xref: /linux/arch/riscv/mm/init.c (revision c8faf11cd192214e231626c3ee973a35d8fc33f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
5  * Copyright (C) 2020 FORTH-ICS/CARV
6  *  Nick Kossifidis <mick@ics.forth.gr>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/memblock.h>
12 #include <linux/initrd.h>
13 #include <linux/swap.h>
14 #include <linux/swiotlb.h>
15 #include <linux/sizes.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/libfdt.h>
19 #include <linux/set_memory.h>
20 #include <linux/dma-map-ops.h>
21 #include <linux/crash_dump.h>
22 #include <linux/hugetlb.h>
23 #ifdef CONFIG_RELOCATABLE
24 #include <linux/elf.h>
25 #endif
26 #include <linux/kfence.h>
27 #include <linux/execmem.h>
28 
29 #include <asm/fixmap.h>
30 #include <asm/io.h>
31 #include <asm/kasan.h>
32 #include <asm/numa.h>
33 #include <asm/pgtable.h>
34 #include <asm/sections.h>
35 #include <asm/soc.h>
36 #include <asm/tlbflush.h>
37 
38 #include "../kernel/head.h"
39 
40 struct kernel_mapping kernel_map __ro_after_init;
41 EXPORT_SYMBOL(kernel_map);
42 #ifdef CONFIG_XIP_KERNEL
43 #define kernel_map	(*(struct kernel_mapping *)XIP_FIXUP(&kernel_map))
44 #endif
45 
46 #ifdef CONFIG_64BIT
47 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39;
48 #else
49 u64 satp_mode __ro_after_init = SATP_MODE_32;
50 #endif
51 EXPORT_SYMBOL(satp_mode);
52 
53 #ifdef CONFIG_64BIT
54 bool pgtable_l4_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
55 bool pgtable_l5_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
56 EXPORT_SYMBOL(pgtable_l4_enabled);
57 EXPORT_SYMBOL(pgtable_l5_enabled);
58 #endif
59 
60 phys_addr_t phys_ram_base __ro_after_init;
61 EXPORT_SYMBOL(phys_ram_base);
62 
63 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
64 							__page_aligned_bss;
65 EXPORT_SYMBOL(empty_zero_page);
66 
67 extern char _start[];
68 void *_dtb_early_va __initdata;
69 uintptr_t _dtb_early_pa __initdata;
70 
71 phys_addr_t dma32_phys_limit __initdata;
72 
73 static void __init zone_sizes_init(void)
74 {
75 	unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, };
76 
77 #ifdef CONFIG_ZONE_DMA32
78 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
79 #endif
80 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
81 
82 	free_area_init(max_zone_pfns);
83 }
84 
85 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM)
86 
87 #define LOG2_SZ_1K  ilog2(SZ_1K)
88 #define LOG2_SZ_1M  ilog2(SZ_1M)
89 #define LOG2_SZ_1G  ilog2(SZ_1G)
90 #define LOG2_SZ_1T  ilog2(SZ_1T)
91 
92 static inline void print_mlk(char *name, unsigned long b, unsigned long t)
93 {
94 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld kB)\n", name, b, t,
95 		  (((t) - (b)) >> LOG2_SZ_1K));
96 }
97 
98 static inline void print_mlm(char *name, unsigned long b, unsigned long t)
99 {
100 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld MB)\n", name, b, t,
101 		  (((t) - (b)) >> LOG2_SZ_1M));
102 }
103 
104 static inline void print_mlg(char *name, unsigned long b, unsigned long t)
105 {
106 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld GB)\n", name, b, t,
107 		   (((t) - (b)) >> LOG2_SZ_1G));
108 }
109 
110 #ifdef CONFIG_64BIT
111 static inline void print_mlt(char *name, unsigned long b, unsigned long t)
112 {
113 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld TB)\n", name, b, t,
114 		   (((t) - (b)) >> LOG2_SZ_1T));
115 }
116 #else
117 #define print_mlt(n, b, t) do {} while (0)
118 #endif
119 
120 static inline void print_ml(char *name, unsigned long b, unsigned long t)
121 {
122 	unsigned long diff = t - b;
123 
124 	if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10)
125 		print_mlt(name, b, t);
126 	else if ((diff >> LOG2_SZ_1G) >= 10)
127 		print_mlg(name, b, t);
128 	else if ((diff >> LOG2_SZ_1M) >= 10)
129 		print_mlm(name, b, t);
130 	else
131 		print_mlk(name, b, t);
132 }
133 
134 static void __init print_vm_layout(void)
135 {
136 	pr_notice("Virtual kernel memory layout:\n");
137 	print_ml("fixmap", (unsigned long)FIXADDR_START,
138 		(unsigned long)FIXADDR_TOP);
139 	print_ml("pci io", (unsigned long)PCI_IO_START,
140 		(unsigned long)PCI_IO_END);
141 	print_ml("vmemmap", (unsigned long)VMEMMAP_START,
142 		(unsigned long)VMEMMAP_END);
143 	print_ml("vmalloc", (unsigned long)VMALLOC_START,
144 		(unsigned long)VMALLOC_END);
145 #ifdef CONFIG_64BIT
146 	print_ml("modules", (unsigned long)MODULES_VADDR,
147 		(unsigned long)MODULES_END);
148 #endif
149 	print_ml("lowmem", (unsigned long)PAGE_OFFSET,
150 		(unsigned long)high_memory);
151 	if (IS_ENABLED(CONFIG_64BIT)) {
152 #ifdef CONFIG_KASAN
153 		print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END);
154 #endif
155 
156 		print_ml("kernel", (unsigned long)kernel_map.virt_addr,
157 			 (unsigned long)ADDRESS_SPACE_END);
158 	}
159 }
160 #else
161 static void print_vm_layout(void) { }
162 #endif /* CONFIG_DEBUG_VM */
163 
164 void __init mem_init(void)
165 {
166 	bool swiotlb = max_pfn > PFN_DOWN(dma32_phys_limit);
167 #ifdef CONFIG_FLATMEM
168 	BUG_ON(!mem_map);
169 #endif /* CONFIG_FLATMEM */
170 
171 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb &&
172 	    dma_cache_alignment != 1) {
173 		/*
174 		 * If no bouncing needed for ZONE_DMA, allocate 1MB swiotlb
175 		 * buffer per 1GB of RAM for kmalloc() bouncing on
176 		 * non-coherent platforms.
177 		 */
178 		unsigned long size =
179 			DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
180 		swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
181 		swiotlb = true;
182 	}
183 
184 	swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
185 	memblock_free_all();
186 
187 	print_vm_layout();
188 }
189 
190 /* Limit the memory size via mem. */
191 static phys_addr_t memory_limit;
192 #ifdef CONFIG_XIP_KERNEL
193 #define memory_limit	(*(phys_addr_t *)XIP_FIXUP(&memory_limit))
194 #endif /* CONFIG_XIP_KERNEL */
195 
196 static int __init early_mem(char *p)
197 {
198 	u64 size;
199 
200 	if (!p)
201 		return 1;
202 
203 	size = memparse(p, &p) & PAGE_MASK;
204 	memory_limit = min_t(u64, size, memory_limit);
205 
206 	pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20);
207 
208 	return 0;
209 }
210 early_param("mem", early_mem);
211 
212 static void __init setup_bootmem(void)
213 {
214 	phys_addr_t vmlinux_end = __pa_symbol(&_end);
215 	phys_addr_t max_mapped_addr;
216 	phys_addr_t phys_ram_end, vmlinux_start;
217 
218 	if (IS_ENABLED(CONFIG_XIP_KERNEL))
219 		vmlinux_start = __pa_symbol(&_sdata);
220 	else
221 		vmlinux_start = __pa_symbol(&_start);
222 
223 	memblock_enforce_memory_limit(memory_limit);
224 
225 	/*
226 	 * Make sure we align the reservation on PMD_SIZE since we will
227 	 * map the kernel in the linear mapping as read-only: we do not want
228 	 * any allocation to happen between _end and the next pmd aligned page.
229 	 */
230 	if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
231 		vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK;
232 	/*
233 	 * Reserve from the start of the kernel to the end of the kernel
234 	 */
235 	memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start);
236 
237 	phys_ram_end = memblock_end_of_DRAM();
238 
239 	/*
240 	 * Make sure we align the start of the memory on a PMD boundary so that
241 	 * at worst, we map the linear mapping with PMD mappings.
242 	 */
243 	if (!IS_ENABLED(CONFIG_XIP_KERNEL))
244 		phys_ram_base = memblock_start_of_DRAM() & PMD_MASK;
245 
246 	/*
247 	 * In 64-bit, any use of __va/__pa before this point is wrong as we
248 	 * did not know the start of DRAM before.
249 	 */
250 	if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU))
251 		kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base;
252 
253 	/*
254 	 * Reserve physical address space that would be mapped to virtual
255 	 * addresses greater than (void *)(-PAGE_SIZE) because:
256 	 *  - This memory would overlap with ERR_PTR
257 	 *  - This memory belongs to high memory, which is not supported
258 	 *
259 	 * This is not applicable to 64-bit kernel, because virtual addresses
260 	 * after (void *)(-PAGE_SIZE) are not linearly mapped: they are
261 	 * occupied by kernel mapping. Also it is unrealistic for high memory
262 	 * to exist on 64-bit platforms.
263 	 */
264 	if (!IS_ENABLED(CONFIG_64BIT)) {
265 		max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE);
266 		memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr);
267 	}
268 
269 	min_low_pfn = PFN_UP(phys_ram_base);
270 	max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end);
271 	high_memory = (void *)(__va(PFN_PHYS(max_low_pfn)));
272 
273 	dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn));
274 	set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET);
275 
276 	reserve_initrd_mem();
277 
278 	/*
279 	 * No allocation should be done before reserving the memory as defined
280 	 * in the device tree, otherwise the allocation could end up in a
281 	 * reserved region.
282 	 */
283 	early_init_fdt_scan_reserved_mem();
284 
285 	/*
286 	 * If DTB is built in, no need to reserve its memblock.
287 	 * Otherwise, do reserve it but avoid using
288 	 * early_init_fdt_reserve_self() since __pa() does
289 	 * not work for DTB pointers that are fixmap addresses
290 	 */
291 	if (!IS_ENABLED(CONFIG_BUILTIN_DTB))
292 		memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va));
293 
294 	dma_contiguous_reserve(dma32_phys_limit);
295 	if (IS_ENABLED(CONFIG_64BIT))
296 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
297 }
298 
299 #ifdef CONFIG_MMU
300 struct pt_alloc_ops pt_ops __meminitdata;
301 
302 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
303 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
304 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss;
305 
306 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE);
307 
308 #ifdef CONFIG_XIP_KERNEL
309 #define pt_ops			(*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops))
310 #define trampoline_pg_dir      ((pgd_t *)XIP_FIXUP(trampoline_pg_dir))
311 #define fixmap_pte             ((pte_t *)XIP_FIXUP(fixmap_pte))
312 #define early_pg_dir           ((pgd_t *)XIP_FIXUP(early_pg_dir))
313 #endif /* CONFIG_XIP_KERNEL */
314 
315 static const pgprot_t protection_map[16] = {
316 	[VM_NONE]					= PAGE_NONE,
317 	[VM_READ]					= PAGE_READ,
318 	[VM_WRITE]					= PAGE_COPY,
319 	[VM_WRITE | VM_READ]				= PAGE_COPY,
320 	[VM_EXEC]					= PAGE_EXEC,
321 	[VM_EXEC | VM_READ]				= PAGE_READ_EXEC,
322 	[VM_EXEC | VM_WRITE]				= PAGE_COPY_EXEC,
323 	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_EXEC,
324 	[VM_SHARED]					= PAGE_NONE,
325 	[VM_SHARED | VM_READ]				= PAGE_READ,
326 	[VM_SHARED | VM_WRITE]				= PAGE_SHARED,
327 	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
328 	[VM_SHARED | VM_EXEC]				= PAGE_EXEC,
329 	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_READ_EXEC,
330 	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_SHARED_EXEC,
331 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_SHARED_EXEC
332 };
333 DECLARE_VM_GET_PAGE_PROT
334 
335 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
336 {
337 	unsigned long addr = __fix_to_virt(idx);
338 	pte_t *ptep;
339 
340 	BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
341 
342 	ptep = &fixmap_pte[pte_index(addr)];
343 
344 	if (pgprot_val(prot))
345 		set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
346 	else
347 		pte_clear(&init_mm, addr, ptep);
348 	local_flush_tlb_page(addr);
349 }
350 
351 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa)
352 {
353 	return (pte_t *)((uintptr_t)pa);
354 }
355 
356 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa)
357 {
358 	clear_fixmap(FIX_PTE);
359 	return (pte_t *)set_fixmap_offset(FIX_PTE, pa);
360 }
361 
362 static inline pte_t *__meminit get_pte_virt_late(phys_addr_t pa)
363 {
364 	return (pte_t *) __va(pa);
365 }
366 
367 static inline phys_addr_t __init alloc_pte_early(uintptr_t va)
368 {
369 	/*
370 	 * We only create PMD or PGD early mappings so we
371 	 * should never reach here with MMU disabled.
372 	 */
373 	BUG();
374 }
375 
376 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va)
377 {
378 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
379 }
380 
381 static phys_addr_t __meminit alloc_pte_late(uintptr_t va)
382 {
383 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
384 
385 	BUG_ON(!ptdesc || !pagetable_pte_ctor(ptdesc));
386 	return __pa((pte_t *)ptdesc_address(ptdesc));
387 }
388 
389 static void __meminit create_pte_mapping(pte_t *ptep, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
390 					 pgprot_t prot)
391 {
392 	uintptr_t pte_idx = pte_index(va);
393 
394 	BUG_ON(sz != PAGE_SIZE);
395 
396 	if (pte_none(ptep[pte_idx]))
397 		ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot);
398 }
399 
400 #ifndef __PAGETABLE_PMD_FOLDED
401 
402 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss;
403 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss;
404 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE);
405 
406 #ifdef CONFIG_XIP_KERNEL
407 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd))
408 #define fixmap_pmd     ((pmd_t *)XIP_FIXUP(fixmap_pmd))
409 #define early_pmd      ((pmd_t *)XIP_FIXUP(early_pmd))
410 #endif /* CONFIG_XIP_KERNEL */
411 
412 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss;
413 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss;
414 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
415 
416 #ifdef CONFIG_XIP_KERNEL
417 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d))
418 #define fixmap_p4d     ((p4d_t *)XIP_FIXUP(fixmap_p4d))
419 #define early_p4d      ((p4d_t *)XIP_FIXUP(early_p4d))
420 #endif /* CONFIG_XIP_KERNEL */
421 
422 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss;
423 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss;
424 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE);
425 
426 #ifdef CONFIG_XIP_KERNEL
427 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud))
428 #define fixmap_pud     ((pud_t *)XIP_FIXUP(fixmap_pud))
429 #define early_pud      ((pud_t *)XIP_FIXUP(early_pud))
430 #endif /* CONFIG_XIP_KERNEL */
431 
432 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa)
433 {
434 	/* Before MMU is enabled */
435 	return (pmd_t *)((uintptr_t)pa);
436 }
437 
438 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa)
439 {
440 	clear_fixmap(FIX_PMD);
441 	return (pmd_t *)set_fixmap_offset(FIX_PMD, pa);
442 }
443 
444 static pmd_t *__meminit get_pmd_virt_late(phys_addr_t pa)
445 {
446 	return (pmd_t *) __va(pa);
447 }
448 
449 static phys_addr_t __init alloc_pmd_early(uintptr_t va)
450 {
451 	BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT);
452 
453 	return (uintptr_t)early_pmd;
454 }
455 
456 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va)
457 {
458 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
459 }
460 
461 static phys_addr_t __meminit alloc_pmd_late(uintptr_t va)
462 {
463 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
464 
465 	BUG_ON(!ptdesc || !pagetable_pmd_ctor(ptdesc));
466 	return __pa((pmd_t *)ptdesc_address(ptdesc));
467 }
468 
469 static void __meminit create_pmd_mapping(pmd_t *pmdp,
470 					 uintptr_t va, phys_addr_t pa,
471 					 phys_addr_t sz, pgprot_t prot)
472 {
473 	pte_t *ptep;
474 	phys_addr_t pte_phys;
475 	uintptr_t pmd_idx = pmd_index(va);
476 
477 	if (sz == PMD_SIZE) {
478 		if (pmd_none(pmdp[pmd_idx]))
479 			pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot);
480 		return;
481 	}
482 
483 	if (pmd_none(pmdp[pmd_idx])) {
484 		pte_phys = pt_ops.alloc_pte(va);
485 		pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE);
486 		ptep = pt_ops.get_pte_virt(pte_phys);
487 		memset(ptep, 0, PAGE_SIZE);
488 	} else {
489 		pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx]));
490 		ptep = pt_ops.get_pte_virt(pte_phys);
491 	}
492 
493 	create_pte_mapping(ptep, va, pa, sz, prot);
494 }
495 
496 static pud_t *__init get_pud_virt_early(phys_addr_t pa)
497 {
498 	return (pud_t *)((uintptr_t)pa);
499 }
500 
501 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa)
502 {
503 	clear_fixmap(FIX_PUD);
504 	return (pud_t *)set_fixmap_offset(FIX_PUD, pa);
505 }
506 
507 static pud_t *__meminit get_pud_virt_late(phys_addr_t pa)
508 {
509 	return (pud_t *)__va(pa);
510 }
511 
512 static phys_addr_t __init alloc_pud_early(uintptr_t va)
513 {
514 	/* Only one PUD is available for early mapping */
515 	BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
516 
517 	return (uintptr_t)early_pud;
518 }
519 
520 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va)
521 {
522 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
523 }
524 
525 static phys_addr_t __meminit alloc_pud_late(uintptr_t va)
526 {
527 	unsigned long vaddr;
528 
529 	vaddr = __get_free_page(GFP_KERNEL);
530 	BUG_ON(!vaddr);
531 	return __pa(vaddr);
532 }
533 
534 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa)
535 {
536 	return (p4d_t *)((uintptr_t)pa);
537 }
538 
539 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa)
540 {
541 	clear_fixmap(FIX_P4D);
542 	return (p4d_t *)set_fixmap_offset(FIX_P4D, pa);
543 }
544 
545 static p4d_t *__meminit get_p4d_virt_late(phys_addr_t pa)
546 {
547 	return (p4d_t *)__va(pa);
548 }
549 
550 static phys_addr_t __init alloc_p4d_early(uintptr_t va)
551 {
552 	/* Only one P4D is available for early mapping */
553 	BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
554 
555 	return (uintptr_t)early_p4d;
556 }
557 
558 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va)
559 {
560 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
561 }
562 
563 static phys_addr_t __meminit alloc_p4d_late(uintptr_t va)
564 {
565 	unsigned long vaddr;
566 
567 	vaddr = __get_free_page(GFP_KERNEL);
568 	BUG_ON(!vaddr);
569 	return __pa(vaddr);
570 }
571 
572 static void __meminit create_pud_mapping(pud_t *pudp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
573 					 pgprot_t prot)
574 {
575 	pmd_t *nextp;
576 	phys_addr_t next_phys;
577 	uintptr_t pud_index = pud_index(va);
578 
579 	if (sz == PUD_SIZE) {
580 		if (pud_val(pudp[pud_index]) == 0)
581 			pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot);
582 		return;
583 	}
584 
585 	if (pud_val(pudp[pud_index]) == 0) {
586 		next_phys = pt_ops.alloc_pmd(va);
587 		pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE);
588 		nextp = pt_ops.get_pmd_virt(next_phys);
589 		memset(nextp, 0, PAGE_SIZE);
590 	} else {
591 		next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index]));
592 		nextp = pt_ops.get_pmd_virt(next_phys);
593 	}
594 
595 	create_pmd_mapping(nextp, va, pa, sz, prot);
596 }
597 
598 static void __meminit create_p4d_mapping(p4d_t *p4dp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
599 					 pgprot_t prot)
600 {
601 	pud_t *nextp;
602 	phys_addr_t next_phys;
603 	uintptr_t p4d_index = p4d_index(va);
604 
605 	if (sz == P4D_SIZE) {
606 		if (p4d_val(p4dp[p4d_index]) == 0)
607 			p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot);
608 		return;
609 	}
610 
611 	if (p4d_val(p4dp[p4d_index]) == 0) {
612 		next_phys = pt_ops.alloc_pud(va);
613 		p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE);
614 		nextp = pt_ops.get_pud_virt(next_phys);
615 		memset(nextp, 0, PAGE_SIZE);
616 	} else {
617 		next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index]));
618 		nextp = pt_ops.get_pud_virt(next_phys);
619 	}
620 
621 	create_pud_mapping(nextp, va, pa, sz, prot);
622 }
623 
624 #define pgd_next_t		p4d_t
625 #define alloc_pgd_next(__va)	(pgtable_l5_enabled ?			\
626 		pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ?		\
627 		pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va)))
628 #define get_pgd_next_virt(__pa)	(pgtable_l5_enabled ?			\
629 		pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ?	\
630 		pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa)))
631 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot)	\
632 				(pgtable_l5_enabled ?			\
633 		create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \
634 				(pgtable_l4_enabled ?			\
635 		create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) :	\
636 		create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot)))
637 #define fixmap_pgd_next		(pgtable_l5_enabled ?			\
638 		(uintptr_t)fixmap_p4d : (pgtable_l4_enabled ?		\
639 		(uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd))
640 #define trampoline_pgd_next	(pgtable_l5_enabled ?			\
641 		(uintptr_t)trampoline_p4d : (pgtable_l4_enabled ?	\
642 		(uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd))
643 #else
644 #define pgd_next_t		pte_t
645 #define alloc_pgd_next(__va)	pt_ops.alloc_pte(__va)
646 #define get_pgd_next_virt(__pa)	pt_ops.get_pte_virt(__pa)
647 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot)	\
648 	create_pte_mapping(__nextp, __va, __pa, __sz, __prot)
649 #define fixmap_pgd_next		((uintptr_t)fixmap_pte)
650 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
651 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
652 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
653 #endif /* __PAGETABLE_PMD_FOLDED */
654 
655 void __meminit create_pgd_mapping(pgd_t *pgdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
656 				  pgprot_t prot)
657 {
658 	pgd_next_t *nextp;
659 	phys_addr_t next_phys;
660 	uintptr_t pgd_idx = pgd_index(va);
661 
662 	if (sz == PGDIR_SIZE) {
663 		if (pgd_val(pgdp[pgd_idx]) == 0)
664 			pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot);
665 		return;
666 	}
667 
668 	if (pgd_val(pgdp[pgd_idx]) == 0) {
669 		next_phys = alloc_pgd_next(va);
670 		pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE);
671 		nextp = get_pgd_next_virt(next_phys);
672 		memset(nextp, 0, PAGE_SIZE);
673 	} else {
674 		next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx]));
675 		nextp = get_pgd_next_virt(next_phys);
676 	}
677 
678 	create_pgd_next_mapping(nextp, va, pa, sz, prot);
679 }
680 
681 static uintptr_t __meminit best_map_size(phys_addr_t pa, uintptr_t va, phys_addr_t size)
682 {
683 	if (debug_pagealloc_enabled())
684 		return PAGE_SIZE;
685 
686 	if (pgtable_l5_enabled &&
687 	    !(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE)
688 		return P4D_SIZE;
689 
690 	if (pgtable_l4_enabled &&
691 	    !(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE)
692 		return PUD_SIZE;
693 
694 	if (IS_ENABLED(CONFIG_64BIT) &&
695 	    !(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE)
696 		return PMD_SIZE;
697 
698 	return PAGE_SIZE;
699 }
700 
701 #ifdef CONFIG_XIP_KERNEL
702 #define phys_ram_base  (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base))
703 extern char _xiprom[], _exiprom[], __data_loc;
704 
705 /* called from head.S with MMU off */
706 asmlinkage void __init __copy_data(void)
707 {
708 	void *from = (void *)(&__data_loc);
709 	void *to = (void *)CONFIG_PHYS_RAM_BASE;
710 	size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata));
711 
712 	memcpy(to, from, sz);
713 }
714 #endif
715 
716 #ifdef CONFIG_STRICT_KERNEL_RWX
717 static __meminit pgprot_t pgprot_from_va(uintptr_t va)
718 {
719 	if (is_va_kernel_text(va))
720 		return PAGE_KERNEL_READ_EXEC;
721 
722 	/*
723 	 * In 64-bit kernel, the kernel mapping is outside the linear mapping so
724 	 * we must protect its linear mapping alias from being executed and
725 	 * written.
726 	 * And rodata section is marked readonly in mark_rodata_ro.
727 	 */
728 	if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va))
729 		return PAGE_KERNEL_READ;
730 
731 	return PAGE_KERNEL;
732 }
733 
734 void mark_rodata_ro(void)
735 {
736 	set_kernel_memory(__start_rodata, _data, set_memory_ro);
737 	if (IS_ENABLED(CONFIG_64BIT))
738 		set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data),
739 				  set_memory_ro);
740 }
741 #else
742 static __meminit pgprot_t pgprot_from_va(uintptr_t va)
743 {
744 	if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va))
745 		return PAGE_KERNEL;
746 
747 	return PAGE_KERNEL_EXEC;
748 }
749 #endif /* CONFIG_STRICT_KERNEL_RWX */
750 
751 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
752 u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa);
753 
754 static void __init disable_pgtable_l5(void)
755 {
756 	pgtable_l5_enabled = false;
757 	kernel_map.page_offset = PAGE_OFFSET_L4;
758 	satp_mode = SATP_MODE_48;
759 }
760 
761 static void __init disable_pgtable_l4(void)
762 {
763 	pgtable_l4_enabled = false;
764 	kernel_map.page_offset = PAGE_OFFSET_L3;
765 	satp_mode = SATP_MODE_39;
766 }
767 
768 static int __init print_no4lvl(char *p)
769 {
770 	pr_info("Disabled 4-level and 5-level paging");
771 	return 0;
772 }
773 early_param("no4lvl", print_no4lvl);
774 
775 static int __init print_no5lvl(char *p)
776 {
777 	pr_info("Disabled 5-level paging");
778 	return 0;
779 }
780 early_param("no5lvl", print_no5lvl);
781 
782 static void __init set_mmap_rnd_bits_max(void)
783 {
784 	mmap_rnd_bits_max = MMAP_VA_BITS - PAGE_SHIFT - 3;
785 }
786 
787 /*
788  * There is a simple way to determine if 4-level is supported by the
789  * underlying hardware: establish 1:1 mapping in 4-level page table mode
790  * then read SATP to see if the configuration was taken into account
791  * meaning sv48 is supported.
792  */
793 static __init void set_satp_mode(uintptr_t dtb_pa)
794 {
795 	u64 identity_satp, hw_satp;
796 	uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK;
797 	u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa);
798 
799 	if (satp_mode_cmdline == SATP_MODE_57) {
800 		disable_pgtable_l5();
801 	} else if (satp_mode_cmdline == SATP_MODE_48) {
802 		disable_pgtable_l5();
803 		disable_pgtable_l4();
804 		return;
805 	}
806 
807 	create_p4d_mapping(early_p4d,
808 			set_satp_mode_pmd, (uintptr_t)early_pud,
809 			P4D_SIZE, PAGE_TABLE);
810 	create_pud_mapping(early_pud,
811 			   set_satp_mode_pmd, (uintptr_t)early_pmd,
812 			   PUD_SIZE, PAGE_TABLE);
813 	/* Handle the case where set_satp_mode straddles 2 PMDs */
814 	create_pmd_mapping(early_pmd,
815 			   set_satp_mode_pmd, set_satp_mode_pmd,
816 			   PMD_SIZE, PAGE_KERNEL_EXEC);
817 	create_pmd_mapping(early_pmd,
818 			   set_satp_mode_pmd + PMD_SIZE,
819 			   set_satp_mode_pmd + PMD_SIZE,
820 			   PMD_SIZE, PAGE_KERNEL_EXEC);
821 retry:
822 	create_pgd_mapping(early_pg_dir,
823 			   set_satp_mode_pmd,
824 			   pgtable_l5_enabled ?
825 				(uintptr_t)early_p4d : (uintptr_t)early_pud,
826 			   PGDIR_SIZE, PAGE_TABLE);
827 
828 	identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode;
829 
830 	local_flush_tlb_all();
831 	csr_write(CSR_SATP, identity_satp);
832 	hw_satp = csr_swap(CSR_SATP, 0ULL);
833 	local_flush_tlb_all();
834 
835 	if (hw_satp != identity_satp) {
836 		if (pgtable_l5_enabled) {
837 			disable_pgtable_l5();
838 			memset(early_pg_dir, 0, PAGE_SIZE);
839 			goto retry;
840 		}
841 		disable_pgtable_l4();
842 	}
843 
844 	memset(early_pg_dir, 0, PAGE_SIZE);
845 	memset(early_p4d, 0, PAGE_SIZE);
846 	memset(early_pud, 0, PAGE_SIZE);
847 	memset(early_pmd, 0, PAGE_SIZE);
848 }
849 #endif
850 
851 /*
852  * setup_vm() is called from head.S with MMU-off.
853  *
854  * Following requirements should be honoured for setup_vm() to work
855  * correctly:
856  * 1) It should use PC-relative addressing for accessing kernel symbols.
857  *    To achieve this we always use GCC cmodel=medany.
858  * 2) The compiler instrumentation for FTRACE will not work for setup_vm()
859  *    so disable compiler instrumentation when FTRACE is enabled.
860  *
861  * Currently, the above requirements are honoured by using custom CFLAGS
862  * for init.o in mm/Makefile.
863  */
864 
865 #ifndef __riscv_cmodel_medany
866 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing."
867 #endif
868 
869 #ifdef CONFIG_RELOCATABLE
870 extern unsigned long __rela_dyn_start, __rela_dyn_end;
871 
872 static void __init relocate_kernel(void)
873 {
874 	Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start;
875 	/*
876 	 * This holds the offset between the linked virtual address and the
877 	 * relocated virtual address.
878 	 */
879 	uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR;
880 	/*
881 	 * This holds the offset between kernel linked virtual address and
882 	 * physical address.
883 	 */
884 	uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr;
885 
886 	for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) {
887 		Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset);
888 		Elf64_Addr relocated_addr = rela->r_addend;
889 
890 		if (rela->r_info != R_RISCV_RELATIVE)
891 			continue;
892 
893 		/*
894 		 * Make sure to not relocate vdso symbols like rt_sigreturn
895 		 * which are linked from the address 0 in vmlinux since
896 		 * vdso symbol addresses are actually used as an offset from
897 		 * mm->context.vdso in VDSO_OFFSET macro.
898 		 */
899 		if (relocated_addr >= KERNEL_LINK_ADDR)
900 			relocated_addr += reloc_offset;
901 
902 		*(Elf64_Addr *)addr = relocated_addr;
903 	}
904 }
905 #endif /* CONFIG_RELOCATABLE */
906 
907 #ifdef CONFIG_XIP_KERNEL
908 static void __init create_kernel_page_table(pgd_t *pgdir,
909 					    __always_unused bool early)
910 {
911 	uintptr_t va, end_va;
912 
913 	/* Map the flash resident part */
914 	end_va = kernel_map.virt_addr + kernel_map.xiprom_sz;
915 	for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
916 		create_pgd_mapping(pgdir, va,
917 				   kernel_map.xiprom + (va - kernel_map.virt_addr),
918 				   PMD_SIZE, PAGE_KERNEL_EXEC);
919 
920 	/* Map the data in RAM */
921 	end_va = kernel_map.virt_addr + XIP_OFFSET + kernel_map.size;
922 	for (va = kernel_map.virt_addr + XIP_OFFSET; va < end_va; va += PMD_SIZE)
923 		create_pgd_mapping(pgdir, va,
924 				   kernel_map.phys_addr + (va - (kernel_map.virt_addr + XIP_OFFSET)),
925 				   PMD_SIZE, PAGE_KERNEL);
926 }
927 #else
928 static void __init create_kernel_page_table(pgd_t *pgdir, bool early)
929 {
930 	uintptr_t va, end_va;
931 
932 	end_va = kernel_map.virt_addr + kernel_map.size;
933 	for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
934 		create_pgd_mapping(pgdir, va,
935 				   kernel_map.phys_addr + (va - kernel_map.virt_addr),
936 				   PMD_SIZE,
937 				   early ?
938 					PAGE_KERNEL_EXEC : pgprot_from_va(va));
939 }
940 #endif
941 
942 /*
943  * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel,
944  * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR
945  * entry.
946  */
947 static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va,
948 					       uintptr_t dtb_pa)
949 {
950 #ifndef CONFIG_BUILTIN_DTB
951 	uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1);
952 
953 	/* Make sure the fdt fixmap address is always aligned on PMD size */
954 	BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE));
955 
956 	/* In 32-bit only, the fdt lies in its own PGD */
957 	if (!IS_ENABLED(CONFIG_64BIT)) {
958 		create_pgd_mapping(early_pg_dir, fix_fdt_va,
959 				   pa, MAX_FDT_SIZE, PAGE_KERNEL);
960 	} else {
961 		create_pmd_mapping(fixmap_pmd, fix_fdt_va,
962 				   pa, PMD_SIZE, PAGE_KERNEL);
963 		create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE,
964 				   pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL);
965 	}
966 
967 	dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1));
968 #else
969 	/*
970 	 * For 64-bit kernel, __va can't be used since it would return a linear
971 	 * mapping address whereas dtb_early_va will be used before
972 	 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the
973 	 * kernel is mapped in the linear mapping, that makes no difference.
974 	 */
975 	dtb_early_va = kernel_mapping_pa_to_va(dtb_pa);
976 #endif
977 
978 	dtb_early_pa = dtb_pa;
979 }
980 
981 /*
982  * MMU is not enabled, the page tables are allocated directly using
983  * early_pmd/pud/p4d and the address returned is the physical one.
984  */
985 static void __init pt_ops_set_early(void)
986 {
987 	pt_ops.alloc_pte = alloc_pte_early;
988 	pt_ops.get_pte_virt = get_pte_virt_early;
989 #ifndef __PAGETABLE_PMD_FOLDED
990 	pt_ops.alloc_pmd = alloc_pmd_early;
991 	pt_ops.get_pmd_virt = get_pmd_virt_early;
992 	pt_ops.alloc_pud = alloc_pud_early;
993 	pt_ops.get_pud_virt = get_pud_virt_early;
994 	pt_ops.alloc_p4d = alloc_p4d_early;
995 	pt_ops.get_p4d_virt = get_p4d_virt_early;
996 #endif
997 }
998 
999 /*
1000  * MMU is enabled but page table setup is not complete yet.
1001  * fixmap page table alloc functions must be used as a means to temporarily
1002  * map the allocated physical pages since the linear mapping does not exist yet.
1003  *
1004  * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va,
1005  * but it will be used as described above.
1006  */
1007 static void __init pt_ops_set_fixmap(void)
1008 {
1009 	pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap);
1010 	pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap);
1011 #ifndef __PAGETABLE_PMD_FOLDED
1012 	pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap);
1013 	pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap);
1014 	pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap);
1015 	pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap);
1016 	pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap);
1017 	pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap);
1018 #endif
1019 }
1020 
1021 /*
1022  * MMU is enabled and page table setup is complete, so from now, we can use
1023  * generic page allocation functions to setup page table.
1024  */
1025 static void __init pt_ops_set_late(void)
1026 {
1027 	pt_ops.alloc_pte = alloc_pte_late;
1028 	pt_ops.get_pte_virt = get_pte_virt_late;
1029 #ifndef __PAGETABLE_PMD_FOLDED
1030 	pt_ops.alloc_pmd = alloc_pmd_late;
1031 	pt_ops.get_pmd_virt = get_pmd_virt_late;
1032 	pt_ops.alloc_pud = alloc_pud_late;
1033 	pt_ops.get_pud_virt = get_pud_virt_late;
1034 	pt_ops.alloc_p4d = alloc_p4d_late;
1035 	pt_ops.get_p4d_virt = get_p4d_virt_late;
1036 #endif
1037 }
1038 
1039 #ifdef CONFIG_RANDOMIZE_BASE
1040 extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa);
1041 extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa);
1042 
1043 static int __init print_nokaslr(char *p)
1044 {
1045 	pr_info("Disabled KASLR");
1046 	return 0;
1047 }
1048 early_param("nokaslr", print_nokaslr);
1049 
1050 unsigned long kaslr_offset(void)
1051 {
1052 	return kernel_map.virt_offset;
1053 }
1054 #endif
1055 
1056 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1057 {
1058 	pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd;
1059 
1060 #ifdef CONFIG_RANDOMIZE_BASE
1061 	if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) {
1062 		u64 kaslr_seed = __pi_get_kaslr_seed(dtb_pa);
1063 		u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1064 		u32 nr_pos;
1065 
1066 		/*
1067 		 * Compute the number of positions available: we are limited
1068 		 * by the early page table that only has one PUD and we must
1069 		 * be aligned on PMD_SIZE.
1070 		 */
1071 		nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE;
1072 
1073 		kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE;
1074 	}
1075 #endif
1076 
1077 	kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset;
1078 
1079 #ifdef CONFIG_XIP_KERNEL
1080 #ifdef CONFIG_64BIT
1081 	kernel_map.page_offset = PAGE_OFFSET_L3;
1082 #else
1083 	kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
1084 #endif
1085 	kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR;
1086 	kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom);
1087 
1088 	phys_ram_base = CONFIG_PHYS_RAM_BASE;
1089 	kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE;
1090 	kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_sdata);
1091 
1092 	kernel_map.va_kernel_xip_pa_offset = kernel_map.virt_addr - kernel_map.xiprom;
1093 #else
1094 	kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
1095 	kernel_map.phys_addr = (uintptr_t)(&_start);
1096 	kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr;
1097 #endif
1098 
1099 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
1100 	set_satp_mode(dtb_pa);
1101 	set_mmap_rnd_bits_max();
1102 #endif
1103 
1104 	/*
1105 	 * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem,
1106 	 * where we have the system memory layout: this allows us to align
1107 	 * the physical and virtual mappings and then make use of PUD/P4D/PGD
1108 	 * for the linear mapping. This is only possible because the kernel
1109 	 * mapping lies outside the linear mapping.
1110 	 * In 32-bit however, as the kernel resides in the linear mapping,
1111 	 * setup_vm_final can not change the mapping established here,
1112 	 * otherwise the same kernel addresses would get mapped to different
1113 	 * physical addresses (if the start of dram is different from the
1114 	 * kernel physical address start).
1115 	 */
1116 	kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ?
1117 				0UL : PAGE_OFFSET - kernel_map.phys_addr;
1118 	kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr;
1119 
1120 	/*
1121 	 * The default maximal physical memory size is KERN_VIRT_SIZE for 32-bit
1122 	 * kernel, whereas for 64-bit kernel, the end of the virtual address
1123 	 * space is occupied by the modules/BPF/kernel mappings which reduces
1124 	 * the available size of the linear mapping.
1125 	 */
1126 	memory_limit = KERN_VIRT_SIZE - (IS_ENABLED(CONFIG_64BIT) ? SZ_4G : 0);
1127 
1128 	/* Sanity check alignment and size */
1129 	BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0);
1130 	BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0);
1131 
1132 #ifdef CONFIG_64BIT
1133 	/*
1134 	 * The last 4K bytes of the addressable memory can not be mapped because
1135 	 * of IS_ERR_VALUE macro.
1136 	 */
1137 	BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K);
1138 #endif
1139 
1140 #ifdef CONFIG_RELOCATABLE
1141 	/*
1142 	 * Early page table uses only one PUD, which makes it possible
1143 	 * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset
1144 	 * makes the kernel cross over a PUD_SIZE boundary, raise a bug
1145 	 * since a part of the kernel would not get mapped.
1146 	 */
1147 	BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size);
1148 	relocate_kernel();
1149 #endif
1150 
1151 	apply_early_boot_alternatives();
1152 	pt_ops_set_early();
1153 
1154 	/* Setup early PGD for fixmap */
1155 	create_pgd_mapping(early_pg_dir, FIXADDR_START,
1156 			   fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1157 
1158 #ifndef __PAGETABLE_PMD_FOLDED
1159 	/* Setup fixmap P4D and PUD */
1160 	if (pgtable_l5_enabled)
1161 		create_p4d_mapping(fixmap_p4d, FIXADDR_START,
1162 				   (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE);
1163 	/* Setup fixmap PUD and PMD */
1164 	if (pgtable_l4_enabled)
1165 		create_pud_mapping(fixmap_pud, FIXADDR_START,
1166 				   (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE);
1167 	create_pmd_mapping(fixmap_pmd, FIXADDR_START,
1168 			   (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE);
1169 	/* Setup trampoline PGD and PMD */
1170 	create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1171 			   trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1172 	if (pgtable_l5_enabled)
1173 		create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr,
1174 				   (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE);
1175 	if (pgtable_l4_enabled)
1176 		create_pud_mapping(trampoline_pud, kernel_map.virt_addr,
1177 				   (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE);
1178 #ifdef CONFIG_XIP_KERNEL
1179 	create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1180 			   kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC);
1181 #else
1182 	create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1183 			   kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC);
1184 #endif
1185 #else
1186 	/* Setup trampoline PGD */
1187 	create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1188 			   kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC);
1189 #endif
1190 
1191 	/*
1192 	 * Setup early PGD covering entire kernel which will allow
1193 	 * us to reach paging_init(). We map all memory banks later
1194 	 * in setup_vm_final() below.
1195 	 */
1196 	create_kernel_page_table(early_pg_dir, true);
1197 
1198 	/* Setup early mapping for FDT early scan */
1199 	create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa);
1200 
1201 	/*
1202 	 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap
1203 	 * range can not span multiple pmds.
1204 	 */
1205 	BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1206 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1207 
1208 #ifndef __PAGETABLE_PMD_FOLDED
1209 	/*
1210 	 * Early ioremap fixmap is already created as it lies within first 2MB
1211 	 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END
1212 	 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn
1213 	 * the user if not.
1214 	 */
1215 	fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))];
1216 	fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))];
1217 	if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) {
1218 		WARN_ON(1);
1219 		pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n",
1220 			pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd));
1221 		pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1222 			fix_to_virt(FIX_BTMAP_BEGIN));
1223 		pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n",
1224 			fix_to_virt(FIX_BTMAP_END));
1225 
1226 		pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
1227 		pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN);
1228 	}
1229 #endif
1230 
1231 	pt_ops_set_fixmap();
1232 }
1233 
1234 static void __meminit create_linear_mapping_range(phys_addr_t start, phys_addr_t end,
1235 						  uintptr_t fixed_map_size, const pgprot_t *pgprot)
1236 {
1237 	phys_addr_t pa;
1238 	uintptr_t va, map_size;
1239 
1240 	for (pa = start; pa < end; pa += map_size) {
1241 		va = (uintptr_t)__va(pa);
1242 		map_size = fixed_map_size ? fixed_map_size :
1243 					    best_map_size(pa, va, end - pa);
1244 
1245 		create_pgd_mapping(swapper_pg_dir, va, pa, map_size,
1246 				   pgprot ? *pgprot : pgprot_from_va(va));
1247 	}
1248 }
1249 
1250 static void __init create_linear_mapping_page_table(void)
1251 {
1252 	phys_addr_t start, end;
1253 	phys_addr_t kfence_pool __maybe_unused;
1254 	u64 i;
1255 
1256 #ifdef CONFIG_STRICT_KERNEL_RWX
1257 	phys_addr_t ktext_start = __pa_symbol(_start);
1258 	phys_addr_t ktext_size = __init_data_begin - _start;
1259 	phys_addr_t krodata_start = __pa_symbol(__start_rodata);
1260 	phys_addr_t krodata_size = _data - __start_rodata;
1261 
1262 	/* Isolate kernel text and rodata so they don't get mapped with a PUD */
1263 	memblock_mark_nomap(ktext_start,  ktext_size);
1264 	memblock_mark_nomap(krodata_start, krodata_size);
1265 #endif
1266 
1267 #ifdef CONFIG_KFENCE
1268 	/*
1269 	 *  kfence pool must be backed by PAGE_SIZE mappings, so allocate it
1270 	 *  before we setup the linear mapping so that we avoid using hugepages
1271 	 *  for this region.
1272 	 */
1273 	kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
1274 	BUG_ON(!kfence_pool);
1275 
1276 	memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
1277 	__kfence_pool = __va(kfence_pool);
1278 #endif
1279 
1280 	/* Map all memory banks in the linear mapping */
1281 	for_each_mem_range(i, &start, &end) {
1282 		if (start >= end)
1283 			break;
1284 		if (start <= __pa(PAGE_OFFSET) &&
1285 		    __pa(PAGE_OFFSET) < end)
1286 			start = __pa(PAGE_OFFSET);
1287 		if (end >= __pa(PAGE_OFFSET) + memory_limit)
1288 			end = __pa(PAGE_OFFSET) + memory_limit;
1289 
1290 		create_linear_mapping_range(start, end, 0, NULL);
1291 	}
1292 
1293 #ifdef CONFIG_STRICT_KERNEL_RWX
1294 	create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0, NULL);
1295 	create_linear_mapping_range(krodata_start, krodata_start + krodata_size, 0, NULL);
1296 
1297 	memblock_clear_nomap(ktext_start,  ktext_size);
1298 	memblock_clear_nomap(krodata_start, krodata_size);
1299 #endif
1300 
1301 #ifdef CONFIG_KFENCE
1302 	create_linear_mapping_range(kfence_pool, kfence_pool + KFENCE_POOL_SIZE, PAGE_SIZE, NULL);
1303 
1304 	memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1305 #endif
1306 }
1307 
1308 static void __init setup_vm_final(void)
1309 {
1310 	/* Setup swapper PGD for fixmap */
1311 #if !defined(CONFIG_64BIT)
1312 	/*
1313 	 * In 32-bit, the device tree lies in a pgd entry, so it must be copied
1314 	 * directly in swapper_pg_dir in addition to the pgd entry that points
1315 	 * to fixmap_pte.
1316 	 */
1317 	unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT));
1318 
1319 	set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]);
1320 #endif
1321 	create_pgd_mapping(swapper_pg_dir, FIXADDR_START,
1322 			   __pa_symbol(fixmap_pgd_next),
1323 			   PGDIR_SIZE, PAGE_TABLE);
1324 
1325 	/* Map the linear mapping */
1326 	create_linear_mapping_page_table();
1327 
1328 	/* Map the kernel */
1329 	if (IS_ENABLED(CONFIG_64BIT))
1330 		create_kernel_page_table(swapper_pg_dir, false);
1331 
1332 #ifdef CONFIG_KASAN
1333 	kasan_swapper_init();
1334 #endif
1335 
1336 	/* Clear fixmap PTE and PMD mappings */
1337 	clear_fixmap(FIX_PTE);
1338 	clear_fixmap(FIX_PMD);
1339 	clear_fixmap(FIX_PUD);
1340 	clear_fixmap(FIX_P4D);
1341 
1342 	/* Move to swapper page table */
1343 	csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode);
1344 	local_flush_tlb_all();
1345 
1346 	pt_ops_set_late();
1347 }
1348 #else
1349 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1350 {
1351 	dtb_early_va = (void *)dtb_pa;
1352 	dtb_early_pa = dtb_pa;
1353 }
1354 
1355 static inline void setup_vm_final(void)
1356 {
1357 }
1358 #endif /* CONFIG_MMU */
1359 
1360 /*
1361  * reserve_crashkernel() - reserves memory for crash kernel
1362  *
1363  * This function reserves memory area given in "crashkernel=" kernel command
1364  * line parameter. The memory reserved is used by dump capture kernel when
1365  * primary kernel is crashing.
1366  */
1367 static void __init arch_reserve_crashkernel(void)
1368 {
1369 	unsigned long long low_size = 0;
1370 	unsigned long long crash_base, crash_size;
1371 	char *cmdline = boot_command_line;
1372 	bool high = false;
1373 	int ret;
1374 
1375 	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
1376 		return;
1377 
1378 	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
1379 				&crash_size, &crash_base,
1380 				&low_size, &high);
1381 	if (ret)
1382 		return;
1383 
1384 	reserve_crashkernel_generic(cmdline, crash_size, crash_base,
1385 				    low_size, high);
1386 }
1387 
1388 void __init paging_init(void)
1389 {
1390 	setup_bootmem();
1391 	setup_vm_final();
1392 
1393 	/* Depend on that Linear Mapping is ready */
1394 	memblock_allow_resize();
1395 }
1396 
1397 void __init misc_mem_init(void)
1398 {
1399 	early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
1400 	arch_numa_init();
1401 	sparse_init();
1402 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1403 	/* The entire VMEMMAP region has been populated. Flush TLB for this region */
1404 	local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END);
1405 #endif
1406 	zone_sizes_init();
1407 	arch_reserve_crashkernel();
1408 	memblock_dump_all();
1409 }
1410 
1411 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1412 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1413 			       unsigned long addr, unsigned long next)
1414 {
1415 	pmd_set_huge(pmd, virt_to_phys(p), PAGE_KERNEL);
1416 }
1417 
1418 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1419 				unsigned long addr, unsigned long next)
1420 {
1421 	vmemmap_verify((pte_t *)pmdp, node, addr, next);
1422 	return 1;
1423 }
1424 
1425 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1426 			       struct vmem_altmap *altmap)
1427 {
1428 	/*
1429 	 * Note that SPARSEMEM_VMEMMAP is only selected for rv64 and that we
1430 	 * can't use hugepage mappings for 2-level page table because in case of
1431 	 * memory hotplug, we are not able to update all the page tables with
1432 	 * the new PMDs.
1433 	 */
1434 	return vmemmap_populate_hugepages(start, end, node, altmap);
1435 }
1436 #endif
1437 
1438 #if defined(CONFIG_MMU) && defined(CONFIG_64BIT)
1439 /*
1440  * Pre-allocates page-table pages for a specific area in the kernel
1441  * page-table. Only the level which needs to be synchronized between
1442  * all page-tables is allocated because the synchronization can be
1443  * expensive.
1444  */
1445 static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end,
1446 					       const char *area)
1447 {
1448 	unsigned long addr;
1449 	const char *lvl;
1450 
1451 	for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1452 		pgd_t *pgd = pgd_offset_k(addr);
1453 		p4d_t *p4d;
1454 		pud_t *pud;
1455 		pmd_t *pmd;
1456 
1457 		lvl = "p4d";
1458 		p4d = p4d_alloc(&init_mm, pgd, addr);
1459 		if (!p4d)
1460 			goto failed;
1461 
1462 		if (pgtable_l5_enabled)
1463 			continue;
1464 
1465 		lvl = "pud";
1466 		pud = pud_alloc(&init_mm, p4d, addr);
1467 		if (!pud)
1468 			goto failed;
1469 
1470 		if (pgtable_l4_enabled)
1471 			continue;
1472 
1473 		lvl = "pmd";
1474 		pmd = pmd_alloc(&init_mm, pud, addr);
1475 		if (!pmd)
1476 			goto failed;
1477 	}
1478 	return;
1479 
1480 failed:
1481 	/*
1482 	 * The pages have to be there now or they will be missing in
1483 	 * process page-tables later.
1484 	 */
1485 	panic("Failed to pre-allocate %s pages for %s area\n", lvl, area);
1486 }
1487 
1488 #define PAGE_END KASAN_SHADOW_START
1489 
1490 void __init pgtable_cache_init(void)
1491 {
1492 	preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc");
1493 	if (IS_ENABLED(CONFIG_MODULES))
1494 		preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules");
1495 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
1496 		preallocate_pgd_pages_range(VMEMMAP_START, VMEMMAP_END, "vmemmap");
1497 		preallocate_pgd_pages_range(PAGE_OFFSET, PAGE_END, "direct map");
1498 		if (IS_ENABLED(CONFIG_KASAN))
1499 			preallocate_pgd_pages_range(KASAN_SHADOW_START, KASAN_SHADOW_END, "kasan");
1500 	}
1501 }
1502 #endif
1503 
1504 #ifdef CONFIG_EXECMEM
1505 #ifdef CONFIG_MMU
1506 static struct execmem_info execmem_info __ro_after_init;
1507 
1508 struct execmem_info __init *execmem_arch_setup(void)
1509 {
1510 	execmem_info = (struct execmem_info){
1511 		.ranges = {
1512 			[EXECMEM_DEFAULT] = {
1513 				.start	= MODULES_VADDR,
1514 				.end	= MODULES_END,
1515 				.pgprot	= PAGE_KERNEL,
1516 				.alignment = 1,
1517 			},
1518 			[EXECMEM_KPROBES] = {
1519 				.start	= VMALLOC_START,
1520 				.end	= VMALLOC_END,
1521 				.pgprot	= PAGE_KERNEL_READ_EXEC,
1522 				.alignment = 1,
1523 			},
1524 			[EXECMEM_BPF] = {
1525 				.start	= BPF_JIT_REGION_START,
1526 				.end	= BPF_JIT_REGION_END,
1527 				.pgprot	= PAGE_KERNEL,
1528 				.alignment = PAGE_SIZE,
1529 			},
1530 		},
1531 	};
1532 
1533 	return &execmem_info;
1534 }
1535 #endif /* CONFIG_MMU */
1536 #endif /* CONFIG_EXECMEM */
1537 
1538 #ifdef CONFIG_MEMORY_HOTPLUG
1539 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1540 {
1541 	struct page *page = pmd_page(*pmd);
1542 	struct ptdesc *ptdesc = page_ptdesc(page);
1543 	pte_t *pte;
1544 	int i;
1545 
1546 	for (i = 0; i < PTRS_PER_PTE; i++) {
1547 		pte = pte_start + i;
1548 		if (!pte_none(*pte))
1549 			return;
1550 	}
1551 
1552 	pagetable_pte_dtor(ptdesc);
1553 	if (PageReserved(page))
1554 		free_reserved_page(page);
1555 	else
1556 		pagetable_free(ptdesc);
1557 	pmd_clear(pmd);
1558 }
1559 
1560 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1561 {
1562 	struct page *page = pud_page(*pud);
1563 	struct ptdesc *ptdesc = page_ptdesc(page);
1564 	pmd_t *pmd;
1565 	int i;
1566 
1567 	for (i = 0; i < PTRS_PER_PMD; i++) {
1568 		pmd = pmd_start + i;
1569 		if (!pmd_none(*pmd))
1570 			return;
1571 	}
1572 
1573 	pagetable_pmd_dtor(ptdesc);
1574 	if (PageReserved(page))
1575 		free_reserved_page(page);
1576 	else
1577 		pagetable_free(ptdesc);
1578 	pud_clear(pud);
1579 }
1580 
1581 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1582 {
1583 	struct page *page = p4d_page(*p4d);
1584 	pud_t *pud;
1585 	int i;
1586 
1587 	for (i = 0; i < PTRS_PER_PUD; i++) {
1588 		pud = pud_start + i;
1589 		if (!pud_none(*pud))
1590 			return;
1591 	}
1592 
1593 	if (PageReserved(page))
1594 		free_reserved_page(page);
1595 	else
1596 		free_pages((unsigned long)page_address(page), 0);
1597 	p4d_clear(p4d);
1598 }
1599 
1600 static void __meminit free_vmemmap_storage(struct page *page, size_t size,
1601 					   struct vmem_altmap *altmap)
1602 {
1603 	int order = get_order(size);
1604 
1605 	if (altmap) {
1606 		vmem_altmap_free(altmap, size >> PAGE_SHIFT);
1607 		return;
1608 	}
1609 
1610 	if (PageReserved(page)) {
1611 		unsigned int nr_pages = 1 << order;
1612 
1613 		while (nr_pages--)
1614 			free_reserved_page(page++);
1615 		return;
1616 	}
1617 
1618 	free_pages((unsigned long)page_address(page), order);
1619 }
1620 
1621 static void __meminit remove_pte_mapping(pte_t *pte_base, unsigned long addr, unsigned long end,
1622 					 bool is_vmemmap, struct vmem_altmap *altmap)
1623 {
1624 	unsigned long next;
1625 	pte_t *ptep, pte;
1626 
1627 	for (; addr < end; addr = next) {
1628 		next = (addr + PAGE_SIZE) & PAGE_MASK;
1629 		if (next > end)
1630 			next = end;
1631 
1632 		ptep = pte_base + pte_index(addr);
1633 		pte = ptep_get(ptep);
1634 		if (!pte_present(*ptep))
1635 			continue;
1636 
1637 		pte_clear(&init_mm, addr, ptep);
1638 		if (is_vmemmap)
1639 			free_vmemmap_storage(pte_page(pte), PAGE_SIZE, altmap);
1640 	}
1641 }
1642 
1643 static void __meminit remove_pmd_mapping(pmd_t *pmd_base, unsigned long addr, unsigned long end,
1644 					 bool is_vmemmap, struct vmem_altmap *altmap)
1645 {
1646 	unsigned long next;
1647 	pte_t *pte_base;
1648 	pmd_t *pmdp, pmd;
1649 
1650 	for (; addr < end; addr = next) {
1651 		next = pmd_addr_end(addr, end);
1652 		pmdp = pmd_base + pmd_index(addr);
1653 		pmd = pmdp_get(pmdp);
1654 		if (!pmd_present(pmd))
1655 			continue;
1656 
1657 		if (pmd_leaf(pmd)) {
1658 			pmd_clear(pmdp);
1659 			if (is_vmemmap)
1660 				free_vmemmap_storage(pmd_page(pmd), PMD_SIZE, altmap);
1661 			continue;
1662 		}
1663 
1664 		pte_base = (pte_t *)pmd_page_vaddr(*pmdp);
1665 		remove_pte_mapping(pte_base, addr, next, is_vmemmap, altmap);
1666 		free_pte_table(pte_base, pmdp);
1667 	}
1668 }
1669 
1670 static void __meminit remove_pud_mapping(pud_t *pud_base, unsigned long addr, unsigned long end,
1671 					 bool is_vmemmap, struct vmem_altmap *altmap)
1672 {
1673 	unsigned long next;
1674 	pud_t *pudp, pud;
1675 	pmd_t *pmd_base;
1676 
1677 	for (; addr < end; addr = next) {
1678 		next = pud_addr_end(addr, end);
1679 		pudp = pud_base + pud_index(addr);
1680 		pud = pudp_get(pudp);
1681 		if (!pud_present(pud))
1682 			continue;
1683 
1684 		if (pud_leaf(pud)) {
1685 			if (pgtable_l4_enabled) {
1686 				pud_clear(pudp);
1687 				if (is_vmemmap)
1688 					free_vmemmap_storage(pud_page(pud), PUD_SIZE, altmap);
1689 			}
1690 			continue;
1691 		}
1692 
1693 		pmd_base = pmd_offset(pudp, 0);
1694 		remove_pmd_mapping(pmd_base, addr, next, is_vmemmap, altmap);
1695 
1696 		if (pgtable_l4_enabled)
1697 			free_pmd_table(pmd_base, pudp);
1698 	}
1699 }
1700 
1701 static void __meminit remove_p4d_mapping(p4d_t *p4d_base, unsigned long addr, unsigned long end,
1702 					 bool is_vmemmap, struct vmem_altmap *altmap)
1703 {
1704 	unsigned long next;
1705 	p4d_t *p4dp, p4d;
1706 	pud_t *pud_base;
1707 
1708 	for (; addr < end; addr = next) {
1709 		next = p4d_addr_end(addr, end);
1710 		p4dp = p4d_base + p4d_index(addr);
1711 		p4d = p4dp_get(p4dp);
1712 		if (!p4d_present(p4d))
1713 			continue;
1714 
1715 		if (p4d_leaf(p4d)) {
1716 			if (pgtable_l5_enabled) {
1717 				p4d_clear(p4dp);
1718 				if (is_vmemmap)
1719 					free_vmemmap_storage(p4d_page(p4d), P4D_SIZE, altmap);
1720 			}
1721 			continue;
1722 		}
1723 
1724 		pud_base = pud_offset(p4dp, 0);
1725 		remove_pud_mapping(pud_base, addr, next, is_vmemmap, altmap);
1726 
1727 		if (pgtable_l5_enabled)
1728 			free_pud_table(pud_base, p4dp);
1729 	}
1730 }
1731 
1732 static void __meminit remove_pgd_mapping(unsigned long va, unsigned long end, bool is_vmemmap,
1733 					 struct vmem_altmap *altmap)
1734 {
1735 	unsigned long addr, next;
1736 	p4d_t *p4d_base;
1737 	pgd_t *pgd;
1738 
1739 	for (addr = va; addr < end; addr = next) {
1740 		next = pgd_addr_end(addr, end);
1741 		pgd = pgd_offset_k(addr);
1742 
1743 		if (!pgd_present(*pgd))
1744 			continue;
1745 
1746 		if (pgd_leaf(*pgd))
1747 			continue;
1748 
1749 		p4d_base = p4d_offset(pgd, 0);
1750 		remove_p4d_mapping(p4d_base, addr, next, is_vmemmap, altmap);
1751 	}
1752 
1753 	flush_tlb_all();
1754 }
1755 
1756 static void __meminit remove_linear_mapping(phys_addr_t start, u64 size)
1757 {
1758 	unsigned long va = (unsigned long)__va(start);
1759 	unsigned long end = (unsigned long)__va(start + size);
1760 
1761 	remove_pgd_mapping(va, end, false, NULL);
1762 }
1763 
1764 struct range arch_get_mappable_range(void)
1765 {
1766 	struct range mhp_range;
1767 
1768 	mhp_range.start = __pa(PAGE_OFFSET);
1769 	mhp_range.end = __pa(PAGE_END - 1);
1770 	return mhp_range;
1771 }
1772 
1773 int __ref arch_add_memory(int nid, u64 start, u64 size, struct mhp_params *params)
1774 {
1775 	int ret = 0;
1776 
1777 	create_linear_mapping_range(start, start + size, 0, &params->pgprot);
1778 	ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT, params);
1779 	if (ret) {
1780 		remove_linear_mapping(start, size);
1781 		goto out;
1782 	}
1783 
1784 	max_pfn = PFN_UP(start + size);
1785 	max_low_pfn = max_pfn;
1786 
1787  out:
1788 	flush_tlb_all();
1789 	return ret;
1790 }
1791 
1792 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1793 {
1794 	__remove_pages(start >> PAGE_SHIFT, size >> PAGE_SHIFT, altmap);
1795 	remove_linear_mapping(start, size);
1796 	flush_tlb_all();
1797 }
1798 
1799 void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap)
1800 {
1801 	remove_pgd_mapping(start, end, true, altmap);
1802 }
1803 #endif /* CONFIG_MEMORY_HOTPLUG */
1804