addiw(RV_REG_A0, RV_REG_A5, 0, ctx);
269 	emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
270 		  is_tail_call ? (RV_FENTRY_NINSNS + 1) * 4 : 0, /* skip reserved nops and TCC init */
271 		  ctx);
272 }
273 
274 static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
275 		     struct rv_jit_context *ctx)
276 {
277 	switch (cond) {
278 	case BPF_JEQ:
279 		emit(rv_beq(rd, rs, rvoff >> 1), ctx);
280 		return;
281 	case BPF_JGT:
282 		emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
283 		return;
284 	case BPF_JLT:
285 		emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
286 		return;
287 	case BPF_JGE:
288 		emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
289 		return;
290 	case BPF_JLE:
291 		emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
292 		return;
293 	case BPF_JNE:
294 		emit(rv_bne(rd, rs, rvoff >> 1), ctx);
295 		return;
296 	case BPF_JSGT:
297 		emit(rv_blt(rs, rd, rvoff >> 1), ctx);
298 		return;
299 	case BPF_JSLT:
300 		emit(rv_blt(rd, rs, rvoff >> 1), ctx);
301 		return;
302 	case BPF_JSGE:
303 		emit(rv_bge(rd, rs, rvoff >> 1), ctx);
304 		return;
305 	case BPF_JSLE:
306 		emit(rv_bge(rs, rd, rvoff >> 1), ctx);
307 	}
308 }
309 
310 static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
311 			struct rv_jit_context *ctx)
312 {
313 	s64 upper, lower;
314 
315 	if (is_13b_int(rvoff)) {
316 		emit_bcc(cond, rd, rs, rvoff, ctx);
317 		return;
318 	}
319 
320 	/* Adjust for jal */
321 	rvoff -= 4;
322 
323 	/* Transform, e.g.:
324 	 *   bne rd,rs,foo
325 	 * to
326 	 *   beq rd,rs,<.L1>
327 	 *   (auipc foo)
328 	 *   jal(r) foo
329 	 * .L1
330 	 */
331 	cond = invert_bpf_cond(cond);
332 	if (is_21b_int(rvoff)) {
333 		emit_bcc(cond, rd, rs, 8, ctx);
334 		emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
335 		return;
336 	}
337 
338 	/* 32b No need for an additional rvoff adjustment, since we
339 	 * get that from the auipc at PC', where PC = PC' + 4.
340 	 */
341 	upper = (rvoff + (1 << 11)) >> 12;
342 	lower = rvoff & 0xfff;
343 
344 	emit_bcc(cond, rd, rs, 12, ctx);
345 	emit(rv_auipc(RV_REG_T1, upper), ctx);
346 	emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
347 }
348 
349 static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
350 {
351 	int tc_ninsn, off, start_insn = ctx->ninsns;
352 	u8 tcc = rv_tail_call_reg(ctx);
353 
354 	/* a0: &ctx
355 	 * a1: &array
356 	 * a2: index
357 	 *
358 	 * if (index >= array->map.max_entries)
359 	 *	goto out;
360 	 */
361 	tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
362 		   ctx->offset[0];
363 	emit_zextw(RV_REG_A2, RV_REG_A2, ctx);
364 
365 	off = offsetof(struct bpf_array, map.max_entries);
366 	if (is_12b_check(off, insn))
367 		return -1;
368 	emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
369 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
370 	emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
371 
372 	/* if (--TCC < 0)
373 	 *     goto out;
374 	 */
375 	emit_addi(RV_REG_TCC, tcc, -1, ctx);
376 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
377 	emit_branch(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx);
378 
379 	/* prog = array->ptrs[index];
380 	 * if (!prog)
381 	 *     goto out;
382 	 */
383 	emit_slli(RV_REG_T2, RV_REG_A2, 3, ctx);
384 	emit_add(RV_REG_T2, RV_REG_T2, RV_REG_A1, ctx);
385 	off = offsetof(struct bpf_array, ptrs);
386 	if (is_12b_check(off, insn))
387 		return -1;
388 	emit_ld(RV_REG_T2, off, RV_REG_T2, ctx);
389 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
390 	emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
391 
392 	/* goto *(prog->bpf_func + 4); */
393 	off = offsetof(struct bpf_prog, bpf_func);
394 	if (is_12b_check(off, insn))
395 		return -1;
396 	emit_ld(RV_REG_T3, off, RV_REG_T2, ctx);
397 	__build_epilogue(true, ctx);
398 	return 0;
399 }
400 
401 static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
402 		      struct rv_jit_context *ctx)
403 {
404 	u8 code = insn->code;
405 
406 	switch (code) {
407 	case BPF_JMP | BPF_JA:
408 	case BPF_JMP | BPF_CALL:
409 	case BPF_JMP | BPF_EXIT:
410 	case BPF_JMP | BPF_TAIL_CALL:
411 		break;
412 	default:
413 		*rd = bpf_to_rv_reg(insn->dst_reg, ctx);
414 	}
415 
416 	if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
417 	    code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
418 	    code & BPF_LDX || code & BPF_STX)
419 		*rs = bpf_to_rv_reg(insn->src_reg, ctx);
420 }
421 
422 static int emit_jump_and_link(u8 rd, s64 rvoff, bool fixed_addr,
423 			      struct rv_jit_context *ctx)
424 {
425 	s64 upper, lower;
426 
427 	if (rvoff && fixed_addr && is_21b_int(rvoff)) {
428 		emit(rv_jal(rd, rvoff >> 1), ctx);
429 		return 0;
430 	} else if (in_auipc_jalr_range(rvoff)) {
431 		upper = (rvoff + (1 << 11)) >> 12;
432 		lower = rvoff & 0xfff;
433 		emit(rv_auipc(RV_REG_T1, upper), ctx);
434 		emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
435 		return 0;
436 	}
437 
438 	pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff);
439 	return -ERANGE;
440 }
441 
442 static bool is_signed_bpf_cond(u8 cond)
443 {
444 	return cond == BPF_JSGT || cond == BPF_JSLT ||
445 		cond == BPF_JSGE || cond == BPF_JSLE;
446 }
447 
448 static int emit_call(u64 addr, bool fixed_addr, struct rv_jit_context *ctx)
449 {
450 	s64 off = 0;
451 	u64 ip;
452 
453 	if (addr && ctx->insns && ctx->ro_insns) {
454 		/*
455 		 * Use the ro_insns(RX) to calculate the offset as the BPF
456 		 * program will finally run from this memory region.
457 		 */
458 		ip = (u64)(long)(ctx->ro_insns + ctx->ninsns);
459 		off = addr - ip;
460 	}
461 
462 	return emit_jump_and_link(RV_REG_RA, off, fixed_addr, ctx);
463 }
464 
465 static inline void emit_kcfi(u32 hash, struct rv_jit_context *ctx)
466 {
467 	if (IS_ENABLED(CONFIG_CFI_CLANG))
468 		emit(hash, ctx);
469 }
470 
471 static void emit_atomic(u8 rd, u8 rs, s16 off, s32 imm, bool is64,
472 			struct rv_jit_context *ctx)
473 {
474 	u8 r0;
475 	int jmp_offset;
476 
477 	if (off) {
478 		if (is_12b_int(off)) {
479 			emit_addi(RV_REG_T1, rd, off, ctx);
480 		} else {
481 			emit_imm(RV_REG_T1, off, ctx);
482 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
483 		}
484 		rd = RV_REG_T1;
485 	}
486 
487 	switch (imm) {
488 	/* lock *(u32/u64 *)(dst_reg + off16) <op>= src_reg */
489 	case BPF_ADD:
490 		emit(is64 ? rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0) :
491 		     rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
492 		break;
493 	case BPF_AND:
494 		emit(is64 ? rv_amoand_d(RV_REG_ZERO, rs, rd, 0, 0) :
495 		     rv_amoand_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
496 		break;
497 	case BPF_OR:
498 		emit(is64 ? rv_amoor_d(RV_REG_ZERO, rs, rd, 0, 0) :
499 		     rv_amoor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
500 		break;
501 	case BPF_XOR:
502 		emit(is64 ? rv_amoxor_d(RV_REG_ZERO, rs, rd, 0, 0) :
503 		     rv_amoxor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
504 		break;
505 	/* src_reg = atomic_fetch_<op>(dst_reg + off16, src_reg) */
506 	case BPF_ADD | BPF_FETCH:
507 		emit(is64 ? rv_amoadd_d(rs, rs, rd, 1, 1) :
508 		     rv_amoadd_w(rs, rs, rd, 1, 1), ctx);
509 		if (!is64)
510 			emit_zextw(rs, rs, ctx);
511 		break;
512 	case BPF_AND | BPF_FETCH:
513 		emit(is64 ? rv_amoand_d(rs, rs, rd, 1, 1) :
514 		     rv_amoand_w(rs, rs, rd, 1, 1), ctx);
515 		if (!is64)
516 			emit_zextw(rs, rs, ctx);
517 		break;
518 	case BPF_OR | BPF_FETCH:
519 		emit(is64 ? rv_amoor_d(rs, rs, rd, 1, 1) :
520 		     rv_amoor_w(rs, rs, rd, 1, 1), ctx);
521 		if (!is64)
522 			emit_zextw(rs, rs, ctx);
523 		break;
524 	case BPF_XOR | BPF_FETCH:
525 		emit(is64 ? rv_amoxor_d(rs, rs, rd, 1, 1) :
526 		     rv_amoxor_w(rs, rs, rd, 1, 1), ctx);
527 		if (!is64)
528 			emit_zextw(rs, rs, ctx);
529 		break;
530 	/* src_reg = atomic_xchg(dst_reg + off16, src_reg); */
531 	case BPF_XCHG:
532 		emit(is64 ? rv_amoswap_d(rs, rs, rd, 1, 1) :
533 		     rv_amoswap_w(rs, rs, rd, 1, 1), ctx);
534 		if (!is64)
535 			emit_zextw(rs, rs, ctx);
536 		break;
537 	/* r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg); */
538 	case BPF_CMPXCHG:
539 		r0 = bpf_to_rv_reg(BPF_REG_0, ctx);
540 		emit(is64 ? rv_addi(RV_REG_T2, r0, 0) :
541 		     rv_addiw(RV_REG_T2, r0, 0), ctx);
542 		emit(is64 ? rv_lr_d(r0, 0, rd, 0, 0) :
543 		     rv_lr_w(r0, 0, rd, 0, 0), ctx);
544 		jmp_offset = ninsns_rvoff(8);
545 		emit(rv_bne(RV_REG_T2, r0, jmp_offset >> 1), ctx);
546 		emit(is64 ? rv_sc_d(RV_REG_T3, rs, rd, 0, 0) :
547 		     rv_sc_w(RV_REG_T3, rs, rd, 0, 0), ctx);
548 		jmp_offset = ninsns_rvoff(-6);
549 		emit(rv_bne(RV_REG_T3, 0, jmp_offset >> 1), ctx);
550 		emit(rv_fence(0x3, 0x3), ctx);
551 		break;
552 	}
553 }
554 
555 #define BPF_FIXUP_OFFSET_MASK   GENMASK(26, 0)
556 #define BPF_FIXUP_REG_MASK      GENMASK(31, 27)
557 #define REG_DONT_CLEAR_MARKER	0	/* RV_REG_ZERO unused in pt_regmap */
558 
559 bool ex_handler_bpf(const struct exception_table_entry *ex,
560 		    struct pt_regs *regs)
561 {
562 	off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
563 	int regs_offset = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
564 
565 	if (regs_offset != REG_DONT_CLEAR_MARKER)
566 		*(unsigned long *)((void *)regs + pt_regmap[regs_offset]) = 0;
567 	regs->epc = (unsigned long)&ex->fixup - offset;
568 
569 	return true;
570 }
571 
572 /* For accesses to BTF pointers, add an entry to the exception table */
573 static int add_exception_handler(const struct bpf_insn *insn,
574 				 struct rv_jit_context *ctx,
575 				 int dst_reg, int insn_len)
576 {
577 	struct exception_table_entry *ex;
578 	unsigned long pc;
579 	off_t ins_offset;
580 	off_t fixup_offset;
581 
582 	if (!ctx->insns || !ctx->ro_insns || !ctx->prog->aux->extable ||
583 	    (BPF_MODE(insn->code) != BPF_PROBE_MEM && BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
584 	     BPF_MODE(insn->code) != BPF_PROBE_MEM32))
585 		return 0;
586 
587 	if (WARN_ON_ONCE(ctx->nexentries >= ctx->prog->aux->num_exentries))
588 		return -EINVAL;
589 
590 	if (WARN_ON_ONCE(insn_len > ctx->ninsns))
591 		return -EINVAL;
592 
593 	if (WARN_ON_ONCE(!rvc_enabled() && insn_len == 1))
594 		return -EINVAL;
595 
596 	ex = &ctx->prog->aux->extable[ctx->nexentries];
597 	pc = (unsigned long)&ctx->ro_insns[ctx->ninsns - insn_len];
598 
599 	/*
600 	 * This is the relative offset of the instruction that may fault from
601 	 * the exception table itself. This will be written to the exception
602 	 * table and if this instruction faults, the destination register will
603 	 * be set to '0' and the execution will jump to the next instruction.
604 	 */
605 	ins_offset = pc - (long)&ex->insn;
606 	if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
607 		return -ERANGE;
608 
609 	/*
610 	 * Since the extable follows the program, the fixup offset is always
611 	 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
612 	 * to keep things simple, and put the destination register in the upper
613 	 * bits. We don't need to worry about buildtime or runtime sort
614 	 * modifying the upper bits because the table is already sorted, and
615 	 * isn't part of the main exception table.
616 	 *
617 	 * The fixup_offset is set to the next instruction from the instruction
618 	 * that may fault. The execution will jump to this after handling the
619 	 * fault.
620 	 */
621 	fixup_offset = (long)&ex->fixup - (pc + insn_len * sizeof(u16));
622 	if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
623 		return -ERANGE;
624 
625 	/*
626 	 * The offsets above have been calculated using the RO buffer but we
627 	 * need to use the R/W buffer for writes.
628 	 * switch ex to rw buffer for writing.
629 	 */
630 	ex = (void *)ctx->insns + ((void *)ex - (void *)ctx->ro_insns);
631 
632 	ex->insn = ins_offset;
633 
634 	ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
635 		FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
636 	ex->type = EX_TYPE_BPF;
637 
638 	ctx->nexentries++;
639 	return 0;
640 }
641 
642 static int gen_jump_or_nops(void *target, void *ip, u32 *insns, bool is_call)
643 {
644 	s64 rvoff;
645 	struct rv_jit_context ctx;
646 
647 	ctx.ninsns = 0;
648 	ctx.insns = (u16 *)insns;
649 
650 	if (!target) {
651 		emit(rv_nop(), &ctx);
652 		emit(rv_nop(), &ctx);
653 		return 0;
654 	}
655 
656 	rvoff = (s64)(target - ip);
657 	return emit_jump_and_link(is_call ? RV_REG_T0 : RV_REG_ZERO, rvoff, false, &ctx);
658 }
659 
660 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
661 		       void *old_addr, void *new_addr)
662 {
663 	u32 old_insns[RV_FENTRY_NINSNS], new_insns[RV_FENTRY_NINSNS];
664 	bool is_call = poke_type == BPF_MOD_CALL;
665 	int ret;
666 
667 	if (!is_kernel_text((unsigned long)ip) &&
668 	    !is_bpf_text_address((unsigned long)ip))
669 		return -ENOTSUPP;
670 
671 	ret = gen_jump_or_nops(old_addr, ip, old_insns, is_call);
672 	if (ret)
673 		return ret;
674 
675 	if (memcmp(ip, old_insns, RV_FENTRY_NINSNS * 4))
676 		return -EFAULT;
677 
678 	ret = gen_jump_or_nops(new_addr, ip, new_insns, is_call);
679 	if (ret)
680 		return ret;
681 
682 	cpus_read_lock();
683 	mutex_lock(&text_mutex);
684 	if (memcmp(ip, new_insns, RV_FENTRY_NINSNS * 4))
685 		ret = patch_text(ip, new_insns, RV_FENTRY_NINSNS);
686 	mutex_unlock(&text_mutex);
687 	cpus_read_unlock();
688 
689 	return ret;
690 }
691 
692 static void store_args(int nregs, int args_off, struct rv_jit_context *ctx)
693 {
694 	int i;
695 
696 	for (i = 0; i < nregs; i++) {
697 		emit_sd(RV_REG_FP, -args_off, RV_REG_A0 + i, ctx);
698 		args_off -= 8;
699 	}
700 }
701 
702 static void restore_args(int nregs, int args_off, struct rv_jit_context *ctx)
703 {
704 	int i;
705 
706 	for (i = 0; i < nregs; i++) {
707 		emit_ld(RV_REG_A0 + i, -args_off, RV_REG_FP, ctx);
708 		args_off -= 8;
709 	}
710 }
711 
712 static int invoke_bpf_prog(struct bpf_tramp_link *l, int args_off, int retval_off,
713 			   int run_ctx_off, bool save_ret, struct rv_jit_context *ctx)
714 {
715 	int ret, branch_off;
716 	struct bpf_prog *p = l->link.prog;
717 	int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
718 
719 	if (l->cookie) {
720 		emit_imm(RV_REG_T1, l->cookie, ctx);
721 		emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_T1, ctx);
722 	} else {
723 		emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_ZERO, ctx);
724 	}
725 
726 	/* arg1: prog */
727 	emit_imm(RV_REG_A0, (const s64)p, ctx);
728 	/* arg2: &run_ctx */
729 	emit_addi(RV_REG_A1, RV_REG_FP, -run_ctx_off, ctx);
730 	ret = emit_call((const u64)bpf_trampoline_enter(p), true, ctx);
731 	if (ret)
732 		return ret;
733 
734 	/* store prog start time */
735 	emit_mv(RV_REG_S1, RV_REG_A0, ctx);
736 
737 	/* if (__bpf_prog_enter(prog) == 0)
738 	 *	goto skip_exec_of_prog;
739 	 */
740 	branch_off = ctx->ninsns;
741 	/* nop reserved for conditional jump */
742 	emit(rv_nop(), ctx);
743 
744 	/* arg1: &args_off */
745 	emit_addi(RV_REG_A0, RV_REG_FP, -args_off, ctx);
746 	if (!p->jited)
747 		/* arg2: progs[i]->insnsi for interpreter */
748 		emit_imm(RV_REG_A1, (const s64)p->insnsi, ctx);
749 	ret = emit_call((const u64)p->bpf_func, true, ctx);
750 	if (ret)
751 		return ret;
752 
753 	if (save_ret) {
754 		emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
755 		emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
756 	}
757 
758 	/* update branch with beqz */
759 	if (ctx->insns) {
760 		int offset = ninsns_rvoff(ctx->ninsns - branch_off);
761 		u32 insn = rv_beq(RV_REG_A0, RV_REG_ZERO, offset >> 1);
762 		*(u32 *)(ctx->insns + branch_off) = insn;
763 	}
764 
765 	/* arg1: prog */
766 	emit_imm(RV_REG_A0, (const s64)p, ctx);
767 	/* arg2: prog start time */
768 	emit_mv(RV_REG_A1, RV_REG_S1, ctx);
769 	/* arg3: &run_ctx */
770 	emit_addi(RV_REG_A2, RV_REG_FP, -run_ctx_off, ctx);
771 	ret = emit_call((const u64)bpf_trampoline_exit(p), true, ctx);
772 
773 	return ret;
774 }
775 
776 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
777 					 const struct btf_func_model *m,
778 					 struct bpf_tramp_links *tlinks,
779 					 void *func_addr, u32 flags,
780 					 struct rv_jit_context *ctx)
781 {
782 	int i, ret, offset;
783 	int *branches_off = NULL;
784 	int stack_size = 0, nregs = m->nr_args;
785 	int retval_off, args_off, nregs_off, ip_off, run_ctx_off, sreg_off;
786 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
787 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
788 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
789 	bool is_struct_ops = flags & BPF_TRAMP_F_INDIRECT;
790 	void *orig_call = func_addr;
791 	bool save_ret;
792 	u32 insn;
793 
794 	/* Two types of generated trampoline stack layout:
795 	 *
796 	 * 1. trampoline called from function entry
797 	 * --------------------------------------
798 	 * FP + 8	    [ RA to parent func	] return address to parent
799 	 *					  function
800 	 * FP + 0	    [ FP of parent func ] frame pointer of parent
801 	 *					  function
802 	 * FP - 8           [ T0 to traced func ] return address of traced
803 	 *					  function
804 	 * FP - 16	    [ FP of traced func ] frame pointer of traced
805 	 *					  function
806 	 * --------------------------------------
807 	 *
808 	 * 2. trampoline called directly
809 	 * --------------------------------------
810 	 * FP - 8	    [ RA to caller func ] return address to caller
811 	 *					  function
812 	 * FP - 16	    [ FP of caller func	] frame pointer of caller
813 	 *					  function
814 	 * --------------------------------------
815 	 *
816 	 * FP - retval_off  [ return value      ] BPF_TRAMP_F_CALL_ORIG or
817 	 *					  BPF_TRAMP_F_RET_FENTRY_RET
818 	 *                  [ argN              ]
819 	 *                  [ ...               ]
820 	 * FP - args_off    [ arg1              ]
821 	 *
822 	 * FP - nregs_off   [ regs count        ]
823 	 *
824 	 * FP - ip_off      [ traced func	] BPF_TRAMP_F_IP_ARG
825 	 *
826 	 * FP - run_ctx_off [ bpf_tramp_run_ctx ]
827 	 *
828 	 * FP - sreg_off    [ callee saved reg	]
829 	 *
830 	 *		    [ pads              ] pads for 16 bytes alignment
831 	 */
832 
833 	if (flags & (BPF_TRAMP_F_ORIG_STACK | BPF_TRAMP_F_SHARE_IPMODIFY))
834 		return -ENOTSUPP;
835 
836 	/* extra regiters for struct arguments */
837 	for (i = 0; i < m->nr_args; i++)
838 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
839 			nregs += round_up(m->arg_size[i], 8) / 8 - 1;
840 
841 	/* 8 arguments passed by registers */
842 	if (nregs > 8)
843 		return -ENOTSUPP;
844 
845 	/* room of trampoline frame to store return address and frame pointer */
846 	stack_size += 16;
847 
848 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
849 	if (save_ret) {
850 		stack_size += 16; /* Save both A5 (BPF R0) and A0 */
851 		retval_off = stack_size;
852 	}
853 
854 	stack_size += nregs * 8;
855 	args_off = stack_size;
856 
857 	stack_size += 8;
858 	nregs_off = stack_size;
859 
860 	if (flags & BPF_TRAMP_F_IP_ARG) {
861 		stack_size += 8;
862 		ip_off = stack_size;
863 	}
864 
865 	stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
866 	run_ctx_off = stack_size;
867 
868 	stack_size += 8;
869 	sreg_off = stack_size;
870 
871 	stack_size = round_up(stack_size, 16);
872 
873 	if (!is_struct_ops) {
874 		/* For the trampoline called from function entry,
875 		 * the frame of traced function and the frame of
876 		 * trampoline need to be considered.
877 		 */
878 		emit_addi(RV_REG_SP, RV_REG_SP, -16, ctx);
879 		emit_sd(RV_REG_SP, 8, RV_REG_RA, ctx);
880 		emit_sd(RV_REG_SP, 0, RV_REG_FP, ctx);
881 		emit_addi(RV_REG_FP, RV_REG_SP, 16, ctx);
882 
883 		emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
884 		emit_sd(RV_REG_SP, stack_size - 8, RV_REG_T0, ctx);
885 		emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
886 		emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
887 	} else {
888 		/* emit kcfi hash */
889 		emit_kcfi(cfi_get_func_hash(func_addr), ctx);
890 		/* For the trampoline called directly, just handle
891 		 * the frame of trampoline.
892 		 */
893 		emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
894 		emit_sd(RV_REG_SP, stack_size - 8, RV_REG_RA, ctx);
895 		emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
896 		emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
897 	}
898 
899 	/* callee saved register S1 to pass start time */
900 	emit_sd(RV_REG_FP, -sreg_off, RV_REG_S1, ctx);
901 
902 	/* store ip address of the traced function */
903 	if (flags & BPF_TRAMP_F_IP_ARG) {
904 		emit_imm(RV_REG_T1, (const s64)func_addr, ctx);
905 		emit_sd(RV_REG_FP, -ip_off, RV_REG_T1, ctx);
906 	}
907 
908 	emit_li(RV_REG_T1, nregs, ctx);
909 	emit_sd(RV_REG_FP, -nregs_off, RV_REG_T1, ctx);
910 
911 	store_args(nregs, args_off, ctx);
912 
913 	/* skip to actual body of traced function */
914 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
915 		orig_call += RV_FENTRY_NINSNS * 4;
916 
917 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
918 		emit_imm(RV_REG_A0, (const s64)im, ctx);
919 		ret = emit_call((const u64)__bpf_tramp_enter, true, ctx);
920 		if (ret)
921 			return ret;
922 	}
923 
924 	for (i = 0; i < fentry->nr_links; i++) {
925 		ret = invoke_bpf_prog(fentry->links[i], args_off, retval_off, run_ctx_off,
926 				      flags & BPF_TRAMP_F_RET_FENTRY_RET, ctx);
927 		if (ret)
928 			return ret;
929 	}
930 
931 	if (fmod_ret->nr_links) {
932 		branches_off = kcalloc(fmod_ret->nr_links, sizeof(int), GFP_KERNEL);
933 		if (!branches_off)
934 			return -ENOMEM;
935 
936 		/* cleanup to avoid garbage return value confusion */
937 		emit_sd(RV_REG_FP, -retval_off, RV_REG_ZERO, ctx);
938 		for (i = 0; i < fmod_ret->nr_links; i++) {
939 			ret = invoke_bpf_prog(fmod_ret->links[i], args_off, retval_off,
940 					      run_ctx_off, true, ctx);
941 			if (ret)
942 				goto out;
943 			emit_ld(RV_REG_T1, -retval_off, RV_REG_FP, ctx);
944 			branches_off[i] = ctx->ninsns;
945 			/* nop reserved for conditional jump */
946 			emit(rv_nop(), ctx);
947 		}
948 	}
949 
950 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
951 		restore_args(nregs, args_off, ctx);
952 		ret = emit_call((const u64)orig_call, true, ctx);
953 		if (ret)
954 			goto out;
955 		emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
956 		emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
957 		im->ip_after_call = ctx->insns + ctx->ninsns;
958 		/* 2 nops reserved for auipc+jalr pair */
959 		emit(rv_nop(), ctx);
960 		emit(rv_nop(), ctx);
961 	}
962 
963 	/* update branches saved in invoke_bpf_mod_ret with bnez */
964 	for (i = 0; ctx->insns && i < fmod_ret->nr_links; i++) {
965 		offset = ninsns_rvoff(ctx->ninsns - branches_off[i]);
966 		insn = rv_bne(RV_REG_T1, RV_REG_ZERO, offset >> 1);
967 		*(u32 *)(ctx->insns + branches_off[i]) = insn;
968 	}
969 
970 	for (i = 0; i < fexit->nr_links; i++) {
971 		ret = invoke_bpf_prog(fexit->links[i], args_off, retval_off,
972 				      run_ctx_off, false, ctx);
973 		if (ret)
974 			goto out;
975 	}
976 
977 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
978 		im->ip_epilogue = ctx->insns + ctx->ninsns;
979 		emit_imm(RV_REG_A0, (const s64)im, ctx);
980 		ret = emit_call((const u64)__bpf_tramp_exit, true, ctx);
981 		if (ret)
982 			goto out;
983 	}
984 
985 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
986 		restore_args(nregs, args_off, ctx);
987 
988 	if (save_ret) {
989 		emit_ld(RV_REG_A0, -retval_off, RV_REG_FP, ctx);
990 		emit_ld(regmap[BPF_REG_0], -(retval_off - 8), RV_REG_FP, ctx);
991 	}
992 
993 	emit_ld(RV_REG_S1, -sreg_off, RV_REG_FP, ctx);
994 
995 	if (!is_struct_ops) {
996 		/* trampoline called from function entry */
997 		emit_ld(RV_REG_T0, stack_size - 8, RV_REG_SP, ctx);
998 		emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
999 		emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1000 
1001 		emit_ld(RV_REG_RA, 8, RV_REG_SP, ctx);
1002 		emit_ld(RV_REG_FP, 0, RV_REG_SP, ctx);
1003 		emit_addi(RV_REG_SP, RV_REG_SP, 16, ctx);
1004 
1005 		if (flags & BPF_TRAMP_F_SKIP_FRAME)
1006 			/* return to parent function */
1007 			emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1008 		else
1009 			/* return to traced function */
1010 			emit_jalr(RV_REG_ZERO, RV_REG_T0, 0, ctx);
1011 	} else {
1012 		/* trampoline called directly */
1013 		emit_ld(RV_REG_RA, stack_size - 8, RV_REG_SP, ctx);
1014 		emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1015 		emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1016 
1017 		emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1018 	}
1019 
1020 	ret = ctx->ninsns;
1021 out:
1022 	kfree(branches_off);
1023 	return ret;
1024 }
1025 
1026 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1027 			     struct bpf_tramp_links *tlinks, void *func_addr)
1028 {
1029 	struct bpf_tramp_image im;
1030 	struct rv_jit_context ctx;
1031 	int ret;
1032 
1033 	ctx.ninsns = 0;
1034 	ctx.insns = NULL;
1035 	ctx.ro_insns = NULL;
1036 	ret = __arch_prepare_bpf_trampoline(&im, m, tlinks, func_addr, flags, &ctx);
1037 
1038 	return ret < 0 ? ret : ninsns_rvoff(ctx.ninsns);
1039 }
1040 
1041 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
1042 				void *image_end, const struct btf_func_model *m,
1043 				u32 flags, struct bpf_tramp_links *tlinks,
1044 				void *func_addr)
1045 {
1046 	int ret;
1047 	struct rv_jit_context ctx;
1048 
1049 	ctx.ninsns = 0;
1050 	/*
1051 	 * The bpf_int_jit_compile() uses a RW buffer (ctx.insns) to write the
1052 	 * JITed instructions and later copies it to a RX region (ctx.ro_insns).
1053 	 * It also uses ctx.ro_insns to calculate offsets for jumps etc. As the
1054 	 * trampoline image uses the same memory area for writing and execution,
1055 	 * both ctx.insns and ctx.ro_insns can be set to image.
1056 	 */
1057 	ctx.insns = image;
1058 	ctx.ro_insns = image;
1059 	ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1060 	if (ret < 0)
1061 		return ret;
1062 
1063 	bpf_flush_icache(ctx.insns, ctx.insns + ctx.ninsns);
1064 
1065 	return ninsns_rvoff(ret);
1066 }
1067 
1068 int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
1069 		      bool extra_pass)
1070 {
1071 	bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
1072 		    BPF_CLASS(insn->code) == BPF_JMP;
1073 	int s, e, rvoff, ret, i = insn - ctx->prog->insnsi;
1074 	struct bpf_prog_aux *aux = ctx->prog->aux;
1075 	u8 rd = -1, rs = -1, code = insn->code;
1076 	s16 off = insn->off;
1077 	s32 imm = insn->imm;
1078 
1079 	init_regs(&rd, &rs, insn, ctx);
1080 
1081 	switch (code) {
1082 	/* dst = src */
1083 	case BPF_ALU | BPF_MOV | BPF_X:
1084 	case BPF_ALU64 | BPF_MOV | BPF_X:
1085 		if (insn_is_cast_user(insn)) {
1086 			emit_mv(RV_REG_T1, rs, ctx);
1087 			emit_zextw(RV_REG_T1, RV_REG_T1, ctx);
1088 			emit_imm(rd, (ctx->user_vm_start >> 32) << 32, ctx);
1089 			emit(rv_beq(RV_REG_T1, RV_REG_ZERO, 4), ctx);
1090 			emit_or(RV_REG_T1, rd, RV_REG_T1, ctx);
1091 			emit_mv(rd, RV_REG_T1, ctx);
1092 			break;
1093 		} else if (insn_is_mov_percpu_addr(insn)) {
1094 			if (rd != rs)
1095 				emit_mv(rd, rs, ctx);
1096 #ifdef CONFIG_SMP
1097 			/* Load current CPU number in T1 */
1098 			emit_ld(RV_REG_T1, offsetof(struct thread_info, cpu),
1099 				RV_REG_TP, ctx);
1100 			/* << 3 because offsets are 8 bytes */
1101 			emit_slli(RV_REG_T1, RV_REG_T1, 3, ctx);
1102 			/* Load address of __per_cpu_offset array in T2 */
1103 			emit_addr(RV_REG_T2, (u64)&__per_cpu_offset, extra_pass, ctx);
1104 			/* Add offset of current CPU to  __per_cpu_offset */
1105 			emit_add(RV_REG_T1, RV_REG_T2, RV_REG_T1, ctx);
1106 			/* Load __per_cpu_offset[cpu] in T1 */
1107 			emit_ld(RV_REG_T1, 0, RV_REG_T1, ctx);
1108 			/* Add the offset to Rd */
1109 			emit_add(rd, rd, RV_REG_T1, ctx);
1110 #endif
1111 		}
1112 		if (imm == 1) {
1113 			/* Special mov32 for zext */
1114 			emit_zextw(rd, rd, ctx);
1115 			break;
1116 		}
1117 		switch (insn->off) {
1118 		case 0:
1119 			emit_mv(rd, rs, ctx);
1120 			break;
1121 		case 8:
1122 			emit_sextb(rd, rs, ctx);
1123 			break;
1124 		case 16:
1125 			emit_sexth(rd, rs, ctx);
1126 			break;
1127 		case 32:
1128 			emit_sextw(rd, rs, ctx);
1129 			break;
1130 		}
1131 		if (!is64 && !aux->verifier_zext)
1132 			emit_zextw(rd, rd, ctx);
1133 		break;
1134 
1135 	/* dst = dst OP src */
1136 	case BPF_ALU | BPF_ADD | BPF_X:
1137 	case BPF_ALU64 | BPF_ADD | BPF_X:
1138 		emit_add(rd, rd, rs, ctx);
1139 		if (!is64 && !aux->verifier_zext)
1140 			emit_zextw(rd, rd, ctx);
1141 		break;
1142 	case BPF_ALU | BPF_SUB | BPF_X:
1143 	case BPF_ALU64 | BPF_SUB | BPF_X:
1144 		if (is64)
1145 			emit_sub(rd, rd, rs, ctx);
1146 		else
1147 			emit_subw(rd, rd, rs, ctx);
1148 
1149 		if (!is64 && !aux->verifier_zext)
1150 			emit_zextw(rd, rd, ctx);
1151 		break;
1152 	case BPF_ALU | BPF_AND | BPF_X:
1153 	case BPF_ALU64 | BPF_AND | BPF_X:
1154 		emit_and(rd, rd, rs, ctx);
1155 		if (!is64 && !aux->verifier_zext)
1156 			emit_zextw(rd, rd, ctx);
1157 		break;
1158 	case BPF_ALU | BPF_OR | BPF_X:
1159 	case BPF_ALU64 | BPF_OR | BPF_X:
1160 		emit_or(rd, rd, rs, ctx);
1161 		if (!is64 && !aux->verifier_zext)
1162 			emit_zextw(rd, rd, ctx);
1163 		break;
1164 	case BPF_ALU | BPF_XOR | BPF_X:
1165 	case BPF_ALU64 | BPF_XOR | BPF_X:
1166 		emit_xor(rd, rd, rs, ctx);
1167 		if (!is64 && !aux->verifier_zext)
1168 			emit_zextw(rd, rd, ctx);
1169 		break;
1170 	case BPF_ALU | BPF_MUL | BPF_X:
1171 	case BPF_ALU64 | BPF_MUL | BPF_X:
1172 		emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
1173 		if (!is64 && !aux->verifier_zext)
1174 			emit_zextw(rd, rd, ctx);
1175 		break;
1176 	case BPF_ALU | BPF_DIV | BPF_X:
1177 	case BPF_ALU64 | BPF_DIV | BPF_X:
1178 		if (off)
1179 			emit(is64 ? rv_div(rd, rd, rs) : rv_divw(rd, rd, rs), ctx);
1180 		else
1181 			emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
1182 		if (!is64 && !aux->verifier_zext)
1183 			emit_zextw(rd, rd, ctx);
1184 		break;
1185 	case BPF_ALU | BPF_MOD | BPF_X:
1186 	case BPF_ALU64 | BPF_MOD | BPF_X:
1187 		if (off)
1188 			emit(is64 ? rv_rem(rd, rd, rs) : rv_remw(rd, rd, rs), ctx);
1189 		else
1190 			emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
1191 		if (!is64 && !aux->verifier_zext)
1192 			emit_zextw(rd, rd, ctx);
1193 		break;
1194 	case BPF_ALU | BPF_LSH | BPF_X:
1195 	case BPF_ALU64 | BPF_LSH | BPF_X:
1196 		emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
1197 		if (!is64 && !aux->verifier_zext)
1198 			emit_zextw(rd, rd, ctx);
1199 		break;
1200 	case BPF_ALU | BPF_RSH | BPF_X:
1201 	case BPF_ALU64 | BPF_RSH | BPF_X:
1202 		emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
1203 		if (!is64 && !aux->verifier_zext)
1204 			emit_zextw(rd, rd, ctx);
1205 		break;
1206 	case BPF_ALU | BPF_ARSH | BPF_X:
1207 	case BPF_ALU64 | BPF_ARSH | BPF_X:
1208 		emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
1209 		if (!is64 && !aux->verifier_zext)
1210 			emit_zextw(rd, rd, ctx);
1211 		break;
1212 
1213 	/* dst = -dst */
1214 	case BPF_ALU | BPF_NEG:
1215 	case BPF_ALU64 | BPF_NEG:
1216 		emit_sub(rd, RV_REG_ZERO, rd, ctx);
1217 		if (!is64 && !aux->verifier_zext)
1218 			emit_zextw(rd, rd, ctx);
1219 		break;
1220 
1221 	/* dst = BSWAP##imm(dst) */
1222 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1223 		switch (imm) {
1224 		case 16:
1225 			emit_zexth(rd, rd, ctx);
1226 			break;
1227 		case 32:
1228 			if (!aux->verifier_zext)
1229 				emit_zextw(rd, rd, ctx);
1230 			break;
1231 		case 64:
1232 			/* Do nothing */
1233 			break;
1234 		}
1235 		break;
1236 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1237 	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1238 		emit_bswap(rd, imm, ctx);
1239 		break;
1240 
1241 	/* dst = imm */
1242 	case BPF_ALU | BPF_MOV | BPF_K:
1243 	case BPF_ALU64 | BPF_MOV | BPF_K:
1244 		emit_imm(rd, imm, ctx);
1245 		if (!is64 && !aux->verifier_zext)
1246 			emit_zextw(rd, rd, ctx);
1247 		break;
1248 
1249 	/* dst = dst OP imm */
1250 	case BPF_ALU | BPF_ADD | BPF_K:
1251 	case BPF_ALU64 | BPF_ADD | BPF_K:
1252 		if (is_12b_int(imm)) {
1253 			emit_addi(rd, rd, imm, ctx);
1254 		} else {
1255 			emit_imm(RV_REG_T1, imm, ctx);
1256 			emit_add(rd, rd, RV_REG_T1, ctx);
1257 		}
1258 		if (!is64 && !aux->verifier_zext)
1259 			emit_zextw(rd, rd, ctx);
1260 		break;
1261 	case BPF_ALU | BPF_SUB | BPF_K:
1262 	case BPF_ALU64 | BPF_SUB | BPF_K:
1263 		if (is_12b_int(-imm)) {
1264 			emit_addi(rd, rd, -imm, ctx);
1265 		} else {
1266 			emit_imm(RV_REG_T1, imm, ctx);
1267 			emit_sub(rd, rd, RV_REG_T1, ctx);
1268 		}
1269 		if (!is64 && !aux->verifier_zext)
1270 			emit_zextw(rd, rd, ctx);
1271 		break;
1272 	case BPF_ALU | BPF_AND | BPF_K:
1273 	case BPF_ALU64 | BPF_AND | BPF_K:
1274 		if (is_12b_int(imm)) {
1275 			emit_andi(rd, rd, imm, ctx);
1276 		} else {
1277 			emit_imm(RV_REG_T1, imm, ctx);
1278 			emit_and(rd, rd, RV_REG_T1, ctx);
1279 		}
1280 		if (!is64 && !aux->verifier_zext)
1281 			emit_zextw(rd, rd, ctx);
1282 		break;
1283 	case BPF_ALU | BPF_OR | BPF_K:
1284 	case BPF_ALU64 | BPF_OR | BPF_K:
1285 		if (is_12b_int(imm)) {
1286 			emit(rv_ori(rd, rd, imm), ctx);
1287 		} else {
1288 			emit_imm(RV_REG_T1, imm, ctx);
1289 			emit_or(rd, rd, RV_REG_T1, ctx);
1290 		}
1291 		if (!is64 && !aux->verifier_zext)
1292 			emit_zextw(rd, rd, ctx);
1293 		break;
1294 	case BPF_ALU | BPF_XOR | BPF_K:
1295 	case BPF_ALU64 | BPF_XOR | BPF_K:
1296 		if (is_12b_int(imm)) {
1297 			emit(rv_xori(rd, rd, imm), ctx);
1298 		} else {
1299 			emit_imm(RV_REG_T1, imm, ctx);
1300 			emit_xor(rd, rd, RV_REG_T1, ctx);
1301 		}
1302 		if (!is64 && !aux->verifier_zext)
1303 			emit_zextw(rd, rd, ctx);
1304 		break;
1305 	case BPF_ALU | BPF_MUL | BPF_K:
1306 	case BPF_ALU64 | BPF_MUL | BPF_K:
1307 		emit_imm(RV_REG_T1, imm, ctx);
1308 		emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
1309 		     rv_mulw(rd, rd, RV_REG_T1), ctx);
1310 		if (!is64 && !aux->verifier_zext)
1311 			emit_zextw(rd, rd, ctx);
1312 		break;
1313 	case BPF_ALU | BPF_DIV | BPF_K:
1314 	case BPF_ALU64 | BPF_DIV | BPF_K:
1315 		emit_imm(RV_REG_T1, imm, ctx);
1316 		if (off)
1317 			emit(is64 ? rv_div(rd, rd, RV_REG_T1) :
1318 			     rv_divw(rd, rd, RV_REG_T1), ctx);
1319 		else
1320 			emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
1321 			     rv_divuw(rd, rd, RV_REG_T1), ctx);
1322 		if (!is64 && !aux->verifier_zext)
1323 			emit_zextw(rd, rd, ctx);
1324 		break;
1325 	case BPF_ALU | BPF_MOD | BPF_K:
1326 	case BPF_ALU64 | BPF_MOD | BPF_K:
1327 		emit_imm(RV_REG_T1, imm, ctx);
1328 		if (off)
1329 			emit(is64 ? rv_rem(rd, rd, RV_REG_T1) :
1330 			     rv_remw(rd, rd, RV_REG_T1), ctx);
1331 		else
1332 			emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
1333 			     rv_remuw(rd, rd, RV_REG_T1), ctx);
1334 		if (!is64 && !aux->verifier_zext)
1335 			emit_zextw(rd, rd, ctx);
1336 		break;
1337 	case BPF_ALU | BPF_LSH | BPF_K:
1338 	case BPF_ALU64 | BPF_LSH | BPF_K:
1339 		emit_slli(rd, rd, imm, ctx);
1340 
1341 		if (!is64 && !aux->verifier_zext)
1342 			emit_zextw(rd, rd, ctx);
1343 		break;
1344 	case BPF_ALU | BPF_RSH | BPF_K:
1345 	case BPF_ALU64 | BPF_RSH | BPF_K:
1346 		if (is64)
1347 			emit_srli(rd, rd, imm, ctx);
1348 		else
1349 			emit(rv_srliw(rd, rd, imm), ctx);
1350 
1351 		if (!is64 && !aux->verifier_zext)
1352 			emit_zextw(rd, rd, ctx);
1353 		break;
1354 	case BPF_ALU | BPF_ARSH | BPF_K:
1355 	case BPF_ALU64 | BPF_ARSH | BPF_K:
1356 		if (is64)
1357 			emit_srai(rd, rd, imm, ctx);
1358 		else
1359 			emit(rv_sraiw(rd, rd, imm), ctx);
1360 
1361 		if (!is64 && !aux->verifier_zext)
1362 			emit_zextw(rd, rd, ctx);
1363 		break;
1364 
1365 	/* JUMP off */
1366 	case BPF_JMP | BPF_JA:
1367 	case BPF_JMP32 | BPF_JA:
1368 		if (BPF_CLASS(code) == BPF_JMP)
1369 			rvoff = rv_offset(i, off, ctx);
1370 		else
1371 			rvoff = rv_offset(i, imm, ctx);
1372 		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1373 		if (ret)
1374 			return ret;
1375 		break;
1376 
1377 	/* IF (dst COND src) JUMP off */
1378 	case BPF_JMP | BPF_JEQ | BPF_X:
1379 	case BPF_JMP32 | BPF_JEQ | BPF_X:
1380 	case BPF_JMP | BPF_JGT | BPF_X:
1381 	case BPF_JMP32 | BPF_JGT | BPF_X:
1382 	case BPF_JMP | BPF_JLT | BPF_X:
1383 	case BPF_JMP32 | BPF_JLT | BPF_X:
1384 	case BPF_JMP | BPF_JGE | BPF_X:
1385 	case BPF_JMP32 | BPF_JGE | BPF_X:
1386 	case BPF_JMP | BPF_JLE | BPF_X:
1387 	case BPF_JMP32 | BPF_JLE | BPF_X:
1388 	case BPF_JMP | BPF_JNE | BPF_X:
1389 	case BPF_JMP32 | BPF_JNE | BPF_X:
1390 	case BPF_JMP | BPF_JSGT | BPF_X:
1391 	case BPF_JMP32 | BPF_JSGT | BPF_X:
1392 	case BPF_JMP | BPF_JSLT | BPF_X:
1393 	case BPF_JMP32 | BPF_JSLT | BPF_X:
1394 	case BPF_JMP | BPF_JSGE | BPF_X:
1395 	case BPF_JMP32 | BPF_JSGE | BPF_X:
1396 	case BPF_JMP | BPF_JSLE | BPF_X:
1397 	case BPF_JMP32 | BPF_JSLE | BPF_X:
1398 	case BPF_JMP | BPF_JSET | BPF_X:
1399 	case BPF_JMP32 | BPF_JSET | BPF_X:
1400 		rvoff = rv_offset(i, off, ctx);
1401 		if (!is64) {
1402 			s = ctx->ninsns;
1403 			if (is_signed_bpf_cond(BPF_OP(code))) {
1404 				emit_sextw_alt(&rs, RV_REG_T1, ctx);
1405 				emit_sextw_alt(&rd, RV_REG_T2, ctx);
1406 			} else {
1407 				emit_zextw_alt(&rs, RV_REG_T1, ctx);
1408 				emit_zextw_alt(&rd, RV_REG_T2, ctx);
1409 			}
1410 			e = ctx->ninsns;
1411 
1412 			/* Adjust for extra insns */
1413 			rvoff -= ninsns_rvoff(e - s);
1414 		}
1415 
1416 		if (BPF_OP(code) == BPF_JSET) {
1417 			/* Adjust for and */
1418 			rvoff -= 4;
1419 			emit_and(RV_REG_T1, rd, rs, ctx);
1420 			emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1421 		} else {
1422 			emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1423 		}
1424 		break;
1425 
1426 	/* IF (dst COND imm) JUMP off */
1427 	case BPF_JMP | BPF_JEQ | BPF_K:
1428 	case BPF_JMP32 | BPF_JEQ | BPF_K:
1429 	case BPF_JMP | BPF_JGT | BPF_K:
1430 	case BPF_JMP32 | BPF_JGT | BPF_K:
1431 	case BPF_JMP | BPF_JLT | BPF_K:
1432 	case BPF_JMP32 | BPF_JLT | BPF_K:
1433 	case BPF_JMP | BPF_JGE | BPF_K:
1434 	case BPF_JMP32 | BPF_JGE | BPF_K:
1435 	case BPF_JMP | BPF_JLE | BPF_K:
1436 	case BPF_JMP32 | BPF_JLE | BPF_K:
1437 	case BPF_JMP | BPF_JNE | BPF_K:
1438 	case BPF_JMP32 | BPF_JNE | BPF_K:
1439 	case BPF_JMP | BPF_JSGT | BPF_K:
1440 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1441 	case BPF_JMP | BPF_JSLT | BPF_K:
1442 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1443 	case BPF_JMP | BPF_JSGE | BPF_K:
1444 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1445 	case BPF_JMP | BPF_JSLE | BPF_K:
1446 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1447 		rvoff = rv_offset(i, off, ctx);
1448 		s = ctx->ninsns;
1449 		if (imm)
1450 			emit_imm(RV_REG_T1, imm, ctx);
1451 		rs = imm ? RV_REG_T1 : RV_REG_ZERO;
1452 		if (!is64) {
1453 			if (is_signed_bpf_cond(BPF_OP(code))) {
1454 				emit_sextw_alt(&rd, RV_REG_T2, ctx);
1455 				/* rs has been sign extended */
1456 			} else {
1457 				emit_zextw_alt(&rd, RV_REG_T2, ctx);
1458 				if (imm)
1459 					emit_zextw(rs, rs, ctx);
1460 			}
1461 		}
1462 		e = ctx->ninsns;
1463 
1464 		/* Adjust for extra insns */
1465 		rvoff -= ninsns_rvoff(e - s);
1466 		emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1467 		break;
1468 
1469 	case BPF_JMP | BPF_JSET | BPF_K:
1470 	case BPF_JMP32 | BPF_JSET | BPF_K:
1471 		rvoff = rv_offset(i, off, ctx);
1472 		s = ctx->ninsns;
1473 		if (is_12b_int(imm)) {
1474 			emit_andi(RV_REG_T1, rd, imm, ctx);
1475 		} else {
1476 			emit_imm(RV_REG_T1, imm, ctx);
1477 			emit_and(RV_REG_T1, rd, RV_REG_T1, ctx);
1478 		}
1479 		/* For jset32, we should clear the upper 32 bits of t1, but
1480 		 * sign-extension is sufficient here and saves one instruction,
1481 		 * as t1 is used only in comparison against zero.
1482 		 */
1483 		if (!is64 && imm < 0)
1484 			emit_sextw(RV_REG_T1, RV_REG_T1, ctx);
1485 		e = ctx->ninsns;
1486 		rvoff -= ninsns_rvoff(e - s);
1487 		emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1488 		break;
1489 
1490 	/* function call */
1491 	case BPF_JMP | BPF_CALL:
1492 	{
1493 		bool fixed_addr;
1494 		u64 addr;
1495 
1496 		/* Inline calls to bpf_get_smp_processor_id()
1497 		 *
1498 		 * RV_REG_TP holds the address of the current CPU's task_struct and thread_info is
1499 		 * at offset 0 in task_struct.
1500 		 * Load cpu from thread_info:
1501 		 *     Set R0 to ((struct thread_info *)(RV_REG_TP))->cpu
1502 		 *
1503 		 * This replicates the implementation of raw_smp_processor_id() on RISCV
1504 		 */
1505 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) {
1506 			/* Load current CPU number in R0 */
1507 			emit_ld(bpf_to_rv_reg(BPF_REG_0, ctx), offsetof(struct thread_info, cpu),
1508 				RV_REG_TP, ctx);
1509 			break;
1510 		}
1511 
1512 		mark_call(ctx);
1513 		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1514 					    &addr, &fixed_addr);
1515 		if (ret < 0)
1516 			return ret;
1517 
1518 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1519 			const struct btf_func_model *fm;
1520 			int idx;
1521 
1522 			fm = bpf_jit_find_kfunc_model(ctx->prog, insn);
1523 			if (!fm)
1524 				return -EINVAL;
1525 
1526 			for (idx = 0; idx < fm->nr_args; idx++) {
1527 				u8 reg = bpf_to_rv_reg(BPF_REG_1 + idx, ctx);
1528 
1529 				if (fm->arg_size[idx] == sizeof(int))
1530 					emit_sextw(reg, reg, ctx);
1531 			}
1532 		}
1533 
1534 		ret = emit_call(addr, fixed_addr, ctx);
1535 		if (ret)
1536 			return ret;
1537 
1538 		if (insn->src_reg != BPF_PSEUDO_CALL)
1539 			emit_mv(bpf_to_rv_reg(BPF_REG_0, ctx), RV_REG_A0, ctx);
1540 		break;
1541 	}
1542 	/* tail call */
1543 	case BPF_JMP | BPF_TAIL_CALL:
1544 		if (emit_bpf_tail_call(i, ctx))
1545 			return -1;
1546 		break;
1547 
1548 	/* function return */
1549 	case BPF_JMP | BPF_EXIT:
1550 		if (i == ctx->prog->len - 1)
1551 			break;
1552 
1553 		rvoff = epilogue_offset(ctx);
1554 		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1555 		if (ret)
1556 			return ret;
1557 		break;
1558 
1559 	/* dst = imm64 */
1560 	case BPF_LD | BPF_IMM | BPF_DW:
1561 	{
1562 		struct bpf_insn insn1 = insn[1];
1563 		u64 imm64;
1564 
1565 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1566 		if (bpf_pseudo_func(insn)) {
1567 			/* fixed-length insns for extra jit pass */
1568 			ret = emit_addr(rd, imm64, extra_pass, ctx);
1569 			if (ret)
1570 				return ret;
1571 		} else {
1572 			emit_imm(rd, imm64, ctx);
1573 		}
1574 
1575 		return 1;
1576 	}
1577 
1578 	/* LDX: dst = *(unsigned size *)(src + off) */
1579 	case BPF_LDX | BPF_MEM | BPF_B:
1580 	case BPF_LDX | BPF_MEM | BPF_H:
1581 	case BPF_LDX | BPF_MEM | BPF_W:
1582 	case BPF_LDX | BPF_MEM | BPF_DW:
1583 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1584 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1585 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1586 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1587 	/* LDSX: dst = *(signed size *)(src + off) */
1588 	case BPF_LDX | BPF_MEMSX | BPF_B:
1589 	case BPF_LDX | BPF_MEMSX | BPF_H:
1590 	case BPF_LDX | BPF_MEMSX | BPF_W:
1591 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1592 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1593 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1594 	/* LDX | PROBE_MEM32: dst = *(unsigned size *)(src + RV_REG_ARENA + off) */
1595 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1596 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1597 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1598 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1599 	{
1600 		int insn_len, insns_start;
1601 		bool sign_ext;
1602 
1603 		sign_ext = BPF_MODE(insn->code) == BPF_MEMSX ||
1604 			   BPF_MODE(insn->code) == BPF_PROBE_MEMSX;
1605 
1606 		if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1607 			emit_add(RV_REG_T2, rs, RV_REG_ARENA, ctx);
1608 			rs = RV_REG_T2;
1609 		}
1610 
1611 		switch (BPF_SIZE(code)) {
1612 		case BPF_B:
1613 			if (is_12b_int(off)) {
1614 				insns_start = ctx->ninsns;
1615 				if (sign_ext)
1616 					emit(rv_lb(rd, off, rs), ctx);
1617 				else
1618 					emit(rv_lbu(rd, off, rs), ctx);
1619 				insn_len = ctx->ninsns - insns_start;
1620 				break;
1621 			}
1622 
1623 			emit_imm(RV_REG_T1, off, ctx);
1624 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1625 			insns_start = ctx->ninsns;
1626 			if (sign_ext)
1627 				emit(rv_lb(rd, 0, RV_REG_T1), ctx);
1628 			else
1629 				emit(rv_lbu(rd, 0, RV_REG_T1), ctx);
1630 			insn_len = ctx->ninsns - insns_start;
1631 			break;
1632 		case BPF_H:
1633 			if (is_12b_int(off)) {
1634 				insns_start = ctx->ninsns;
1635 				if (sign_ext)
1636 					emit(rv_lh(rd, off, rs), ctx);
1637 				else
1638 					emit(rv_lhu(rd, off, rs), ctx);
1639 				insn_len = ctx->ninsns - insns_start;
1640 				break;
1641 			}
1642 
1643 			emit_imm(RV_REG_T1, off, ctx);
1644 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1645 			insns_start = ctx->ninsns;
1646 			if (sign_ext)
1647 				emit(rv_lh(rd, 0, RV_REG_T1), ctx);
1648 			else
1649 				emit(rv_lhu(rd, 0, RV_REG_T1), ctx);
1650 			insn_len = ctx->ninsns - insns_start;
1651 			break;
1652 		case BPF_W:
1653 			if (is_12b_int(off)) {
1654 				insns_start = ctx->ninsns;
1655 				if (sign_ext)
1656 					emit(rv_lw(rd, off, rs), ctx);
1657 				else
1658 					emit(rv_lwu(rd, off, rs), ctx);
1659 				insn_len = ctx->ninsns - insns_start;
1660 				break;
1661 			}
1662 
1663 			emit_imm(RV_REG_T1, off, ctx);
1664 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1665 			insns_start = ctx->ninsns;
1666 			if (sign_ext)
1667 				emit(rv_lw(rd, 0, RV_REG_T1), ctx);
1668 			else
1669 				emit(rv_lwu(rd, 0, RV_REG_T1), ctx);
1670 			insn_len = ctx->ninsns - insns_start;
1671 			break;
1672 		case BPF_DW:
1673 			if (is_12b_int(off)) {
1674 				insns_start = ctx->ninsns;
1675 				emit_ld(rd, off, rs, ctx);
1676 				insn_len = ctx->ninsns - insns_start;
1677 				break;
1678 			}
1679 
1680 			emit_imm(RV_REG_T1, off, ctx);
1681 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1682 			insns_start = ctx->ninsns;
1683 			emit_ld(rd, 0, RV_REG_T1, ctx);
1684 			insn_len = ctx->ninsns - insns_start;
1685 			break;
1686 		}
1687 
1688 		ret = add_exception_handler(insn, ctx, rd, insn_len);
1689 		if (ret)
1690 			return ret;
1691 
1692 		if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
1693 			return 1;
1694 		break;
1695 	}
1696 	/* speculation barrier */
1697 	case BPF_ST | BPF_NOSPEC:
1698 		break;
1699 
1700 	/* ST: *(size *)(dst + off) = imm */
1701 	case BPF_ST | BPF_MEM | BPF_B:
1702 		emit_imm(RV_REG_T1, imm, ctx);
1703 		if (is_12b_int(off)) {
1704 			emit(rv_sb(rd, off, RV_REG_T1), ctx);
1705 			break;
1706 		}
1707 
1708 		emit_imm(RV_REG_T2, off, ctx);
1709 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1710 		emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1711 		break;
1712 
1713 	case BPF_ST | BPF_MEM | BPF_H:
1714 		emit_imm(RV_REG_T1, imm, ctx);
1715 		if (is_12b_int(off)) {
1716 			emit(rv_sh(rd, off, RV_REG_T1), ctx);
1717 			break;
1718 		}
1719 
1720 		emit_imm(RV_REG_T2, off, ctx);
1721 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1722 		emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1723 		break;
1724 	case BPF_ST | BPF_MEM | BPF_W:
1725 		emit_imm(RV_REG_T1, imm, ctx);
1726 		if (is_12b_int(off)) {
1727 			emit_sw(rd, off, RV_REG_T1, ctx);
1728 			break;
1729 		}
1730 
1731 		emit_imm(RV_REG_T2, off, ctx);
1732 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1733 		emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
1734 		break;
1735 	case BPF_ST | BPF_MEM | BPF_DW:
1736 		emit_imm(RV_REG_T1, imm, ctx);
1737 		if (is_12b_int(off)) {
1738 			emit_sd(rd, off, RV_REG_T1, ctx);
1739 			break;
1740 		}
1741 
1742 		emit_imm(RV_REG_T2, off, ctx);
1743 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1744 		emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
1745 		break;
1746 
1747 	case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1748 	case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1749 	case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1750 	case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1751 	{
1752 		int insn_len, insns_start;
1753 
1754 		emit_add(RV_REG_T3, rd, RV_REG_ARENA, ctx);
1755 		rd = RV_REG_T3;
1756 
1757 		/* Load imm to a register then store it */
1758 		emit_imm(RV_REG_T1, imm, ctx);
1759 
1760 		switch (BPF_SIZE(code)) {
1761 		case BPF_B:
1762 			if (is_12b_int(off)) {
1763 				insns_start = ctx->ninsns;
1764 				emit(rv_sb(rd, off, RV_REG_T1), ctx);
1765 				insn_len = ctx->ninsns - insns_start;
1766 				break;
1767 			}
1768 
1769 			emit_imm(RV_REG_T2, off, ctx);
1770 			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1771 			insns_start = ctx->ninsns;
1772 			emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1773 			insn_len = ctx->ninsns - insns_start;
1774 			break;
1775 		case BPF_H:
1776 			if (is_12b_int(off)) {
1777 				insns_start = ctx->ninsns;
1778 				emit(rv_sh(rd, off, RV_REG_T1), ctx);
1779 				insn_len = ctx->ninsns - insns_start;
1780 				break;
1781 			}
1782 
1783 			emit_imm(RV_REG_T2, off, ctx);
1784 			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1785 			insns_start = ctx->ninsns;
1786 			emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1787 			insn_len = ctx->ninsns - insns_start;
1788 			break;
1789 		case BPF_W:
1790 			if (is_12b_int(off)) {
1791 				insns_start = ctx->ninsns;
1792 				emit_sw(rd, off, RV_REG_T1, ctx);
1793 				insn_len = ctx->ninsns - insns_start;
1794 				break;
1795 			}
1796 
1797 			emit_imm(RV_REG_T2, off, ctx);
1798 			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1799 			insns_start = ctx->ninsns;
1800 			emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
1801 			insn_len = ctx->ninsns - insns_start;
1802 			break;
1803 		case BPF_DW:
1804 			if (is_12b_int(off)) {
1805 				insns_start = ctx->ninsns;
1806 				emit_sd(rd, off, RV_REG_T1, ctx);
1807 				insn_len = ctx->ninsns - insns_start;
1808 				break;
1809 			}
1810 
1811 			emit_imm(RV_REG_T2, off, ctx);
1812 			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1813 			insns_start = ctx->ninsns;
1814 			emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
1815 			insn_len = ctx->ninsns - insns_start;
1816 			break;
1817 		}
1818 
1819 		ret = add_exception_handler(insn, ctx, REG_DONT_CLEAR_MARKER,
1820 					    insn_len);
1821 		if (ret)
1822 			return ret;
1823 
1824 		break;
1825 	}
1826 
1827 	/* STX: *(size *)(dst + off) = src */
1828 	case BPF_STX | BPF_MEM | BPF_B:
1829 		if (is_12b_int(off)) {
1830 			emit(rv_sb(rd, off, rs), ctx);
1831 			break;
1832 		}
1833 
1834 		emit_imm(RV_REG_T1, off, ctx);
1835 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1836 		emit(rv_sb(RV_REG_T1, 0, rs), ctx);
1837 		break;
1838 	case BPF_STX | BPF_MEM | BPF_H:
1839 		if (is_12b_int(off)) {
1840 			emit(rv_sh(rd, off, rs), ctx);
1841 			break;
1842 		}
1843 
1844 		emit_imm(RV_REG_T1, off, ctx);
1845 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1846 		emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1847 		break;
1848 	case BPF_STX | BPF_MEM | BPF_W:
1849 		if (is_12b_int(off)) {
1850 			emit_sw(rd, off, rs, ctx);
1851 			break;
1852 		}
1853 
1854 		emit_imm(RV_REG_T1, off, ctx);
1855 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1856 		emit_sw(RV_REG_T1, 0, rs, ctx);
1857 		break;
1858 	case BPF_STX | BPF_MEM | BPF_DW:
1859 		if (is_12b_int(off)) {
1860 			emit_sd(rd, off, rs, ctx);
1861 			break;
1862 		}
1863 
1864 		emit_imm(RV_REG_T1, off, ctx);
1865 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1866 		emit_sd(RV_REG_T1, 0, rs, ctx);
1867 		break;
1868 	case BPF_STX | BPF_ATOMIC | BPF_W:
1869 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1870 		emit_atomic(rd, rs, off, imm,
1871 			    BPF_SIZE(code) == BPF_DW, ctx);
1872 		break;
1873 
1874 	case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1875 	case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1876 	case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1877 	case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1878 	{
1879 		int insn_len, insns_start;
1880 
1881 		emit_add(RV_REG_T2, rd, RV_REG_ARENA, ctx);
1882 		rd = RV_REG_T2;
1883 
1884 		switch (BPF_SIZE(code)) {
1885 		case BPF_B:
1886 			if (is_12b_int(off)) {
1887 				insns_start = ctx->ninsns;
1888 				emit(rv_sb(rd, off, rs), ctx);
1889 				insn_len = ctx->ninsns - insns_start;
1890 				break;
1891 			}
1892 
1893 			emit_imm(RV_REG_T1, off, ctx);
1894 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1895 			insns_start = ctx->ninsns;
1896 			emit(rv_sb(RV_REG_T1, 0, rs), ctx);
1897 			insn_len = ctx->ninsns - insns_start;
1898 			break;
1899 		case BPF_H:
1900 			if (is_12b_int(off)) {
1901 				insns_start = ctx->ninsns;
1902 				emit(rv_sh(rd, off, rs), ctx);
1903 				insn_len = ctx->ninsns - insns_start;
1904 				break;
1905 			}
1906 
1907 			emit_imm(RV_REG_T1, off, ctx);
1908 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1909 			insns_start = ctx->ninsns;
1910 			emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1911 			insn_len = ctx->ninsns - insns_start;
1912 			break;
1913 		case BPF_W:
1914 			if (is_12b_int(off)) {
1915 				insns_start = ctx->ninsns;
1916 				emit_sw(rd, off, rs, ctx);
1917 				insn_len = ctx->ninsns - insns_start;
1918 				break;
1919 			}
1920 
1921 			emit_imm(RV_REG_T1, off, ctx);
1922 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1923 			insns_start = ctx->ninsns;
1924 			emit_sw(RV_REG_T1, 0, rs, ctx);
1925 			insn_len = ctx->ninsns - insns_start;
1926 			break;
1927 		case BPF_DW:
1928 			if (is_12b_int(off)) {
1929 				insns_start = ctx->ninsns;
1930 				emit_sd(rd, off, rs, ctx);
1931 				insn_len = ctx->ninsns - insns_start;
1932 				break;
1933 			}
1934 
1935 			emit_imm(RV_REG_T1, off, ctx);
1936 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1937 			insns_start = ctx->ninsns;
1938 			emit_sd(RV_REG_T1, 0, rs, ctx);
1939 			insn_len = ctx->ninsns - insns_start;
1940 			break;
1941 		}
1942 
1943 		ret = add_exception_handler(insn, ctx, REG_DONT_CLEAR_MARKER,
1944 					    insn_len);
1945 		if (ret)
1946 			return ret;
1947 
1948 		break;
1949 	}
1950 
1951 	default:
1952 		pr_err("bpf-jit: unknown opcode %02x\n", code);
1953 		return -EINVAL;
1954 	}
1955 
1956 	return 0;
1957 }
1958 
1959 void bpf_jit_build_prologue(struct rv_jit_context *ctx, bool is_subprog)
1960 {
1961 	int i, stack_adjust = 0, store_offset, bpf_stack_adjust;
1962 
1963 	bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
1964 	if (bpf_stack_adjust)
1965 		mark_fp(ctx);
1966 
1967 	if (seen_reg(RV_REG_RA, ctx))
1968 		stack_adjust += 8;
1969 	stack_adjust += 8; /* RV_REG_FP */
1970 	if (seen_reg(RV_REG_S1, ctx))
1971 		stack_adjust += 8;
1972 	if (seen_reg(RV_REG_S2, ctx))
1973 		stack_adjust += 8;
1974 	if (seen_reg(RV_REG_S3, ctx))
1975 		stack_adjust += 8;
1976 	if (seen_reg(RV_REG_S4, ctx))
1977 		stack_adjust += 8;
1978 	if (seen_reg(RV_REG_S5, ctx))
1979 		stack_adjust += 8;
1980 	if (seen_reg(RV_REG_S6, ctx))
1981 		stack_adjust += 8;
1982 	if (ctx->arena_vm_start)
1983 		stack_adjust += 8;
1984 
1985 	stack_adjust = round_up(stack_adjust, 16);
1986 	stack_adjust += bpf_stack_adjust;
1987 
1988 	store_offset = stack_adjust - 8;
1989 
1990 	/* emit kcfi type preamble immediately before the  first insn */
1991 	emit_kcfi(is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash, ctx);
1992 
1993 	/* nops reserved for auipc+jalr pair */
1994 	for (i = 0; i < RV_FENTRY_NINSNS; i++)
1995 		emit(rv_nop(), ctx);
1996 
1997 	/* First instruction is always setting the tail-call-counter
1998 	 * (TCC) register. This instruction is skipped for tail calls.
1999 	 * Force using a 4-byte (non-compressed) instruction.
2000 	 */
2001 	emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
2002 
2003 	emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx);
2004 
2005 	if (seen_reg(RV_REG_RA, ctx)) {
2006 		emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx);
2007 		store_offset -= 8;
2008 	}
2009 	emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx);
2010 	store_offset -= 8;
2011 	if (seen_reg(RV_REG_S1, ctx)) {
2012 		emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx);
2013 		store_offset -= 8;
2014 	}
2015 	if (seen_reg(RV_REG_S2, ctx)) {
2016 		emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx);
2017 		store_offset -= 8;
2018 	}
2019 	if (seen_reg(RV_REG_S3, ctx)) {
2020 		emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx);
2021 		store_offset -= 8;
2022 	}
2023 	if (seen_reg(RV_REG_S4, ctx)) {
2024 		emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx);
2025 		store_offset -= 8;
2026 	}
2027 	if (seen_reg(RV_REG_S5, ctx)) {
2028 		emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx);
2029 		store_offset -= 8;
2030 	}
2031 	if (seen_reg(RV_REG_S6, ctx)) {
2032 		emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx);
2033 		store_offset -= 8;
2034 	}
2035 	if (ctx->arena_vm_start) {
2036 		emit_sd(RV_REG_SP, store_offset, RV_REG_ARENA, ctx);
2037 		store_offset -= 8;
2038 	}
2039 
2040 	emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx);
2041 
2042 	if (bpf_stack_adjust)
2043 		emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx);
2044 
2045 	/* Program contains calls and tail calls, so RV_REG_TCC need
2046 	 * to be saved across calls.
2047 	 */
2048 	if (seen_tail_call(ctx) && seen_call(ctx))
2049 		emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx);
2050 
2051 	ctx->stack_size = stack_adjust;
2052 
2053 	if (ctx->arena_vm_start)
2054 		emit_imm(RV_REG_ARENA, ctx->arena_vm_start, ctx);
2055 }
2056 
2057 void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
2058 {
2059 	__build_epilogue(false, ctx);
2060 }
2061 
2062 bool bpf_jit_supports_kfunc_call(void)
2063 {
2064 	return true;
2065 }
2066 
2067 bool bpf_jit_supports_ptr_xchg(void)
2068 {
2069 	return true;
2070 }
2071 
2072 bool bpf_jit_supports_arena(void)
2073 {
2074 	return true;
2075 }
2076 
2077 bool bpf_jit_supports_percpu_insn(void)
2078 {
2079 	return true;
2080 }
2081 
2082 bool bpf_jit_inlines_helper_call(s32 imm)
2083 {
2084 	switch (imm) {
2085 	case BPF_FUNC_get_smp_processor_id:
2086 		return true;
2087 	default:
2088 		return false;
2089 	}
2090 }
2091