1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 5 * Copyright (C) 2020 FORTH-ICS/CARV 6 * Nick Kossifidis <mick@ics.forth.gr> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/memblock.h> 12 #include <linux/initrd.h> 13 #include <linux/swap.h> 14 #include <linux/swiotlb.h> 15 #include <linux/sizes.h> 16 #include <linux/of_fdt.h> 17 #include <linux/of_reserved_mem.h> 18 #include <linux/libfdt.h> 19 #include <linux/set_memory.h> 20 #include <linux/dma-map-ops.h> 21 #include <linux/crash_dump.h> 22 #include <linux/hugetlb.h> 23 24 #include <asm/fixmap.h> 25 #include <asm/tlbflush.h> 26 #include <asm/sections.h> 27 #include <asm/soc.h> 28 #include <asm/io.h> 29 #include <asm/ptdump.h> 30 #include <asm/numa.h> 31 32 #include "../kernel/head.h" 33 34 struct kernel_mapping kernel_map __ro_after_init; 35 EXPORT_SYMBOL(kernel_map); 36 #ifdef CONFIG_XIP_KERNEL 37 #define kernel_map (*(struct kernel_mapping *)XIP_FIXUP(&kernel_map)) 38 #endif 39 40 #ifdef CONFIG_64BIT 41 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39; 42 #else 43 u64 satp_mode __ro_after_init = SATP_MODE_32; 44 #endif 45 EXPORT_SYMBOL(satp_mode); 46 47 bool pgtable_l4_enabled = IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_XIP_KERNEL); 48 bool pgtable_l5_enabled = IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_XIP_KERNEL); 49 EXPORT_SYMBOL(pgtable_l4_enabled); 50 EXPORT_SYMBOL(pgtable_l5_enabled); 51 52 phys_addr_t phys_ram_base __ro_after_init; 53 EXPORT_SYMBOL(phys_ram_base); 54 55 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 56 __page_aligned_bss; 57 EXPORT_SYMBOL(empty_zero_page); 58 59 extern char _start[]; 60 #define DTB_EARLY_BASE_VA PGDIR_SIZE 61 void *_dtb_early_va __initdata; 62 uintptr_t _dtb_early_pa __initdata; 63 64 static phys_addr_t dma32_phys_limit __initdata; 65 66 static void __init zone_sizes_init(void) 67 { 68 unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, }; 69 70 #ifdef CONFIG_ZONE_DMA32 71 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); 72 #endif 73 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 74 75 free_area_init(max_zone_pfns); 76 } 77 78 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM) 79 80 #define LOG2_SZ_1K ilog2(SZ_1K) 81 #define LOG2_SZ_1M ilog2(SZ_1M) 82 #define LOG2_SZ_1G ilog2(SZ_1G) 83 #define LOG2_SZ_1T ilog2(SZ_1T) 84 85 static inline void print_mlk(char *name, unsigned long b, unsigned long t) 86 { 87 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t, 88 (((t) - (b)) >> LOG2_SZ_1K)); 89 } 90 91 static inline void print_mlm(char *name, unsigned long b, unsigned long t) 92 { 93 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t, 94 (((t) - (b)) >> LOG2_SZ_1M)); 95 } 96 97 static inline void print_mlg(char *name, unsigned long b, unsigned long t) 98 { 99 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld GB)\n", name, b, t, 100 (((t) - (b)) >> LOG2_SZ_1G)); 101 } 102 103 #ifdef CONFIG_64BIT 104 static inline void print_mlt(char *name, unsigned long b, unsigned long t) 105 { 106 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld TB)\n", name, b, t, 107 (((t) - (b)) >> LOG2_SZ_1T)); 108 } 109 #else 110 #define print_mlt(n, b, t) do {} while (0) 111 #endif 112 113 static inline void print_ml(char *name, unsigned long b, unsigned long t) 114 { 115 unsigned long diff = t - b; 116 117 if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10) 118 print_mlt(name, b, t); 119 else if ((diff >> LOG2_SZ_1G) >= 10) 120 print_mlg(name, b, t); 121 else if ((diff >> LOG2_SZ_1M) >= 10) 122 print_mlm(name, b, t); 123 else 124 print_mlk(name, b, t); 125 } 126 127 static void __init print_vm_layout(void) 128 { 129 pr_notice("Virtual kernel memory layout:\n"); 130 print_ml("fixmap", (unsigned long)FIXADDR_START, 131 (unsigned long)FIXADDR_TOP); 132 print_ml("pci io", (unsigned long)PCI_IO_START, 133 (unsigned long)PCI_IO_END); 134 print_ml("vmemmap", (unsigned long)VMEMMAP_START, 135 (unsigned long)VMEMMAP_END); 136 print_ml("vmalloc", (unsigned long)VMALLOC_START, 137 (unsigned long)VMALLOC_END); 138 #ifdef CONFIG_64BIT 139 print_ml("modules", (unsigned long)MODULES_VADDR, 140 (unsigned long)MODULES_END); 141 #endif 142 print_ml("lowmem", (unsigned long)PAGE_OFFSET, 143 (unsigned long)high_memory); 144 if (IS_ENABLED(CONFIG_64BIT)) { 145 #ifdef CONFIG_KASAN 146 print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END); 147 #endif 148 149 print_ml("kernel", (unsigned long)KERNEL_LINK_ADDR, 150 (unsigned long)ADDRESS_SPACE_END); 151 } 152 } 153 #else 154 static void print_vm_layout(void) { } 155 #endif /* CONFIG_DEBUG_VM */ 156 157 void __init mem_init(void) 158 { 159 #ifdef CONFIG_FLATMEM 160 BUG_ON(!mem_map); 161 #endif /* CONFIG_FLATMEM */ 162 163 swiotlb_init(max_pfn > PFN_DOWN(dma32_phys_limit), SWIOTLB_VERBOSE); 164 memblock_free_all(); 165 166 print_vm_layout(); 167 } 168 169 /* Limit the memory size via mem. */ 170 static phys_addr_t memory_limit; 171 172 static int __init early_mem(char *p) 173 { 174 u64 size; 175 176 if (!p) 177 return 1; 178 179 size = memparse(p, &p) & PAGE_MASK; 180 memory_limit = min_t(u64, size, memory_limit); 181 182 pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20); 183 184 return 0; 185 } 186 early_param("mem", early_mem); 187 188 static void __init setup_bootmem(void) 189 { 190 phys_addr_t vmlinux_end = __pa_symbol(&_end); 191 phys_addr_t max_mapped_addr; 192 phys_addr_t phys_ram_end, vmlinux_start; 193 194 if (IS_ENABLED(CONFIG_XIP_KERNEL)) 195 vmlinux_start = __pa_symbol(&_sdata); 196 else 197 vmlinux_start = __pa_symbol(&_start); 198 199 memblock_enforce_memory_limit(memory_limit); 200 201 /* 202 * Make sure we align the reservation on PMD_SIZE since we will 203 * map the kernel in the linear mapping as read-only: we do not want 204 * any allocation to happen between _end and the next pmd aligned page. 205 */ 206 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX)) 207 vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK; 208 /* 209 * Reserve from the start of the kernel to the end of the kernel 210 */ 211 memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start); 212 213 phys_ram_end = memblock_end_of_DRAM(); 214 if (!IS_ENABLED(CONFIG_XIP_KERNEL)) 215 phys_ram_base = memblock_start_of_DRAM(); 216 /* 217 * memblock allocator is not aware of the fact that last 4K bytes of 218 * the addressable memory can not be mapped because of IS_ERR_VALUE 219 * macro. Make sure that last 4k bytes are not usable by memblock 220 * if end of dram is equal to maximum addressable memory. For 64-bit 221 * kernel, this problem can't happen here as the end of the virtual 222 * address space is occupied by the kernel mapping then this check must 223 * be done as soon as the kernel mapping base address is determined. 224 */ 225 if (!IS_ENABLED(CONFIG_64BIT)) { 226 max_mapped_addr = __pa(~(ulong)0); 227 if (max_mapped_addr == (phys_ram_end - 1)) 228 memblock_set_current_limit(max_mapped_addr - 4096); 229 } 230 231 min_low_pfn = PFN_UP(phys_ram_base); 232 max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end); 233 high_memory = (void *)(__va(PFN_PHYS(max_low_pfn))); 234 235 dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn)); 236 set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET); 237 238 reserve_initrd_mem(); 239 /* 240 * If DTB is built in, no need to reserve its memblock. 241 * Otherwise, do reserve it but avoid using 242 * early_init_fdt_reserve_self() since __pa() does 243 * not work for DTB pointers that are fixmap addresses 244 */ 245 if (!IS_ENABLED(CONFIG_BUILTIN_DTB)) { 246 /* 247 * In case the DTB is not located in a memory region we won't 248 * be able to locate it later on via the linear mapping and 249 * get a segfault when accessing it via __va(dtb_early_pa). 250 * To avoid this situation copy DTB to a memory region. 251 * Note that memblock_phys_alloc will also reserve DTB region. 252 */ 253 if (!memblock_is_memory(dtb_early_pa)) { 254 size_t fdt_size = fdt_totalsize(dtb_early_va); 255 phys_addr_t new_dtb_early_pa = memblock_phys_alloc(fdt_size, PAGE_SIZE); 256 void *new_dtb_early_va = early_memremap(new_dtb_early_pa, fdt_size); 257 258 memcpy(new_dtb_early_va, dtb_early_va, fdt_size); 259 early_memunmap(new_dtb_early_va, fdt_size); 260 _dtb_early_pa = new_dtb_early_pa; 261 } else 262 memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va)); 263 } 264 265 early_init_fdt_scan_reserved_mem(); 266 dma_contiguous_reserve(dma32_phys_limit); 267 if (IS_ENABLED(CONFIG_64BIT)) 268 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 269 memblock_allow_resize(); 270 } 271 272 #ifdef CONFIG_MMU 273 struct pt_alloc_ops pt_ops __initdata; 274 275 unsigned long riscv_pfn_base __ro_after_init; 276 EXPORT_SYMBOL(riscv_pfn_base); 277 278 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss; 279 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss; 280 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss; 281 282 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE); 283 static p4d_t __maybe_unused early_dtb_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE); 284 static pud_t __maybe_unused early_dtb_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE); 285 static pmd_t __maybe_unused early_dtb_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE); 286 287 #ifdef CONFIG_XIP_KERNEL 288 #define pt_ops (*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops)) 289 #define riscv_pfn_base (*(unsigned long *)XIP_FIXUP(&riscv_pfn_base)) 290 #define trampoline_pg_dir ((pgd_t *)XIP_FIXUP(trampoline_pg_dir)) 291 #define fixmap_pte ((pte_t *)XIP_FIXUP(fixmap_pte)) 292 #define early_pg_dir ((pgd_t *)XIP_FIXUP(early_pg_dir)) 293 #endif /* CONFIG_XIP_KERNEL */ 294 295 static const pgprot_t protection_map[16] = { 296 [VM_NONE] = PAGE_NONE, 297 [VM_READ] = PAGE_READ, 298 [VM_WRITE] = PAGE_COPY, 299 [VM_WRITE | VM_READ] = PAGE_COPY, 300 [VM_EXEC] = PAGE_EXEC, 301 [VM_EXEC | VM_READ] = PAGE_READ_EXEC, 302 [VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC, 303 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_READ_EXEC, 304 [VM_SHARED] = PAGE_NONE, 305 [VM_SHARED | VM_READ] = PAGE_READ, 306 [VM_SHARED | VM_WRITE] = PAGE_SHARED, 307 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED, 308 [VM_SHARED | VM_EXEC] = PAGE_EXEC, 309 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READ_EXEC, 310 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC, 311 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC 312 }; 313 DECLARE_VM_GET_PAGE_PROT 314 315 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) 316 { 317 unsigned long addr = __fix_to_virt(idx); 318 pte_t *ptep; 319 320 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses); 321 322 ptep = &fixmap_pte[pte_index(addr)]; 323 324 if (pgprot_val(prot)) 325 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); 326 else 327 pte_clear(&init_mm, addr, ptep); 328 local_flush_tlb_page(addr); 329 } 330 331 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa) 332 { 333 return (pte_t *)((uintptr_t)pa); 334 } 335 336 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa) 337 { 338 clear_fixmap(FIX_PTE); 339 return (pte_t *)set_fixmap_offset(FIX_PTE, pa); 340 } 341 342 static inline pte_t *__init get_pte_virt_late(phys_addr_t pa) 343 { 344 return (pte_t *) __va(pa); 345 } 346 347 static inline phys_addr_t __init alloc_pte_early(uintptr_t va) 348 { 349 /* 350 * We only create PMD or PGD early mappings so we 351 * should never reach here with MMU disabled. 352 */ 353 BUG(); 354 } 355 356 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va) 357 { 358 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 359 } 360 361 static phys_addr_t __init alloc_pte_late(uintptr_t va) 362 { 363 unsigned long vaddr; 364 365 vaddr = __get_free_page(GFP_KERNEL); 366 BUG_ON(!vaddr || !pgtable_pte_page_ctor(virt_to_page(vaddr))); 367 368 return __pa(vaddr); 369 } 370 371 static void __init create_pte_mapping(pte_t *ptep, 372 uintptr_t va, phys_addr_t pa, 373 phys_addr_t sz, pgprot_t prot) 374 { 375 uintptr_t pte_idx = pte_index(va); 376 377 BUG_ON(sz != PAGE_SIZE); 378 379 if (pte_none(ptep[pte_idx])) 380 ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot); 381 } 382 383 #ifndef __PAGETABLE_PMD_FOLDED 384 385 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss; 386 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss; 387 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE); 388 389 #ifdef CONFIG_XIP_KERNEL 390 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd)) 391 #define fixmap_pmd ((pmd_t *)XIP_FIXUP(fixmap_pmd)) 392 #define early_pmd ((pmd_t *)XIP_FIXUP(early_pmd)) 393 #endif /* CONFIG_XIP_KERNEL */ 394 395 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss; 396 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss; 397 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE); 398 399 #ifdef CONFIG_XIP_KERNEL 400 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d)) 401 #define fixmap_p4d ((p4d_t *)XIP_FIXUP(fixmap_p4d)) 402 #define early_p4d ((p4d_t *)XIP_FIXUP(early_p4d)) 403 #endif /* CONFIG_XIP_KERNEL */ 404 405 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss; 406 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss; 407 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE); 408 409 #ifdef CONFIG_XIP_KERNEL 410 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud)) 411 #define fixmap_pud ((pud_t *)XIP_FIXUP(fixmap_pud)) 412 #define early_pud ((pud_t *)XIP_FIXUP(early_pud)) 413 #endif /* CONFIG_XIP_KERNEL */ 414 415 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa) 416 { 417 /* Before MMU is enabled */ 418 return (pmd_t *)((uintptr_t)pa); 419 } 420 421 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa) 422 { 423 clear_fixmap(FIX_PMD); 424 return (pmd_t *)set_fixmap_offset(FIX_PMD, pa); 425 } 426 427 static pmd_t *__init get_pmd_virt_late(phys_addr_t pa) 428 { 429 return (pmd_t *) __va(pa); 430 } 431 432 static phys_addr_t __init alloc_pmd_early(uintptr_t va) 433 { 434 BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT); 435 436 return (uintptr_t)early_pmd; 437 } 438 439 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va) 440 { 441 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 442 } 443 444 static phys_addr_t __init alloc_pmd_late(uintptr_t va) 445 { 446 unsigned long vaddr; 447 448 vaddr = __get_free_page(GFP_KERNEL); 449 BUG_ON(!vaddr || !pgtable_pmd_page_ctor(virt_to_page(vaddr))); 450 451 return __pa(vaddr); 452 } 453 454 static void __init create_pmd_mapping(pmd_t *pmdp, 455 uintptr_t va, phys_addr_t pa, 456 phys_addr_t sz, pgprot_t prot) 457 { 458 pte_t *ptep; 459 phys_addr_t pte_phys; 460 uintptr_t pmd_idx = pmd_index(va); 461 462 if (sz == PMD_SIZE) { 463 if (pmd_none(pmdp[pmd_idx])) 464 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot); 465 return; 466 } 467 468 if (pmd_none(pmdp[pmd_idx])) { 469 pte_phys = pt_ops.alloc_pte(va); 470 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE); 471 ptep = pt_ops.get_pte_virt(pte_phys); 472 memset(ptep, 0, PAGE_SIZE); 473 } else { 474 pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx])); 475 ptep = pt_ops.get_pte_virt(pte_phys); 476 } 477 478 create_pte_mapping(ptep, va, pa, sz, prot); 479 } 480 481 static pud_t *__init get_pud_virt_early(phys_addr_t pa) 482 { 483 return (pud_t *)((uintptr_t)pa); 484 } 485 486 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa) 487 { 488 clear_fixmap(FIX_PUD); 489 return (pud_t *)set_fixmap_offset(FIX_PUD, pa); 490 } 491 492 static pud_t *__init get_pud_virt_late(phys_addr_t pa) 493 { 494 return (pud_t *)__va(pa); 495 } 496 497 static phys_addr_t __init alloc_pud_early(uintptr_t va) 498 { 499 /* Only one PUD is available for early mapping */ 500 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); 501 502 return (uintptr_t)early_pud; 503 } 504 505 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va) 506 { 507 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 508 } 509 510 static phys_addr_t alloc_pud_late(uintptr_t va) 511 { 512 unsigned long vaddr; 513 514 vaddr = __get_free_page(GFP_KERNEL); 515 BUG_ON(!vaddr); 516 return __pa(vaddr); 517 } 518 519 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa) 520 { 521 return (p4d_t *)((uintptr_t)pa); 522 } 523 524 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa) 525 { 526 clear_fixmap(FIX_P4D); 527 return (p4d_t *)set_fixmap_offset(FIX_P4D, pa); 528 } 529 530 static p4d_t *__init get_p4d_virt_late(phys_addr_t pa) 531 { 532 return (p4d_t *)__va(pa); 533 } 534 535 static phys_addr_t __init alloc_p4d_early(uintptr_t va) 536 { 537 /* Only one P4D is available for early mapping */ 538 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); 539 540 return (uintptr_t)early_p4d; 541 } 542 543 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va) 544 { 545 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 546 } 547 548 static phys_addr_t alloc_p4d_late(uintptr_t va) 549 { 550 unsigned long vaddr; 551 552 vaddr = __get_free_page(GFP_KERNEL); 553 BUG_ON(!vaddr); 554 return __pa(vaddr); 555 } 556 557 static void __init create_pud_mapping(pud_t *pudp, 558 uintptr_t va, phys_addr_t pa, 559 phys_addr_t sz, pgprot_t prot) 560 { 561 pmd_t *nextp; 562 phys_addr_t next_phys; 563 uintptr_t pud_index = pud_index(va); 564 565 if (sz == PUD_SIZE) { 566 if (pud_val(pudp[pud_index]) == 0) 567 pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot); 568 return; 569 } 570 571 if (pud_val(pudp[pud_index]) == 0) { 572 next_phys = pt_ops.alloc_pmd(va); 573 pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE); 574 nextp = pt_ops.get_pmd_virt(next_phys); 575 memset(nextp, 0, PAGE_SIZE); 576 } else { 577 next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index])); 578 nextp = pt_ops.get_pmd_virt(next_phys); 579 } 580 581 create_pmd_mapping(nextp, va, pa, sz, prot); 582 } 583 584 static void __init create_p4d_mapping(p4d_t *p4dp, 585 uintptr_t va, phys_addr_t pa, 586 phys_addr_t sz, pgprot_t prot) 587 { 588 pud_t *nextp; 589 phys_addr_t next_phys; 590 uintptr_t p4d_index = p4d_index(va); 591 592 if (sz == P4D_SIZE) { 593 if (p4d_val(p4dp[p4d_index]) == 0) 594 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot); 595 return; 596 } 597 598 if (p4d_val(p4dp[p4d_index]) == 0) { 599 next_phys = pt_ops.alloc_pud(va); 600 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE); 601 nextp = pt_ops.get_pud_virt(next_phys); 602 memset(nextp, 0, PAGE_SIZE); 603 } else { 604 next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index])); 605 nextp = pt_ops.get_pud_virt(next_phys); 606 } 607 608 create_pud_mapping(nextp, va, pa, sz, prot); 609 } 610 611 #define pgd_next_t p4d_t 612 #define alloc_pgd_next(__va) (pgtable_l5_enabled ? \ 613 pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ? \ 614 pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va))) 615 #define get_pgd_next_virt(__pa) (pgtable_l5_enabled ? \ 616 pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ? \ 617 pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa))) 618 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ 619 (pgtable_l5_enabled ? \ 620 create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \ 621 (pgtable_l4_enabled ? \ 622 create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) : \ 623 create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot))) 624 #define fixmap_pgd_next (pgtable_l5_enabled ? \ 625 (uintptr_t)fixmap_p4d : (pgtable_l4_enabled ? \ 626 (uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd)) 627 #define trampoline_pgd_next (pgtable_l5_enabled ? \ 628 (uintptr_t)trampoline_p4d : (pgtable_l4_enabled ? \ 629 (uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd)) 630 #define early_dtb_pgd_next (pgtable_l5_enabled ? \ 631 (uintptr_t)early_dtb_p4d : (pgtable_l4_enabled ? \ 632 (uintptr_t)early_dtb_pud : (uintptr_t)early_dtb_pmd)) 633 #else 634 #define pgd_next_t pte_t 635 #define alloc_pgd_next(__va) pt_ops.alloc_pte(__va) 636 #define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa) 637 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ 638 create_pte_mapping(__nextp, __va, __pa, __sz, __prot) 639 #define fixmap_pgd_next ((uintptr_t)fixmap_pte) 640 #define early_dtb_pgd_next ((uintptr_t)early_dtb_pmd) 641 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 642 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 643 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 644 #endif /* __PAGETABLE_PMD_FOLDED */ 645 646 void __init create_pgd_mapping(pgd_t *pgdp, 647 uintptr_t va, phys_addr_t pa, 648 phys_addr_t sz, pgprot_t prot) 649 { 650 pgd_next_t *nextp; 651 phys_addr_t next_phys; 652 uintptr_t pgd_idx = pgd_index(va); 653 654 if (sz == PGDIR_SIZE) { 655 if (pgd_val(pgdp[pgd_idx]) == 0) 656 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot); 657 return; 658 } 659 660 if (pgd_val(pgdp[pgd_idx]) == 0) { 661 next_phys = alloc_pgd_next(va); 662 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE); 663 nextp = get_pgd_next_virt(next_phys); 664 memset(nextp, 0, PAGE_SIZE); 665 } else { 666 next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx])); 667 nextp = get_pgd_next_virt(next_phys); 668 } 669 670 create_pgd_next_mapping(nextp, va, pa, sz, prot); 671 } 672 673 static uintptr_t __init best_map_size(phys_addr_t base, phys_addr_t size) 674 { 675 /* Upgrade to PMD_SIZE mappings whenever possible */ 676 if ((base & (PMD_SIZE - 1)) || (size & (PMD_SIZE - 1))) 677 return PAGE_SIZE; 678 679 return PMD_SIZE; 680 } 681 682 #ifdef CONFIG_XIP_KERNEL 683 #define phys_ram_base (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base)) 684 extern char _xiprom[], _exiprom[], __data_loc; 685 686 /* called from head.S with MMU off */ 687 asmlinkage void __init __copy_data(void) 688 { 689 void *from = (void *)(&__data_loc); 690 void *to = (void *)CONFIG_PHYS_RAM_BASE; 691 size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata)); 692 693 memcpy(to, from, sz); 694 } 695 #endif 696 697 #ifdef CONFIG_STRICT_KERNEL_RWX 698 static __init pgprot_t pgprot_from_va(uintptr_t va) 699 { 700 if (is_va_kernel_text(va)) 701 return PAGE_KERNEL_READ_EXEC; 702 703 /* 704 * In 64-bit kernel, the kernel mapping is outside the linear mapping so 705 * we must protect its linear mapping alias from being executed and 706 * written. 707 * And rodata section is marked readonly in mark_rodata_ro. 708 */ 709 if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va)) 710 return PAGE_KERNEL_READ; 711 712 return PAGE_KERNEL; 713 } 714 715 void mark_rodata_ro(void) 716 { 717 set_kernel_memory(__start_rodata, _data, set_memory_ro); 718 if (IS_ENABLED(CONFIG_64BIT)) 719 set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data), 720 set_memory_ro); 721 722 debug_checkwx(); 723 } 724 #else 725 static __init pgprot_t pgprot_from_va(uintptr_t va) 726 { 727 if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va)) 728 return PAGE_KERNEL; 729 730 return PAGE_KERNEL_EXEC; 731 } 732 #endif /* CONFIG_STRICT_KERNEL_RWX */ 733 734 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) 735 static void __init disable_pgtable_l5(void) 736 { 737 pgtable_l5_enabled = false; 738 kernel_map.page_offset = PAGE_OFFSET_L4; 739 satp_mode = SATP_MODE_48; 740 } 741 742 static void __init disable_pgtable_l4(void) 743 { 744 pgtable_l4_enabled = false; 745 kernel_map.page_offset = PAGE_OFFSET_L3; 746 satp_mode = SATP_MODE_39; 747 } 748 749 /* 750 * There is a simple way to determine if 4-level is supported by the 751 * underlying hardware: establish 1:1 mapping in 4-level page table mode 752 * then read SATP to see if the configuration was taken into account 753 * meaning sv48 is supported. 754 */ 755 static __init void set_satp_mode(void) 756 { 757 u64 identity_satp, hw_satp; 758 uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK; 759 bool check_l4 = false; 760 761 create_p4d_mapping(early_p4d, 762 set_satp_mode_pmd, (uintptr_t)early_pud, 763 P4D_SIZE, PAGE_TABLE); 764 create_pud_mapping(early_pud, 765 set_satp_mode_pmd, (uintptr_t)early_pmd, 766 PUD_SIZE, PAGE_TABLE); 767 /* Handle the case where set_satp_mode straddles 2 PMDs */ 768 create_pmd_mapping(early_pmd, 769 set_satp_mode_pmd, set_satp_mode_pmd, 770 PMD_SIZE, PAGE_KERNEL_EXEC); 771 create_pmd_mapping(early_pmd, 772 set_satp_mode_pmd + PMD_SIZE, 773 set_satp_mode_pmd + PMD_SIZE, 774 PMD_SIZE, PAGE_KERNEL_EXEC); 775 retry: 776 create_pgd_mapping(early_pg_dir, 777 set_satp_mode_pmd, 778 check_l4 ? (uintptr_t)early_pud : (uintptr_t)early_p4d, 779 PGDIR_SIZE, PAGE_TABLE); 780 781 identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode; 782 783 local_flush_tlb_all(); 784 csr_write(CSR_SATP, identity_satp); 785 hw_satp = csr_swap(CSR_SATP, 0ULL); 786 local_flush_tlb_all(); 787 788 if (hw_satp != identity_satp) { 789 if (!check_l4) { 790 disable_pgtable_l5(); 791 check_l4 = true; 792 memset(early_pg_dir, 0, PAGE_SIZE); 793 goto retry; 794 } 795 disable_pgtable_l4(); 796 } 797 798 memset(early_pg_dir, 0, PAGE_SIZE); 799 memset(early_p4d, 0, PAGE_SIZE); 800 memset(early_pud, 0, PAGE_SIZE); 801 memset(early_pmd, 0, PAGE_SIZE); 802 } 803 #endif 804 805 /* 806 * setup_vm() is called from head.S with MMU-off. 807 * 808 * Following requirements should be honoured for setup_vm() to work 809 * correctly: 810 * 1) It should use PC-relative addressing for accessing kernel symbols. 811 * To achieve this we always use GCC cmodel=medany. 812 * 2) The compiler instrumentation for FTRACE will not work for setup_vm() 813 * so disable compiler instrumentation when FTRACE is enabled. 814 * 815 * Currently, the above requirements are honoured by using custom CFLAGS 816 * for init.o in mm/Makefile. 817 */ 818 819 #ifndef __riscv_cmodel_medany 820 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing." 821 #endif 822 823 #ifdef CONFIG_XIP_KERNEL 824 static void __init create_kernel_page_table(pgd_t *pgdir, 825 __always_unused bool early) 826 { 827 uintptr_t va, end_va; 828 829 /* Map the flash resident part */ 830 end_va = kernel_map.virt_addr + kernel_map.xiprom_sz; 831 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) 832 create_pgd_mapping(pgdir, va, 833 kernel_map.xiprom + (va - kernel_map.virt_addr), 834 PMD_SIZE, PAGE_KERNEL_EXEC); 835 836 /* Map the data in RAM */ 837 end_va = kernel_map.virt_addr + XIP_OFFSET + kernel_map.size; 838 for (va = kernel_map.virt_addr + XIP_OFFSET; va < end_va; va += PMD_SIZE) 839 create_pgd_mapping(pgdir, va, 840 kernel_map.phys_addr + (va - (kernel_map.virt_addr + XIP_OFFSET)), 841 PMD_SIZE, PAGE_KERNEL); 842 } 843 #else 844 static void __init create_kernel_page_table(pgd_t *pgdir, bool early) 845 { 846 uintptr_t va, end_va; 847 848 end_va = kernel_map.virt_addr + kernel_map.size; 849 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) 850 create_pgd_mapping(pgdir, va, 851 kernel_map.phys_addr + (va - kernel_map.virt_addr), 852 PMD_SIZE, 853 early ? 854 PAGE_KERNEL_EXEC : pgprot_from_va(va)); 855 } 856 #endif 857 858 /* 859 * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel, 860 * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR 861 * entry. 862 */ 863 static void __init create_fdt_early_page_table(pgd_t *pgdir, uintptr_t dtb_pa) 864 { 865 #ifndef CONFIG_BUILTIN_DTB 866 uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1); 867 868 create_pgd_mapping(early_pg_dir, DTB_EARLY_BASE_VA, 869 IS_ENABLED(CONFIG_64BIT) ? early_dtb_pgd_next : pa, 870 PGDIR_SIZE, 871 IS_ENABLED(CONFIG_64BIT) ? PAGE_TABLE : PAGE_KERNEL); 872 873 if (pgtable_l5_enabled) 874 create_p4d_mapping(early_dtb_p4d, DTB_EARLY_BASE_VA, 875 (uintptr_t)early_dtb_pud, P4D_SIZE, PAGE_TABLE); 876 877 if (pgtable_l4_enabled) 878 create_pud_mapping(early_dtb_pud, DTB_EARLY_BASE_VA, 879 (uintptr_t)early_dtb_pmd, PUD_SIZE, PAGE_TABLE); 880 881 if (IS_ENABLED(CONFIG_64BIT)) { 882 create_pmd_mapping(early_dtb_pmd, DTB_EARLY_BASE_VA, 883 pa, PMD_SIZE, PAGE_KERNEL); 884 create_pmd_mapping(early_dtb_pmd, DTB_EARLY_BASE_VA + PMD_SIZE, 885 pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL); 886 } 887 888 dtb_early_va = (void *)DTB_EARLY_BASE_VA + (dtb_pa & (PMD_SIZE - 1)); 889 #else 890 /* 891 * For 64-bit kernel, __va can't be used since it would return a linear 892 * mapping address whereas dtb_early_va will be used before 893 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the 894 * kernel is mapped in the linear mapping, that makes no difference. 895 */ 896 dtb_early_va = kernel_mapping_pa_to_va(XIP_FIXUP(dtb_pa)); 897 #endif 898 899 dtb_early_pa = dtb_pa; 900 } 901 902 /* 903 * MMU is not enabled, the page tables are allocated directly using 904 * early_pmd/pud/p4d and the address returned is the physical one. 905 */ 906 static void __init pt_ops_set_early(void) 907 { 908 pt_ops.alloc_pte = alloc_pte_early; 909 pt_ops.get_pte_virt = get_pte_virt_early; 910 #ifndef __PAGETABLE_PMD_FOLDED 911 pt_ops.alloc_pmd = alloc_pmd_early; 912 pt_ops.get_pmd_virt = get_pmd_virt_early; 913 pt_ops.alloc_pud = alloc_pud_early; 914 pt_ops.get_pud_virt = get_pud_virt_early; 915 pt_ops.alloc_p4d = alloc_p4d_early; 916 pt_ops.get_p4d_virt = get_p4d_virt_early; 917 #endif 918 } 919 920 /* 921 * MMU is enabled but page table setup is not complete yet. 922 * fixmap page table alloc functions must be used as a means to temporarily 923 * map the allocated physical pages since the linear mapping does not exist yet. 924 * 925 * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va, 926 * but it will be used as described above. 927 */ 928 static void __init pt_ops_set_fixmap(void) 929 { 930 pt_ops.alloc_pte = kernel_mapping_pa_to_va((uintptr_t)alloc_pte_fixmap); 931 pt_ops.get_pte_virt = kernel_mapping_pa_to_va((uintptr_t)get_pte_virt_fixmap); 932 #ifndef __PAGETABLE_PMD_FOLDED 933 pt_ops.alloc_pmd = kernel_mapping_pa_to_va((uintptr_t)alloc_pmd_fixmap); 934 pt_ops.get_pmd_virt = kernel_mapping_pa_to_va((uintptr_t)get_pmd_virt_fixmap); 935 pt_ops.alloc_pud = kernel_mapping_pa_to_va((uintptr_t)alloc_pud_fixmap); 936 pt_ops.get_pud_virt = kernel_mapping_pa_to_va((uintptr_t)get_pud_virt_fixmap); 937 pt_ops.alloc_p4d = kernel_mapping_pa_to_va((uintptr_t)alloc_p4d_fixmap); 938 pt_ops.get_p4d_virt = kernel_mapping_pa_to_va((uintptr_t)get_p4d_virt_fixmap); 939 #endif 940 } 941 942 /* 943 * MMU is enabled and page table setup is complete, so from now, we can use 944 * generic page allocation functions to setup page table. 945 */ 946 static void __init pt_ops_set_late(void) 947 { 948 pt_ops.alloc_pte = alloc_pte_late; 949 pt_ops.get_pte_virt = get_pte_virt_late; 950 #ifndef __PAGETABLE_PMD_FOLDED 951 pt_ops.alloc_pmd = alloc_pmd_late; 952 pt_ops.get_pmd_virt = get_pmd_virt_late; 953 pt_ops.alloc_pud = alloc_pud_late; 954 pt_ops.get_pud_virt = get_pud_virt_late; 955 pt_ops.alloc_p4d = alloc_p4d_late; 956 pt_ops.get_p4d_virt = get_p4d_virt_late; 957 #endif 958 } 959 960 asmlinkage void __init setup_vm(uintptr_t dtb_pa) 961 { 962 pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd; 963 964 kernel_map.virt_addr = KERNEL_LINK_ADDR; 965 kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL); 966 967 #ifdef CONFIG_XIP_KERNEL 968 kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR; 969 kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom); 970 971 phys_ram_base = CONFIG_PHYS_RAM_BASE; 972 kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE; 973 kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_sdata); 974 975 kernel_map.va_kernel_xip_pa_offset = kernel_map.virt_addr - kernel_map.xiprom; 976 #else 977 kernel_map.phys_addr = (uintptr_t)(&_start); 978 kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr; 979 #endif 980 981 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) 982 set_satp_mode(); 983 #endif 984 985 kernel_map.va_pa_offset = PAGE_OFFSET - kernel_map.phys_addr; 986 kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr; 987 988 riscv_pfn_base = PFN_DOWN(kernel_map.phys_addr); 989 990 /* 991 * The default maximal physical memory size is KERN_VIRT_SIZE for 32-bit 992 * kernel, whereas for 64-bit kernel, the end of the virtual address 993 * space is occupied by the modules/BPF/kernel mappings which reduces 994 * the available size of the linear mapping. 995 */ 996 memory_limit = KERN_VIRT_SIZE - (IS_ENABLED(CONFIG_64BIT) ? SZ_4G : 0); 997 998 /* Sanity check alignment and size */ 999 BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0); 1000 BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0); 1001 1002 #ifdef CONFIG_64BIT 1003 /* 1004 * The last 4K bytes of the addressable memory can not be mapped because 1005 * of IS_ERR_VALUE macro. 1006 */ 1007 BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K); 1008 #endif 1009 1010 apply_early_boot_alternatives(); 1011 pt_ops_set_early(); 1012 1013 /* Setup early PGD for fixmap */ 1014 create_pgd_mapping(early_pg_dir, FIXADDR_START, 1015 fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE); 1016 1017 #ifndef __PAGETABLE_PMD_FOLDED 1018 /* Setup fixmap P4D and PUD */ 1019 if (pgtable_l5_enabled) 1020 create_p4d_mapping(fixmap_p4d, FIXADDR_START, 1021 (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE); 1022 /* Setup fixmap PUD and PMD */ 1023 if (pgtable_l4_enabled) 1024 create_pud_mapping(fixmap_pud, FIXADDR_START, 1025 (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE); 1026 create_pmd_mapping(fixmap_pmd, FIXADDR_START, 1027 (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE); 1028 /* Setup trampoline PGD and PMD */ 1029 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, 1030 trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE); 1031 if (pgtable_l5_enabled) 1032 create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr, 1033 (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE); 1034 if (pgtable_l4_enabled) 1035 create_pud_mapping(trampoline_pud, kernel_map.virt_addr, 1036 (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE); 1037 #ifdef CONFIG_XIP_KERNEL 1038 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, 1039 kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC); 1040 #else 1041 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, 1042 kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC); 1043 #endif 1044 #else 1045 /* Setup trampoline PGD */ 1046 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, 1047 kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC); 1048 #endif 1049 1050 /* 1051 * Setup early PGD covering entire kernel which will allow 1052 * us to reach paging_init(). We map all memory banks later 1053 * in setup_vm_final() below. 1054 */ 1055 create_kernel_page_table(early_pg_dir, true); 1056 1057 /* Setup early mapping for FDT early scan */ 1058 create_fdt_early_page_table(early_pg_dir, dtb_pa); 1059 1060 /* 1061 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap 1062 * range can not span multiple pmds. 1063 */ 1064 BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 1065 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 1066 1067 #ifndef __PAGETABLE_PMD_FOLDED 1068 /* 1069 * Early ioremap fixmap is already created as it lies within first 2MB 1070 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END 1071 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn 1072 * the user if not. 1073 */ 1074 fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))]; 1075 fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))]; 1076 if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) { 1077 WARN_ON(1); 1078 pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n", 1079 pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd)); 1080 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 1081 fix_to_virt(FIX_BTMAP_BEGIN)); 1082 pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n", 1083 fix_to_virt(FIX_BTMAP_END)); 1084 1085 pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 1086 pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN); 1087 } 1088 #endif 1089 1090 pt_ops_set_fixmap(); 1091 } 1092 1093 static void __init setup_vm_final(void) 1094 { 1095 uintptr_t va, map_size; 1096 phys_addr_t pa, start, end; 1097 u64 i; 1098 1099 /* Setup swapper PGD for fixmap */ 1100 create_pgd_mapping(swapper_pg_dir, FIXADDR_START, 1101 __pa_symbol(fixmap_pgd_next), 1102 PGDIR_SIZE, PAGE_TABLE); 1103 1104 /* Map all memory banks in the linear mapping */ 1105 for_each_mem_range(i, &start, &end) { 1106 if (start >= end) 1107 break; 1108 if (start <= __pa(PAGE_OFFSET) && 1109 __pa(PAGE_OFFSET) < end) 1110 start = __pa(PAGE_OFFSET); 1111 if (end >= __pa(PAGE_OFFSET) + memory_limit) 1112 end = __pa(PAGE_OFFSET) + memory_limit; 1113 1114 map_size = best_map_size(start, end - start); 1115 for (pa = start; pa < end; pa += map_size) { 1116 va = (uintptr_t)__va(pa); 1117 1118 create_pgd_mapping(swapper_pg_dir, va, pa, map_size, 1119 pgprot_from_va(va)); 1120 } 1121 } 1122 1123 /* Map the kernel */ 1124 if (IS_ENABLED(CONFIG_64BIT)) 1125 create_kernel_page_table(swapper_pg_dir, false); 1126 1127 #ifdef CONFIG_KASAN 1128 kasan_swapper_init(); 1129 #endif 1130 1131 /* Clear fixmap PTE and PMD mappings */ 1132 clear_fixmap(FIX_PTE); 1133 clear_fixmap(FIX_PMD); 1134 clear_fixmap(FIX_PUD); 1135 clear_fixmap(FIX_P4D); 1136 1137 /* Move to swapper page table */ 1138 csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode); 1139 local_flush_tlb_all(); 1140 1141 pt_ops_set_late(); 1142 } 1143 #else 1144 asmlinkage void __init setup_vm(uintptr_t dtb_pa) 1145 { 1146 dtb_early_va = (void *)dtb_pa; 1147 dtb_early_pa = dtb_pa; 1148 } 1149 1150 static inline void setup_vm_final(void) 1151 { 1152 } 1153 #endif /* CONFIG_MMU */ 1154 1155 /* 1156 * reserve_crashkernel() - reserves memory for crash kernel 1157 * 1158 * This function reserves memory area given in "crashkernel=" kernel command 1159 * line parameter. The memory reserved is used by dump capture kernel when 1160 * primary kernel is crashing. 1161 */ 1162 static void __init reserve_crashkernel(void) 1163 { 1164 unsigned long long crash_base = 0; 1165 unsigned long long crash_size = 0; 1166 unsigned long search_start = memblock_start_of_DRAM(); 1167 unsigned long search_end = memblock_end_of_DRAM(); 1168 1169 int ret = 0; 1170 1171 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 1172 return; 1173 /* 1174 * Don't reserve a region for a crash kernel on a crash kernel 1175 * since it doesn't make much sense and we have limited memory 1176 * resources. 1177 */ 1178 if (is_kdump_kernel()) { 1179 pr_info("crashkernel: ignoring reservation request\n"); 1180 return; 1181 } 1182 1183 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 1184 &crash_size, &crash_base); 1185 if (ret || !crash_size) 1186 return; 1187 1188 crash_size = PAGE_ALIGN(crash_size); 1189 1190 if (crash_base) { 1191 search_start = crash_base; 1192 search_end = crash_base + crash_size; 1193 } 1194 1195 /* 1196 * Current riscv boot protocol requires 2MB alignment for 1197 * RV64 and 4MB alignment for RV32 (hugepage size) 1198 * 1199 * Try to alloc from 32bit addressible physical memory so that 1200 * swiotlb can work on the crash kernel. 1201 */ 1202 crash_base = memblock_phys_alloc_range(crash_size, PMD_SIZE, 1203 search_start, 1204 min(search_end, (unsigned long) SZ_4G)); 1205 if (crash_base == 0) { 1206 /* Try again without restricting region to 32bit addressible memory */ 1207 crash_base = memblock_phys_alloc_range(crash_size, PMD_SIZE, 1208 search_start, search_end); 1209 if (crash_base == 0) { 1210 pr_warn("crashkernel: couldn't allocate %lldKB\n", 1211 crash_size >> 10); 1212 return; 1213 } 1214 } 1215 1216 pr_info("crashkernel: reserved 0x%016llx - 0x%016llx (%lld MB)\n", 1217 crash_base, crash_base + crash_size, crash_size >> 20); 1218 1219 crashk_res.start = crash_base; 1220 crashk_res.end = crash_base + crash_size - 1; 1221 } 1222 1223 void __init paging_init(void) 1224 { 1225 setup_bootmem(); 1226 setup_vm_final(); 1227 } 1228 1229 void __init misc_mem_init(void) 1230 { 1231 early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT); 1232 arch_numa_init(); 1233 sparse_init(); 1234 zone_sizes_init(); 1235 reserve_crashkernel(); 1236 memblock_dump_all(); 1237 } 1238 1239 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1240 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, 1241 struct vmem_altmap *altmap) 1242 { 1243 return vmemmap_populate_basepages(start, end, node, NULL); 1244 } 1245 #endif 1246