1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 5 * Copyright (C) 2020 FORTH-ICS/CARV 6 * Nick Kossifidis <mick@ics.forth.gr> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/memblock.h> 12 #include <linux/initrd.h> 13 #include <linux/swap.h> 14 #include <linux/swiotlb.h> 15 #include <linux/sizes.h> 16 #include <linux/of_fdt.h> 17 #include <linux/of_reserved_mem.h> 18 #include <linux/libfdt.h> 19 #include <linux/set_memory.h> 20 #include <linux/dma-map-ops.h> 21 #include <linux/crash_dump.h> 22 #include <linux/hugetlb.h> 23 #ifdef CONFIG_RELOCATABLE 24 #include <linux/elf.h> 25 #endif 26 #include <linux/kfence.h> 27 #include <linux/execmem.h> 28 29 #include <asm/fixmap.h> 30 #include <asm/io.h> 31 #include <asm/kasan.h> 32 #include <asm/numa.h> 33 #include <asm/pgtable.h> 34 #include <asm/sections.h> 35 #include <asm/soc.h> 36 #include <asm/sparsemem.h> 37 #include <asm/tlbflush.h> 38 39 #include "../kernel/head.h" 40 41 u64 new_vmalloc[NR_CPUS / sizeof(u64) + 1]; 42 43 struct kernel_mapping kernel_map __ro_after_init; 44 EXPORT_SYMBOL(kernel_map); 45 #ifdef CONFIG_XIP_KERNEL 46 #define kernel_map (*(struct kernel_mapping *)XIP_FIXUP(&kernel_map)) 47 #endif 48 49 #ifdef CONFIG_64BIT 50 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39; 51 #else 52 u64 satp_mode __ro_after_init = SATP_MODE_32; 53 #endif 54 EXPORT_SYMBOL(satp_mode); 55 56 #ifdef CONFIG_64BIT 57 bool pgtable_l4_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL); 58 bool pgtable_l5_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL); 59 EXPORT_SYMBOL(pgtable_l4_enabled); 60 EXPORT_SYMBOL(pgtable_l5_enabled); 61 #endif 62 63 phys_addr_t phys_ram_base __ro_after_init; 64 EXPORT_SYMBOL(phys_ram_base); 65 66 #ifdef CONFIG_SPARSEMEM_VMEMMAP 67 #define VMEMMAP_ADDR_ALIGN (1ULL << SECTION_SIZE_BITS) 68 69 unsigned long vmemmap_start_pfn __ro_after_init; 70 EXPORT_SYMBOL(vmemmap_start_pfn); 71 #endif 72 73 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 74 __page_aligned_bss; 75 EXPORT_SYMBOL(empty_zero_page); 76 77 extern char _start[]; 78 void *_dtb_early_va __initdata; 79 uintptr_t _dtb_early_pa __initdata; 80 81 phys_addr_t dma32_phys_limit __initdata; 82 83 static void __init zone_sizes_init(void) 84 { 85 unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, }; 86 87 #ifdef CONFIG_ZONE_DMA32 88 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); 89 #endif 90 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 91 92 free_area_init(max_zone_pfns); 93 } 94 95 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM) 96 97 #define LOG2_SZ_1K ilog2(SZ_1K) 98 #define LOG2_SZ_1M ilog2(SZ_1M) 99 #define LOG2_SZ_1G ilog2(SZ_1G) 100 #define LOG2_SZ_1T ilog2(SZ_1T) 101 102 static inline void print_mlk(char *name, unsigned long b, unsigned long t) 103 { 104 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t, 105 (((t) - (b)) >> LOG2_SZ_1K)); 106 } 107 108 static inline void print_mlm(char *name, unsigned long b, unsigned long t) 109 { 110 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t, 111 (((t) - (b)) >> LOG2_SZ_1M)); 112 } 113 114 static inline void print_mlg(char *name, unsigned long b, unsigned long t) 115 { 116 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld GB)\n", name, b, t, 117 (((t) - (b)) >> LOG2_SZ_1G)); 118 } 119 120 #ifdef CONFIG_64BIT 121 static inline void print_mlt(char *name, unsigned long b, unsigned long t) 122 { 123 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld TB)\n", name, b, t, 124 (((t) - (b)) >> LOG2_SZ_1T)); 125 } 126 #else 127 #define print_mlt(n, b, t) do {} while (0) 128 #endif 129 130 static inline void print_ml(char *name, unsigned long b, unsigned long t) 131 { 132 unsigned long diff = t - b; 133 134 if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10) 135 print_mlt(name, b, t); 136 else if ((diff >> LOG2_SZ_1G) >= 10) 137 print_mlg(name, b, t); 138 else if ((diff >> LOG2_SZ_1M) >= 10) 139 print_mlm(name, b, t); 140 else 141 print_mlk(name, b, t); 142 } 143 144 static void __init print_vm_layout(void) 145 { 146 pr_notice("Virtual kernel memory layout:\n"); 147 print_ml("fixmap", (unsigned long)FIXADDR_START, 148 (unsigned long)FIXADDR_TOP); 149 print_ml("pci io", (unsigned long)PCI_IO_START, 150 (unsigned long)PCI_IO_END); 151 print_ml("vmemmap", (unsigned long)VMEMMAP_START, 152 (unsigned long)VMEMMAP_END); 153 print_ml("vmalloc", (unsigned long)VMALLOC_START, 154 (unsigned long)VMALLOC_END); 155 #ifdef CONFIG_64BIT 156 print_ml("modules", (unsigned long)MODULES_VADDR, 157 (unsigned long)MODULES_END); 158 #endif 159 print_ml("lowmem", (unsigned long)PAGE_OFFSET, 160 (unsigned long)high_memory); 161 if (IS_ENABLED(CONFIG_64BIT)) { 162 #ifdef CONFIG_KASAN 163 print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END); 164 #endif 165 166 print_ml("kernel", (unsigned long)kernel_map.virt_addr, 167 (unsigned long)ADDRESS_SPACE_END); 168 } 169 } 170 #else 171 static void print_vm_layout(void) { } 172 #endif /* CONFIG_DEBUG_VM */ 173 174 void __init mem_init(void) 175 { 176 bool swiotlb = max_pfn > PFN_DOWN(dma32_phys_limit); 177 #ifdef CONFIG_FLATMEM 178 BUG_ON(!mem_map); 179 #endif /* CONFIG_FLATMEM */ 180 181 if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb && 182 dma_cache_alignment != 1) { 183 /* 184 * If no bouncing needed for ZONE_DMA, allocate 1MB swiotlb 185 * buffer per 1GB of RAM for kmalloc() bouncing on 186 * non-coherent platforms. 187 */ 188 unsigned long size = 189 DIV_ROUND_UP(memblock_phys_mem_size(), 1024); 190 swiotlb_adjust_size(min(swiotlb_size_or_default(), size)); 191 swiotlb = true; 192 } 193 194 swiotlb_init(swiotlb, SWIOTLB_VERBOSE); 195 memblock_free_all(); 196 197 print_vm_layout(); 198 } 199 200 /* Limit the memory size via mem. */ 201 static phys_addr_t memory_limit; 202 #ifdef CONFIG_XIP_KERNEL 203 #define memory_limit (*(phys_addr_t *)XIP_FIXUP(&memory_limit)) 204 #endif /* CONFIG_XIP_KERNEL */ 205 206 static int __init early_mem(char *p) 207 { 208 u64 size; 209 210 if (!p) 211 return 1; 212 213 size = memparse(p, &p) & PAGE_MASK; 214 memory_limit = min_t(u64, size, memory_limit); 215 216 pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20); 217 218 return 0; 219 } 220 early_param("mem", early_mem); 221 222 static void __init setup_bootmem(void) 223 { 224 phys_addr_t vmlinux_end = __pa_symbol(&_end); 225 phys_addr_t max_mapped_addr; 226 phys_addr_t phys_ram_end, vmlinux_start; 227 228 if (IS_ENABLED(CONFIG_XIP_KERNEL)) 229 vmlinux_start = __pa_symbol(&_sdata); 230 else 231 vmlinux_start = __pa_symbol(&_start); 232 233 memblock_enforce_memory_limit(memory_limit); 234 235 /* 236 * Make sure we align the reservation on PMD_SIZE since we will 237 * map the kernel in the linear mapping as read-only: we do not want 238 * any allocation to happen between _end and the next pmd aligned page. 239 */ 240 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX)) 241 vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK; 242 /* 243 * Reserve from the start of the kernel to the end of the kernel 244 */ 245 memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start); 246 247 /* 248 * Make sure we align the start of the memory on a PMD boundary so that 249 * at worst, we map the linear mapping with PMD mappings. 250 */ 251 if (!IS_ENABLED(CONFIG_XIP_KERNEL)) { 252 phys_ram_base = memblock_start_of_DRAM() & PMD_MASK; 253 #ifdef CONFIG_SPARSEMEM_VMEMMAP 254 vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT; 255 #endif 256 } 257 258 /* 259 * In 64-bit, any use of __va/__pa before this point is wrong as we 260 * did not know the start of DRAM before. 261 */ 262 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) 263 kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base; 264 265 /* 266 * The size of the linear page mapping may restrict the amount of 267 * usable RAM. 268 */ 269 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) { 270 max_mapped_addr = __pa(PAGE_OFFSET) + KERN_VIRT_SIZE; 271 if (memblock_end_of_DRAM() > max_mapped_addr) { 272 memblock_cap_memory_range(phys_ram_base, 273 max_mapped_addr - phys_ram_base); 274 pr_warn("Physical memory overflows the linear mapping size: region above %pa removed", 275 &max_mapped_addr); 276 } 277 } 278 279 /* 280 * Reserve physical address space that would be mapped to virtual 281 * addresses greater than (void *)(-PAGE_SIZE) because: 282 * - This memory would overlap with ERR_PTR 283 * - This memory belongs to high memory, which is not supported 284 * 285 * This is not applicable to 64-bit kernel, because virtual addresses 286 * after (void *)(-PAGE_SIZE) are not linearly mapped: they are 287 * occupied by kernel mapping. Also it is unrealistic for high memory 288 * to exist on 64-bit platforms. 289 */ 290 if (!IS_ENABLED(CONFIG_64BIT)) { 291 max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE); 292 memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr); 293 } 294 295 phys_ram_end = memblock_end_of_DRAM(); 296 min_low_pfn = PFN_UP(phys_ram_base); 297 max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end); 298 high_memory = (void *)(__va(PFN_PHYS(max_low_pfn))); 299 300 dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn)); 301 set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET); 302 303 reserve_initrd_mem(); 304 305 /* 306 * No allocation should be done before reserving the memory as defined 307 * in the device tree, otherwise the allocation could end up in a 308 * reserved region. 309 */ 310 early_init_fdt_scan_reserved_mem(); 311 312 /* 313 * If DTB is built in, no need to reserve its memblock. 314 * Otherwise, do reserve it but avoid using 315 * early_init_fdt_reserve_self() since __pa() does 316 * not work for DTB pointers that are fixmap addresses 317 */ 318 if (!IS_ENABLED(CONFIG_BUILTIN_DTB)) 319 memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va)); 320 321 dma_contiguous_reserve(dma32_phys_limit); 322 if (IS_ENABLED(CONFIG_64BIT)) 323 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 324 } 325 326 #ifdef CONFIG_MMU 327 struct pt_alloc_ops pt_ops __meminitdata; 328 329 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss; 330 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss; 331 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss; 332 333 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE); 334 335 #ifdef CONFIG_XIP_KERNEL 336 #define pt_ops (*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops)) 337 #define trampoline_pg_dir ((pgd_t *)XIP_FIXUP(trampoline_pg_dir)) 338 #define fixmap_pte ((pte_t *)XIP_FIXUP(fixmap_pte)) 339 #define early_pg_dir ((pgd_t *)XIP_FIXUP(early_pg_dir)) 340 #endif /* CONFIG_XIP_KERNEL */ 341 342 static const pgprot_t protection_map[16] = { 343 [VM_NONE] = PAGE_NONE, 344 [VM_READ] = PAGE_READ, 345 [VM_WRITE] = PAGE_COPY, 346 [VM_WRITE | VM_READ] = PAGE_COPY, 347 [VM_EXEC] = PAGE_EXEC, 348 [VM_EXEC | VM_READ] = PAGE_READ_EXEC, 349 [VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC, 350 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_EXEC, 351 [VM_SHARED] = PAGE_NONE, 352 [VM_SHARED | VM_READ] = PAGE_READ, 353 [VM_SHARED | VM_WRITE] = PAGE_SHARED, 354 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED, 355 [VM_SHARED | VM_EXEC] = PAGE_EXEC, 356 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READ_EXEC, 357 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC, 358 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC 359 }; 360 DECLARE_VM_GET_PAGE_PROT 361 362 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) 363 { 364 unsigned long addr = __fix_to_virt(idx); 365 pte_t *ptep; 366 367 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses); 368 369 ptep = &fixmap_pte[pte_index(addr)]; 370 371 if (pgprot_val(prot)) 372 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); 373 else 374 pte_clear(&init_mm, addr, ptep); 375 local_flush_tlb_page(addr); 376 } 377 378 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa) 379 { 380 return (pte_t *)((uintptr_t)pa); 381 } 382 383 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa) 384 { 385 clear_fixmap(FIX_PTE); 386 return (pte_t *)set_fixmap_offset(FIX_PTE, pa); 387 } 388 389 static inline pte_t *__meminit get_pte_virt_late(phys_addr_t pa) 390 { 391 return (pte_t *) __va(pa); 392 } 393 394 static inline phys_addr_t __init alloc_pte_early(uintptr_t va) 395 { 396 /* 397 * We only create PMD or PGD early mappings so we 398 * should never reach here with MMU disabled. 399 */ 400 BUG(); 401 } 402 403 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va) 404 { 405 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 406 } 407 408 static phys_addr_t __meminit alloc_pte_late(uintptr_t va) 409 { 410 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0); 411 412 BUG_ON(!ptdesc || !pagetable_pte_ctor(ptdesc)); 413 return __pa((pte_t *)ptdesc_address(ptdesc)); 414 } 415 416 static void __meminit create_pte_mapping(pte_t *ptep, uintptr_t va, phys_addr_t pa, phys_addr_t sz, 417 pgprot_t prot) 418 { 419 uintptr_t pte_idx = pte_index(va); 420 421 BUG_ON(sz != PAGE_SIZE); 422 423 if (pte_none(ptep[pte_idx])) 424 ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot); 425 } 426 427 #ifndef __PAGETABLE_PMD_FOLDED 428 429 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss; 430 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss; 431 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE); 432 433 #ifdef CONFIG_XIP_KERNEL 434 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd)) 435 #define fixmap_pmd ((pmd_t *)XIP_FIXUP(fixmap_pmd)) 436 #define early_pmd ((pmd_t *)XIP_FIXUP(early_pmd)) 437 #endif /* CONFIG_XIP_KERNEL */ 438 439 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss; 440 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss; 441 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE); 442 443 #ifdef CONFIG_XIP_KERNEL 444 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d)) 445 #define fixmap_p4d ((p4d_t *)XIP_FIXUP(fixmap_p4d)) 446 #define early_p4d ((p4d_t *)XIP_FIXUP(early_p4d)) 447 #endif /* CONFIG_XIP_KERNEL */ 448 449 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss; 450 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss; 451 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE); 452 453 #ifdef CONFIG_XIP_KERNEL 454 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud)) 455 #define fixmap_pud ((pud_t *)XIP_FIXUP(fixmap_pud)) 456 #define early_pud ((pud_t *)XIP_FIXUP(early_pud)) 457 #endif /* CONFIG_XIP_KERNEL */ 458 459 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa) 460 { 461 /* Before MMU is enabled */ 462 return (pmd_t *)((uintptr_t)pa); 463 } 464 465 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa) 466 { 467 clear_fixmap(FIX_PMD); 468 return (pmd_t *)set_fixmap_offset(FIX_PMD, pa); 469 } 470 471 static pmd_t *__meminit get_pmd_virt_late(phys_addr_t pa) 472 { 473 return (pmd_t *) __va(pa); 474 } 475 476 static phys_addr_t __init alloc_pmd_early(uintptr_t va) 477 { 478 BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT); 479 480 return (uintptr_t)early_pmd; 481 } 482 483 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va) 484 { 485 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 486 } 487 488 static phys_addr_t __meminit alloc_pmd_late(uintptr_t va) 489 { 490 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0); 491 492 BUG_ON(!ptdesc || !pagetable_pmd_ctor(ptdesc)); 493 return __pa((pmd_t *)ptdesc_address(ptdesc)); 494 } 495 496 static void __meminit create_pmd_mapping(pmd_t *pmdp, 497 uintptr_t va, phys_addr_t pa, 498 phys_addr_t sz, pgprot_t prot) 499 { 500 pte_t *ptep; 501 phys_addr_t pte_phys; 502 uintptr_t pmd_idx = pmd_index(va); 503 504 if (sz == PMD_SIZE) { 505 if (pmd_none(pmdp[pmd_idx])) 506 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot); 507 return; 508 } 509 510 if (pmd_none(pmdp[pmd_idx])) { 511 pte_phys = pt_ops.alloc_pte(va); 512 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE); 513 ptep = pt_ops.get_pte_virt(pte_phys); 514 memset(ptep, 0, PAGE_SIZE); 515 } else { 516 pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx])); 517 ptep = pt_ops.get_pte_virt(pte_phys); 518 } 519 520 create_pte_mapping(ptep, va, pa, sz, prot); 521 } 522 523 static pud_t *__init get_pud_virt_early(phys_addr_t pa) 524 { 525 return (pud_t *)((uintptr_t)pa); 526 } 527 528 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa) 529 { 530 clear_fixmap(FIX_PUD); 531 return (pud_t *)set_fixmap_offset(FIX_PUD, pa); 532 } 533 534 static pud_t *__meminit get_pud_virt_late(phys_addr_t pa) 535 { 536 return (pud_t *)__va(pa); 537 } 538 539 static phys_addr_t __init alloc_pud_early(uintptr_t va) 540 { 541 /* Only one PUD is available for early mapping */ 542 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); 543 544 return (uintptr_t)early_pud; 545 } 546 547 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va) 548 { 549 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 550 } 551 552 static phys_addr_t __meminit alloc_pud_late(uintptr_t va) 553 { 554 unsigned long vaddr; 555 556 vaddr = __get_free_page(GFP_KERNEL); 557 BUG_ON(!vaddr); 558 return __pa(vaddr); 559 } 560 561 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa) 562 { 563 return (p4d_t *)((uintptr_t)pa); 564 } 565 566 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa) 567 { 568 clear_fixmap(FIX_P4D); 569 return (p4d_t *)set_fixmap_offset(FIX_P4D, pa); 570 } 571 572 static p4d_t *__meminit get_p4d_virt_late(phys_addr_t pa) 573 { 574 return (p4d_t *)__va(pa); 575 } 576 577 static phys_addr_t __init alloc_p4d_early(uintptr_t va) 578 { 579 /* Only one P4D is available for early mapping */ 580 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); 581 582 return (uintptr_t)early_p4d; 583 } 584 585 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va) 586 { 587 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 588 } 589 590 static phys_addr_t __meminit alloc_p4d_late(uintptr_t va) 591 { 592 unsigned long vaddr; 593 594 vaddr = __get_free_page(GFP_KERNEL); 595 BUG_ON(!vaddr); 596 return __pa(vaddr); 597 } 598 599 static void __meminit create_pud_mapping(pud_t *pudp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, 600 pgprot_t prot) 601 { 602 pmd_t *nextp; 603 phys_addr_t next_phys; 604 uintptr_t pud_index = pud_index(va); 605 606 if (sz == PUD_SIZE) { 607 if (pud_val(pudp[pud_index]) == 0) 608 pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot); 609 return; 610 } 611 612 if (pud_val(pudp[pud_index]) == 0) { 613 next_phys = pt_ops.alloc_pmd(va); 614 pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE); 615 nextp = pt_ops.get_pmd_virt(next_phys); 616 memset(nextp, 0, PAGE_SIZE); 617 } else { 618 next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index])); 619 nextp = pt_ops.get_pmd_virt(next_phys); 620 } 621 622 create_pmd_mapping(nextp, va, pa, sz, prot); 623 } 624 625 static void __meminit create_p4d_mapping(p4d_t *p4dp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, 626 pgprot_t prot) 627 { 628 pud_t *nextp; 629 phys_addr_t next_phys; 630 uintptr_t p4d_index = p4d_index(va); 631 632 if (sz == P4D_SIZE) { 633 if (p4d_val(p4dp[p4d_index]) == 0) 634 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot); 635 return; 636 } 637 638 if (p4d_val(p4dp[p4d_index]) == 0) { 639 next_phys = pt_ops.alloc_pud(va); 640 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE); 641 nextp = pt_ops.get_pud_virt(next_phys); 642 memset(nextp, 0, PAGE_SIZE); 643 } else { 644 next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index])); 645 nextp = pt_ops.get_pud_virt(next_phys); 646 } 647 648 create_pud_mapping(nextp, va, pa, sz, prot); 649 } 650 651 #define pgd_next_t p4d_t 652 #define alloc_pgd_next(__va) (pgtable_l5_enabled ? \ 653 pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ? \ 654 pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va))) 655 #define get_pgd_next_virt(__pa) (pgtable_l5_enabled ? \ 656 pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ? \ 657 pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa))) 658 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ 659 (pgtable_l5_enabled ? \ 660 create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \ 661 (pgtable_l4_enabled ? \ 662 create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) : \ 663 create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot))) 664 #define fixmap_pgd_next (pgtable_l5_enabled ? \ 665 (uintptr_t)fixmap_p4d : (pgtable_l4_enabled ? \ 666 (uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd)) 667 #define trampoline_pgd_next (pgtable_l5_enabled ? \ 668 (uintptr_t)trampoline_p4d : (pgtable_l4_enabled ? \ 669 (uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd)) 670 #else 671 #define pgd_next_t pte_t 672 #define alloc_pgd_next(__va) pt_ops.alloc_pte(__va) 673 #define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa) 674 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ 675 create_pte_mapping(__nextp, __va, __pa, __sz, __prot) 676 #define fixmap_pgd_next ((uintptr_t)fixmap_pte) 677 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 678 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 679 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 680 #endif /* __PAGETABLE_PMD_FOLDED */ 681 682 void __meminit create_pgd_mapping(pgd_t *pgdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, 683 pgprot_t prot) 684 { 685 pgd_next_t *nextp; 686 phys_addr_t next_phys; 687 uintptr_t pgd_idx = pgd_index(va); 688 689 if (sz == PGDIR_SIZE) { 690 if (pgd_val(pgdp[pgd_idx]) == 0) 691 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot); 692 return; 693 } 694 695 if (pgd_val(pgdp[pgd_idx]) == 0) { 696 next_phys = alloc_pgd_next(va); 697 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE); 698 nextp = get_pgd_next_virt(next_phys); 699 memset(nextp, 0, PAGE_SIZE); 700 } else { 701 next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx])); 702 nextp = get_pgd_next_virt(next_phys); 703 } 704 705 create_pgd_next_mapping(nextp, va, pa, sz, prot); 706 } 707 708 static uintptr_t __meminit best_map_size(phys_addr_t pa, uintptr_t va, phys_addr_t size) 709 { 710 if (debug_pagealloc_enabled()) 711 return PAGE_SIZE; 712 713 if (pgtable_l5_enabled && 714 !(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE) 715 return P4D_SIZE; 716 717 if (pgtable_l4_enabled && 718 !(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE) 719 return PUD_SIZE; 720 721 if (IS_ENABLED(CONFIG_64BIT) && 722 !(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE) 723 return PMD_SIZE; 724 725 return PAGE_SIZE; 726 } 727 728 #ifdef CONFIG_XIP_KERNEL 729 #define phys_ram_base (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base)) 730 extern char _xiprom[], _exiprom[], __data_loc; 731 732 /* called from head.S with MMU off */ 733 asmlinkage void __init __copy_data(void) 734 { 735 void *from = (void *)(&__data_loc); 736 void *to = (void *)CONFIG_PHYS_RAM_BASE; 737 size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata)); 738 739 memcpy(to, from, sz); 740 } 741 #endif 742 743 #ifdef CONFIG_STRICT_KERNEL_RWX 744 static __meminit pgprot_t pgprot_from_va(uintptr_t va) 745 { 746 if (is_va_kernel_text(va)) 747 return PAGE_KERNEL_READ_EXEC; 748 749 /* 750 * In 64-bit kernel, the kernel mapping is outside the linear mapping so 751 * we must protect its linear mapping alias from being executed and 752 * written. 753 * And rodata section is marked readonly in mark_rodata_ro. 754 */ 755 if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va)) 756 return PAGE_KERNEL_READ; 757 758 return PAGE_KERNEL; 759 } 760 761 void mark_rodata_ro(void) 762 { 763 set_kernel_memory(__start_rodata, _data, set_memory_ro); 764 if (IS_ENABLED(CONFIG_64BIT)) 765 set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data), 766 set_memory_ro); 767 } 768 #else 769 static __meminit pgprot_t pgprot_from_va(uintptr_t va) 770 { 771 if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va)) 772 return PAGE_KERNEL; 773 774 return PAGE_KERNEL_EXEC; 775 } 776 #endif /* CONFIG_STRICT_KERNEL_RWX */ 777 778 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) 779 u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa); 780 781 static void __init disable_pgtable_l5(void) 782 { 783 pgtable_l5_enabled = false; 784 kernel_map.page_offset = PAGE_OFFSET_L4; 785 satp_mode = SATP_MODE_48; 786 } 787 788 static void __init disable_pgtable_l4(void) 789 { 790 pgtable_l4_enabled = false; 791 kernel_map.page_offset = PAGE_OFFSET_L3; 792 satp_mode = SATP_MODE_39; 793 } 794 795 static int __init print_no4lvl(char *p) 796 { 797 pr_info("Disabled 4-level and 5-level paging"); 798 return 0; 799 } 800 early_param("no4lvl", print_no4lvl); 801 802 static int __init print_no5lvl(char *p) 803 { 804 pr_info("Disabled 5-level paging"); 805 return 0; 806 } 807 early_param("no5lvl", print_no5lvl); 808 809 static void __init set_mmap_rnd_bits_max(void) 810 { 811 mmap_rnd_bits_max = MMAP_VA_BITS - PAGE_SHIFT - 3; 812 } 813 814 /* 815 * There is a simple way to determine if 4-level is supported by the 816 * underlying hardware: establish 1:1 mapping in 4-level page table mode 817 * then read SATP to see if the configuration was taken into account 818 * meaning sv48 is supported. 819 */ 820 static __init void set_satp_mode(uintptr_t dtb_pa) 821 { 822 u64 identity_satp, hw_satp; 823 uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK; 824 u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa); 825 826 if (satp_mode_cmdline == SATP_MODE_57) { 827 disable_pgtable_l5(); 828 } else if (satp_mode_cmdline == SATP_MODE_48) { 829 disable_pgtable_l5(); 830 disable_pgtable_l4(); 831 return; 832 } 833 834 create_p4d_mapping(early_p4d, 835 set_satp_mode_pmd, (uintptr_t)early_pud, 836 P4D_SIZE, PAGE_TABLE); 837 create_pud_mapping(early_pud, 838 set_satp_mode_pmd, (uintptr_t)early_pmd, 839 PUD_SIZE, PAGE_TABLE); 840 /* Handle the case where set_satp_mode straddles 2 PMDs */ 841 create_pmd_mapping(early_pmd, 842 set_satp_mode_pmd, set_satp_mode_pmd, 843 PMD_SIZE, PAGE_KERNEL_EXEC); 844 create_pmd_mapping(early_pmd, 845 set_satp_mode_pmd + PMD_SIZE, 846 set_satp_mode_pmd + PMD_SIZE, 847 PMD_SIZE, PAGE_KERNEL_EXEC); 848 retry: 849 create_pgd_mapping(early_pg_dir, 850 set_satp_mode_pmd, 851 pgtable_l5_enabled ? 852 (uintptr_t)early_p4d : (uintptr_t)early_pud, 853 PGDIR_SIZE, PAGE_TABLE); 854 855 identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode; 856 857 local_flush_tlb_all(); 858 csr_write(CSR_SATP, identity_satp); 859 hw_satp = csr_swap(CSR_SATP, 0ULL); 860 local_flush_tlb_all(); 861 862 if (hw_satp != identity_satp) { 863 if (pgtable_l5_enabled) { 864 disable_pgtable_l5(); 865 memset(early_pg_dir, 0, PAGE_SIZE); 866 goto retry; 867 } 868 disable_pgtable_l4(); 869 } 870 871 memset(early_pg_dir, 0, PAGE_SIZE); 872 memset(early_p4d, 0, PAGE_SIZE); 873 memset(early_pud, 0, PAGE_SIZE); 874 memset(early_pmd, 0, PAGE_SIZE); 875 } 876 #endif 877 878 /* 879 * setup_vm() is called from head.S with MMU-off. 880 * 881 * Following requirements should be honoured for setup_vm() to work 882 * correctly: 883 * 1) It should use PC-relative addressing for accessing kernel symbols. 884 * To achieve this we always use GCC cmodel=medany. 885 * 2) The compiler instrumentation for FTRACE will not work for setup_vm() 886 * so disable compiler instrumentation when FTRACE is enabled. 887 * 888 * Currently, the above requirements are honoured by using custom CFLAGS 889 * for init.o in mm/Makefile. 890 */ 891 892 #ifndef __riscv_cmodel_medany 893 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing." 894 #endif 895 896 #ifdef CONFIG_RELOCATABLE 897 extern unsigned long __rela_dyn_start, __rela_dyn_end; 898 899 static void __init relocate_kernel(void) 900 { 901 Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start; 902 /* 903 * This holds the offset between the linked virtual address and the 904 * relocated virtual address. 905 */ 906 uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR; 907 /* 908 * This holds the offset between kernel linked virtual address and 909 * physical address. 910 */ 911 uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr; 912 913 for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) { 914 Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset); 915 Elf64_Addr relocated_addr = rela->r_addend; 916 917 if (rela->r_info != R_RISCV_RELATIVE) 918 continue; 919 920 /* 921 * Make sure to not relocate vdso symbols like rt_sigreturn 922 * which are linked from the address 0 in vmlinux since 923 * vdso symbol addresses are actually used as an offset from 924 * mm->context.vdso in VDSO_OFFSET macro. 925 */ 926 if (relocated_addr >= KERNEL_LINK_ADDR) 927 relocated_addr += reloc_offset; 928 929 *(Elf64_Addr *)addr = relocated_addr; 930 } 931 } 932 #endif /* CONFIG_RELOCATABLE */ 933 934 #ifdef CONFIG_XIP_KERNEL 935 static void __init create_kernel_page_table(pgd_t *pgdir, 936 __always_unused bool early) 937 { 938 uintptr_t va, start_va, end_va; 939 940 /* Map the flash resident part */ 941 end_va = kernel_map.virt_addr + kernel_map.xiprom_sz; 942 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) 943 create_pgd_mapping(pgdir, va, 944 kernel_map.xiprom + (va - kernel_map.virt_addr), 945 PMD_SIZE, PAGE_KERNEL_EXEC); 946 947 /* Map the data in RAM */ 948 start_va = kernel_map.virt_addr + (uintptr_t)&_sdata - (uintptr_t)&_start; 949 end_va = kernel_map.virt_addr + kernel_map.size; 950 for (va = start_va; va < end_va; va += PMD_SIZE) 951 create_pgd_mapping(pgdir, va, 952 kernel_map.phys_addr + (va - start_va), 953 PMD_SIZE, PAGE_KERNEL); 954 } 955 #else 956 static void __init create_kernel_page_table(pgd_t *pgdir, bool early) 957 { 958 uintptr_t va, end_va; 959 960 end_va = kernel_map.virt_addr + kernel_map.size; 961 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) 962 create_pgd_mapping(pgdir, va, 963 kernel_map.phys_addr + (va - kernel_map.virt_addr), 964 PMD_SIZE, 965 early ? 966 PAGE_KERNEL_EXEC : pgprot_from_va(va)); 967 } 968 #endif 969 970 /* 971 * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel, 972 * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR 973 * entry. 974 */ 975 static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va, 976 uintptr_t dtb_pa) 977 { 978 #ifndef CONFIG_BUILTIN_DTB 979 uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1); 980 981 /* Make sure the fdt fixmap address is always aligned on PMD size */ 982 BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE)); 983 984 /* In 32-bit only, the fdt lies in its own PGD */ 985 if (!IS_ENABLED(CONFIG_64BIT)) { 986 create_pgd_mapping(early_pg_dir, fix_fdt_va, 987 pa, MAX_FDT_SIZE, PAGE_KERNEL); 988 } else { 989 create_pmd_mapping(fixmap_pmd, fix_fdt_va, 990 pa, PMD_SIZE, PAGE_KERNEL); 991 create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE, 992 pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL); 993 } 994 995 dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1)); 996 #else 997 /* 998 * For 64-bit kernel, __va can't be used since it would return a linear 999 * mapping address whereas dtb_early_va will be used before 1000 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the 1001 * kernel is mapped in the linear mapping, that makes no difference. 1002 */ 1003 dtb_early_va = kernel_mapping_pa_to_va(dtb_pa); 1004 #endif 1005 1006 dtb_early_pa = dtb_pa; 1007 } 1008 1009 /* 1010 * MMU is not enabled, the page tables are allocated directly using 1011 * early_pmd/pud/p4d and the address returned is the physical one. 1012 */ 1013 static void __init pt_ops_set_early(void) 1014 { 1015 pt_ops.alloc_pte = alloc_pte_early; 1016 pt_ops.get_pte_virt = get_pte_virt_early; 1017 #ifndef __PAGETABLE_PMD_FOLDED 1018 pt_ops.alloc_pmd = alloc_pmd_early; 1019 pt_ops.get_pmd_virt = get_pmd_virt_early; 1020 pt_ops.alloc_pud = alloc_pud_early; 1021 pt_ops.get_pud_virt = get_pud_virt_early; 1022 pt_ops.alloc_p4d = alloc_p4d_early; 1023 pt_ops.get_p4d_virt = get_p4d_virt_early; 1024 #endif 1025 } 1026 1027 /* 1028 * MMU is enabled but page table setup is not complete yet. 1029 * fixmap page table alloc functions must be used as a means to temporarily 1030 * map the allocated physical pages since the linear mapping does not exist yet. 1031 * 1032 * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va, 1033 * but it will be used as described above. 1034 */ 1035 static void __init pt_ops_set_fixmap(void) 1036 { 1037 pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap); 1038 pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap); 1039 #ifndef __PAGETABLE_PMD_FOLDED 1040 pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap); 1041 pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap); 1042 pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap); 1043 pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap); 1044 pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap); 1045 pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap); 1046 #endif 1047 } 1048 1049 /* 1050 * MMU is enabled and page table setup is complete, so from now, we can use 1051 * generic page allocation functions to setup page table. 1052 */ 1053 static void __init pt_ops_set_late(void) 1054 { 1055 pt_ops.alloc_pte = alloc_pte_late; 1056 pt_ops.get_pte_virt = get_pte_virt_late; 1057 #ifndef __PAGETABLE_PMD_FOLDED 1058 pt_ops.alloc_pmd = alloc_pmd_late; 1059 pt_ops.get_pmd_virt = get_pmd_virt_late; 1060 pt_ops.alloc_pud = alloc_pud_late; 1061 pt_ops.get_pud_virt = get_pud_virt_late; 1062 pt_ops.alloc_p4d = alloc_p4d_late; 1063 pt_ops.get_p4d_virt = get_p4d_virt_late; 1064 #endif 1065 } 1066 1067 #ifdef CONFIG_RANDOMIZE_BASE 1068 extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa); 1069 extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa); 1070 extern u64 __init __pi_get_kaslr_seed_zkr(const uintptr_t dtb_pa); 1071 1072 static int __init print_nokaslr(char *p) 1073 { 1074 pr_info("Disabled KASLR"); 1075 return 0; 1076 } 1077 early_param("nokaslr", print_nokaslr); 1078 1079 unsigned long kaslr_offset(void) 1080 { 1081 return kernel_map.virt_offset; 1082 } 1083 #endif 1084 1085 asmlinkage void __init setup_vm(uintptr_t dtb_pa) 1086 { 1087 pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd; 1088 1089 #ifdef CONFIG_RANDOMIZE_BASE 1090 if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) { 1091 u64 kaslr_seed = __pi_get_kaslr_seed_zkr(dtb_pa); 1092 u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start); 1093 u32 nr_pos; 1094 1095 if (kaslr_seed == 0) 1096 kaslr_seed = __pi_get_kaslr_seed(dtb_pa); 1097 /* 1098 * Compute the number of positions available: we are limited 1099 * by the early page table that only has one PUD and we must 1100 * be aligned on PMD_SIZE. 1101 */ 1102 nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE; 1103 1104 kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE; 1105 } 1106 #endif 1107 1108 kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset; 1109 1110 #ifdef CONFIG_XIP_KERNEL 1111 #ifdef CONFIG_64BIT 1112 kernel_map.page_offset = PAGE_OFFSET_L3; 1113 #else 1114 kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL); 1115 #endif 1116 kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR; 1117 kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom); 1118 1119 phys_ram_base = CONFIG_PHYS_RAM_BASE; 1120 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1121 vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT; 1122 #endif 1123 kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE; 1124 kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_start); 1125 1126 kernel_map.va_kernel_xip_text_pa_offset = kernel_map.virt_addr - kernel_map.xiprom; 1127 kernel_map.va_kernel_xip_data_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr 1128 + (uintptr_t)&_sdata - (uintptr_t)&_start; 1129 #else 1130 kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL); 1131 kernel_map.phys_addr = (uintptr_t)(&_start); 1132 kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr; 1133 kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr; 1134 #endif 1135 1136 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) 1137 set_satp_mode(dtb_pa); 1138 set_mmap_rnd_bits_max(); 1139 #endif 1140 1141 /* 1142 * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem, 1143 * where we have the system memory layout: this allows us to align 1144 * the physical and virtual mappings and then make use of PUD/P4D/PGD 1145 * for the linear mapping. This is only possible because the kernel 1146 * mapping lies outside the linear mapping. 1147 * In 32-bit however, as the kernel resides in the linear mapping, 1148 * setup_vm_final can not change the mapping established here, 1149 * otherwise the same kernel addresses would get mapped to different 1150 * physical addresses (if the start of dram is different from the 1151 * kernel physical address start). 1152 */ 1153 kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ? 1154 0UL : PAGE_OFFSET - kernel_map.phys_addr; 1155 1156 memory_limit = KERN_VIRT_SIZE; 1157 1158 /* Sanity check alignment and size */ 1159 BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0); 1160 BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0); 1161 1162 #ifdef CONFIG_64BIT 1163 /* 1164 * The last 4K bytes of the addressable memory can not be mapped because 1165 * of IS_ERR_VALUE macro. 1166 */ 1167 BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K); 1168 #endif 1169 1170 #ifdef CONFIG_RELOCATABLE 1171 /* 1172 * Early page table uses only one PUD, which makes it possible 1173 * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset 1174 * makes the kernel cross over a PUD_SIZE boundary, raise a bug 1175 * since a part of the kernel would not get mapped. 1176 */ 1177 BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size); 1178 relocate_kernel(); 1179 #endif 1180 1181 apply_early_boot_alternatives(); 1182 pt_ops_set_early(); 1183 1184 /* Setup early PGD for fixmap */ 1185 create_pgd_mapping(early_pg_dir, FIXADDR_START, 1186 fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE); 1187 1188 #ifndef __PAGETABLE_PMD_FOLDED 1189 /* Setup fixmap P4D and PUD */ 1190 if (pgtable_l5_enabled) 1191 create_p4d_mapping(fixmap_p4d, FIXADDR_START, 1192 (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE); 1193 /* Setup fixmap PUD and PMD */ 1194 if (pgtable_l4_enabled) 1195 create_pud_mapping(fixmap_pud, FIXADDR_START, 1196 (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE); 1197 create_pmd_mapping(fixmap_pmd, FIXADDR_START, 1198 (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE); 1199 /* Setup trampoline PGD and PMD */ 1200 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, 1201 trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE); 1202 if (pgtable_l5_enabled) 1203 create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr, 1204 (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE); 1205 if (pgtable_l4_enabled) 1206 create_pud_mapping(trampoline_pud, kernel_map.virt_addr, 1207 (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE); 1208 #ifdef CONFIG_XIP_KERNEL 1209 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, 1210 kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC); 1211 #else 1212 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, 1213 kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC); 1214 #endif 1215 #else 1216 /* Setup trampoline PGD */ 1217 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, 1218 kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC); 1219 #endif 1220 1221 /* 1222 * Setup early PGD covering entire kernel which will allow 1223 * us to reach paging_init(). We map all memory banks later 1224 * in setup_vm_final() below. 1225 */ 1226 create_kernel_page_table(early_pg_dir, true); 1227 1228 /* Setup early mapping for FDT early scan */ 1229 create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa); 1230 1231 /* 1232 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap 1233 * range can not span multiple pmds. 1234 */ 1235 BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 1236 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 1237 1238 #ifndef __PAGETABLE_PMD_FOLDED 1239 /* 1240 * Early ioremap fixmap is already created as it lies within first 2MB 1241 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END 1242 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn 1243 * the user if not. 1244 */ 1245 fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))]; 1246 fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))]; 1247 if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) { 1248 WARN_ON(1); 1249 pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n", 1250 pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd)); 1251 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 1252 fix_to_virt(FIX_BTMAP_BEGIN)); 1253 pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n", 1254 fix_to_virt(FIX_BTMAP_END)); 1255 1256 pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 1257 pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN); 1258 } 1259 #endif 1260 1261 pt_ops_set_fixmap(); 1262 } 1263 1264 static void __meminit create_linear_mapping_range(phys_addr_t start, phys_addr_t end, 1265 uintptr_t fixed_map_size, const pgprot_t *pgprot) 1266 { 1267 phys_addr_t pa; 1268 uintptr_t va, map_size; 1269 1270 for (pa = start; pa < end; pa += map_size) { 1271 va = (uintptr_t)__va(pa); 1272 map_size = fixed_map_size ? fixed_map_size : 1273 best_map_size(pa, va, end - pa); 1274 1275 create_pgd_mapping(swapper_pg_dir, va, pa, map_size, 1276 pgprot ? *pgprot : pgprot_from_va(va)); 1277 } 1278 } 1279 1280 static void __init create_linear_mapping_page_table(void) 1281 { 1282 phys_addr_t start, end; 1283 phys_addr_t kfence_pool __maybe_unused; 1284 u64 i; 1285 1286 #ifdef CONFIG_STRICT_KERNEL_RWX 1287 phys_addr_t ktext_start = __pa_symbol(_start); 1288 phys_addr_t ktext_size = __init_data_begin - _start; 1289 phys_addr_t krodata_start = __pa_symbol(__start_rodata); 1290 phys_addr_t krodata_size = _data - __start_rodata; 1291 1292 /* Isolate kernel text and rodata so they don't get mapped with a PUD */ 1293 memblock_mark_nomap(ktext_start, ktext_size); 1294 memblock_mark_nomap(krodata_start, krodata_size); 1295 #endif 1296 1297 #ifdef CONFIG_KFENCE 1298 /* 1299 * kfence pool must be backed by PAGE_SIZE mappings, so allocate it 1300 * before we setup the linear mapping so that we avoid using hugepages 1301 * for this region. 1302 */ 1303 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 1304 BUG_ON(!kfence_pool); 1305 1306 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE); 1307 __kfence_pool = __va(kfence_pool); 1308 #endif 1309 1310 /* Map all memory banks in the linear mapping */ 1311 for_each_mem_range(i, &start, &end) { 1312 if (start >= end) 1313 break; 1314 if (start <= __pa(PAGE_OFFSET) && 1315 __pa(PAGE_OFFSET) < end) 1316 start = __pa(PAGE_OFFSET); 1317 1318 create_linear_mapping_range(start, end, 0, NULL); 1319 } 1320 1321 #ifdef CONFIG_STRICT_KERNEL_RWX 1322 create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0, NULL); 1323 create_linear_mapping_range(krodata_start, krodata_start + krodata_size, 0, NULL); 1324 1325 memblock_clear_nomap(ktext_start, ktext_size); 1326 memblock_clear_nomap(krodata_start, krodata_size); 1327 #endif 1328 1329 #ifdef CONFIG_KFENCE 1330 create_linear_mapping_range(kfence_pool, kfence_pool + KFENCE_POOL_SIZE, PAGE_SIZE, NULL); 1331 1332 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE); 1333 #endif 1334 } 1335 1336 static void __init setup_vm_final(void) 1337 { 1338 /* Setup swapper PGD for fixmap */ 1339 #if !defined(CONFIG_64BIT) 1340 /* 1341 * In 32-bit, the device tree lies in a pgd entry, so it must be copied 1342 * directly in swapper_pg_dir in addition to the pgd entry that points 1343 * to fixmap_pte. 1344 */ 1345 unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT)); 1346 1347 set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]); 1348 #endif 1349 create_pgd_mapping(swapper_pg_dir, FIXADDR_START, 1350 __pa_symbol(fixmap_pgd_next), 1351 PGDIR_SIZE, PAGE_TABLE); 1352 1353 /* Map the linear mapping */ 1354 create_linear_mapping_page_table(); 1355 1356 /* Map the kernel */ 1357 if (IS_ENABLED(CONFIG_64BIT)) 1358 create_kernel_page_table(swapper_pg_dir, false); 1359 1360 #ifdef CONFIG_KASAN 1361 kasan_swapper_init(); 1362 #endif 1363 1364 /* Clear fixmap PTE and PMD mappings */ 1365 clear_fixmap(FIX_PTE); 1366 clear_fixmap(FIX_PMD); 1367 clear_fixmap(FIX_PUD); 1368 clear_fixmap(FIX_P4D); 1369 1370 /* Move to swapper page table */ 1371 csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode); 1372 local_flush_tlb_all(); 1373 1374 pt_ops_set_late(); 1375 } 1376 #else 1377 asmlinkage void __init setup_vm(uintptr_t dtb_pa) 1378 { 1379 dtb_early_va = (void *)dtb_pa; 1380 dtb_early_pa = dtb_pa; 1381 } 1382 1383 static inline void setup_vm_final(void) 1384 { 1385 } 1386 #endif /* CONFIG_MMU */ 1387 1388 /* 1389 * reserve_crashkernel() - reserves memory for crash kernel 1390 * 1391 * This function reserves memory area given in "crashkernel=" kernel command 1392 * line parameter. The memory reserved is used by dump capture kernel when 1393 * primary kernel is crashing. 1394 */ 1395 static void __init arch_reserve_crashkernel(void) 1396 { 1397 unsigned long long low_size = 0; 1398 unsigned long long crash_base, crash_size; 1399 char *cmdline = boot_command_line; 1400 bool high = false; 1401 int ret; 1402 1403 if (!IS_ENABLED(CONFIG_CRASH_RESERVE)) 1404 return; 1405 1406 ret = parse_crashkernel(cmdline, memblock_phys_mem_size(), 1407 &crash_size, &crash_base, 1408 &low_size, &high); 1409 if (ret) 1410 return; 1411 1412 reserve_crashkernel_generic(cmdline, crash_size, crash_base, 1413 low_size, high); 1414 } 1415 1416 void __init paging_init(void) 1417 { 1418 setup_bootmem(); 1419 setup_vm_final(); 1420 1421 /* Depend on that Linear Mapping is ready */ 1422 memblock_allow_resize(); 1423 } 1424 1425 void __init misc_mem_init(void) 1426 { 1427 early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT); 1428 arch_numa_init(); 1429 sparse_init(); 1430 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1431 /* The entire VMEMMAP region has been populated. Flush TLB for this region */ 1432 local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END); 1433 #endif 1434 zone_sizes_init(); 1435 arch_reserve_crashkernel(); 1436 memblock_dump_all(); 1437 } 1438 1439 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1440 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 1441 unsigned long addr, unsigned long next) 1442 { 1443 pmd_set_huge(pmd, virt_to_phys(p), PAGE_KERNEL); 1444 } 1445 1446 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node, 1447 unsigned long addr, unsigned long next) 1448 { 1449 vmemmap_verify((pte_t *)pmdp, node, addr, next); 1450 return 1; 1451 } 1452 1453 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, 1454 struct vmem_altmap *altmap) 1455 { 1456 /* 1457 * Note that SPARSEMEM_VMEMMAP is only selected for rv64 and that we 1458 * can't use hugepage mappings for 2-level page table because in case of 1459 * memory hotplug, we are not able to update all the page tables with 1460 * the new PMDs. 1461 */ 1462 return vmemmap_populate_hugepages(start, end, node, altmap); 1463 } 1464 #endif 1465 1466 #if defined(CONFIG_MMU) && defined(CONFIG_64BIT) 1467 /* 1468 * Pre-allocates page-table pages for a specific area in the kernel 1469 * page-table. Only the level which needs to be synchronized between 1470 * all page-tables is allocated because the synchronization can be 1471 * expensive. 1472 */ 1473 static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end, 1474 const char *area) 1475 { 1476 unsigned long addr; 1477 const char *lvl; 1478 1479 for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 1480 pgd_t *pgd = pgd_offset_k(addr); 1481 p4d_t *p4d; 1482 pud_t *pud; 1483 pmd_t *pmd; 1484 1485 lvl = "p4d"; 1486 p4d = p4d_alloc(&init_mm, pgd, addr); 1487 if (!p4d) 1488 goto failed; 1489 1490 if (pgtable_l5_enabled) 1491 continue; 1492 1493 lvl = "pud"; 1494 pud = pud_alloc(&init_mm, p4d, addr); 1495 if (!pud) 1496 goto failed; 1497 1498 if (pgtable_l4_enabled) 1499 continue; 1500 1501 lvl = "pmd"; 1502 pmd = pmd_alloc(&init_mm, pud, addr); 1503 if (!pmd) 1504 goto failed; 1505 } 1506 return; 1507 1508 failed: 1509 /* 1510 * The pages have to be there now or they will be missing in 1511 * process page-tables later. 1512 */ 1513 panic("Failed to pre-allocate %s pages for %s area\n", lvl, area); 1514 } 1515 1516 #define PAGE_END KASAN_SHADOW_START 1517 1518 void __init pgtable_cache_init(void) 1519 { 1520 preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc"); 1521 if (IS_ENABLED(CONFIG_MODULES)) 1522 preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules"); 1523 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) { 1524 preallocate_pgd_pages_range(VMEMMAP_START, VMEMMAP_END, "vmemmap"); 1525 preallocate_pgd_pages_range(PAGE_OFFSET, PAGE_END, "direct map"); 1526 if (IS_ENABLED(CONFIG_KASAN)) 1527 preallocate_pgd_pages_range(KASAN_SHADOW_START, KASAN_SHADOW_END, "kasan"); 1528 } 1529 } 1530 #endif 1531 1532 #ifdef CONFIG_EXECMEM 1533 #ifdef CONFIG_MMU 1534 static struct execmem_info execmem_info __ro_after_init; 1535 1536 struct execmem_info __init *execmem_arch_setup(void) 1537 { 1538 execmem_info = (struct execmem_info){ 1539 .ranges = { 1540 [EXECMEM_DEFAULT] = { 1541 .start = MODULES_VADDR, 1542 .end = MODULES_END, 1543 .pgprot = PAGE_KERNEL, 1544 .alignment = 1, 1545 }, 1546 [EXECMEM_KPROBES] = { 1547 .start = VMALLOC_START, 1548 .end = VMALLOC_END, 1549 .pgprot = PAGE_KERNEL_READ_EXEC, 1550 .alignment = 1, 1551 }, 1552 [EXECMEM_BPF] = { 1553 .start = BPF_JIT_REGION_START, 1554 .end = BPF_JIT_REGION_END, 1555 .pgprot = PAGE_KERNEL, 1556 .alignment = PAGE_SIZE, 1557 }, 1558 }, 1559 }; 1560 1561 return &execmem_info; 1562 } 1563 #endif /* CONFIG_MMU */ 1564 #endif /* CONFIG_EXECMEM */ 1565 1566 #ifdef CONFIG_MEMORY_HOTPLUG 1567 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) 1568 { 1569 struct page *page = pmd_page(*pmd); 1570 struct ptdesc *ptdesc = page_ptdesc(page); 1571 pte_t *pte; 1572 int i; 1573 1574 for (i = 0; i < PTRS_PER_PTE; i++) { 1575 pte = pte_start + i; 1576 if (!pte_none(*pte)) 1577 return; 1578 } 1579 1580 pagetable_dtor(ptdesc); 1581 if (PageReserved(page)) 1582 free_reserved_page(page); 1583 else 1584 pagetable_free(ptdesc); 1585 pmd_clear(pmd); 1586 } 1587 1588 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud, bool is_vmemmap) 1589 { 1590 struct page *page = pud_page(*pud); 1591 struct ptdesc *ptdesc = page_ptdesc(page); 1592 pmd_t *pmd; 1593 int i; 1594 1595 for (i = 0; i < PTRS_PER_PMD; i++) { 1596 pmd = pmd_start + i; 1597 if (!pmd_none(*pmd)) 1598 return; 1599 } 1600 1601 if (!is_vmemmap) 1602 pagetable_dtor(ptdesc); 1603 if (PageReserved(page)) 1604 free_reserved_page(page); 1605 else 1606 pagetable_free(ptdesc); 1607 pud_clear(pud); 1608 } 1609 1610 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d) 1611 { 1612 struct page *page = p4d_page(*p4d); 1613 pud_t *pud; 1614 int i; 1615 1616 for (i = 0; i < PTRS_PER_PUD; i++) { 1617 pud = pud_start + i; 1618 if (!pud_none(*pud)) 1619 return; 1620 } 1621 1622 if (PageReserved(page)) 1623 free_reserved_page(page); 1624 else 1625 free_pages((unsigned long)page_address(page), 0); 1626 p4d_clear(p4d); 1627 } 1628 1629 static void __meminit free_vmemmap_storage(struct page *page, size_t size, 1630 struct vmem_altmap *altmap) 1631 { 1632 int order = get_order(size); 1633 1634 if (altmap) { 1635 vmem_altmap_free(altmap, size >> PAGE_SHIFT); 1636 return; 1637 } 1638 1639 if (PageReserved(page)) { 1640 unsigned int nr_pages = 1 << order; 1641 1642 while (nr_pages--) 1643 free_reserved_page(page++); 1644 return; 1645 } 1646 1647 free_pages((unsigned long)page_address(page), order); 1648 } 1649 1650 static void __meminit remove_pte_mapping(pte_t *pte_base, unsigned long addr, unsigned long end, 1651 bool is_vmemmap, struct vmem_altmap *altmap) 1652 { 1653 unsigned long next; 1654 pte_t *ptep, pte; 1655 1656 for (; addr < end; addr = next) { 1657 next = (addr + PAGE_SIZE) & PAGE_MASK; 1658 if (next > end) 1659 next = end; 1660 1661 ptep = pte_base + pte_index(addr); 1662 pte = ptep_get(ptep); 1663 if (!pte_present(*ptep)) 1664 continue; 1665 1666 pte_clear(&init_mm, addr, ptep); 1667 if (is_vmemmap) 1668 free_vmemmap_storage(pte_page(pte), PAGE_SIZE, altmap); 1669 } 1670 } 1671 1672 static void __meminit remove_pmd_mapping(pmd_t *pmd_base, unsigned long addr, unsigned long end, 1673 bool is_vmemmap, struct vmem_altmap *altmap) 1674 { 1675 unsigned long next; 1676 pte_t *pte_base; 1677 pmd_t *pmdp, pmd; 1678 1679 for (; addr < end; addr = next) { 1680 next = pmd_addr_end(addr, end); 1681 pmdp = pmd_base + pmd_index(addr); 1682 pmd = pmdp_get(pmdp); 1683 if (!pmd_present(pmd)) 1684 continue; 1685 1686 if (pmd_leaf(pmd)) { 1687 pmd_clear(pmdp); 1688 if (is_vmemmap) 1689 free_vmemmap_storage(pmd_page(pmd), PMD_SIZE, altmap); 1690 continue; 1691 } 1692 1693 pte_base = (pte_t *)pmd_page_vaddr(*pmdp); 1694 remove_pte_mapping(pte_base, addr, next, is_vmemmap, altmap); 1695 free_pte_table(pte_base, pmdp); 1696 } 1697 } 1698 1699 static void __meminit remove_pud_mapping(pud_t *pud_base, unsigned long addr, unsigned long end, 1700 bool is_vmemmap, struct vmem_altmap *altmap) 1701 { 1702 unsigned long next; 1703 pud_t *pudp, pud; 1704 pmd_t *pmd_base; 1705 1706 for (; addr < end; addr = next) { 1707 next = pud_addr_end(addr, end); 1708 pudp = pud_base + pud_index(addr); 1709 pud = pudp_get(pudp); 1710 if (!pud_present(pud)) 1711 continue; 1712 1713 if (pud_leaf(pud)) { 1714 if (pgtable_l4_enabled) { 1715 pud_clear(pudp); 1716 if (is_vmemmap) 1717 free_vmemmap_storage(pud_page(pud), PUD_SIZE, altmap); 1718 } 1719 continue; 1720 } 1721 1722 pmd_base = pmd_offset(pudp, 0); 1723 remove_pmd_mapping(pmd_base, addr, next, is_vmemmap, altmap); 1724 1725 if (pgtable_l4_enabled) 1726 free_pmd_table(pmd_base, pudp, is_vmemmap); 1727 } 1728 } 1729 1730 static void __meminit remove_p4d_mapping(p4d_t *p4d_base, unsigned long addr, unsigned long end, 1731 bool is_vmemmap, struct vmem_altmap *altmap) 1732 { 1733 unsigned long next; 1734 p4d_t *p4dp, p4d; 1735 pud_t *pud_base; 1736 1737 for (; addr < end; addr = next) { 1738 next = p4d_addr_end(addr, end); 1739 p4dp = p4d_base + p4d_index(addr); 1740 p4d = p4dp_get(p4dp); 1741 if (!p4d_present(p4d)) 1742 continue; 1743 1744 if (p4d_leaf(p4d)) { 1745 if (pgtable_l5_enabled) { 1746 p4d_clear(p4dp); 1747 if (is_vmemmap) 1748 free_vmemmap_storage(p4d_page(p4d), P4D_SIZE, altmap); 1749 } 1750 continue; 1751 } 1752 1753 pud_base = pud_offset(p4dp, 0); 1754 remove_pud_mapping(pud_base, addr, next, is_vmemmap, altmap); 1755 1756 if (pgtable_l5_enabled) 1757 free_pud_table(pud_base, p4dp); 1758 } 1759 } 1760 1761 static void __meminit remove_pgd_mapping(unsigned long va, unsigned long end, bool is_vmemmap, 1762 struct vmem_altmap *altmap) 1763 { 1764 unsigned long addr, next; 1765 p4d_t *p4d_base; 1766 pgd_t *pgd; 1767 1768 for (addr = va; addr < end; addr = next) { 1769 next = pgd_addr_end(addr, end); 1770 pgd = pgd_offset_k(addr); 1771 1772 if (!pgd_present(*pgd)) 1773 continue; 1774 1775 if (pgd_leaf(*pgd)) 1776 continue; 1777 1778 p4d_base = p4d_offset(pgd, 0); 1779 remove_p4d_mapping(p4d_base, addr, next, is_vmemmap, altmap); 1780 } 1781 1782 flush_tlb_all(); 1783 } 1784 1785 static void __meminit remove_linear_mapping(phys_addr_t start, u64 size) 1786 { 1787 unsigned long va = (unsigned long)__va(start); 1788 unsigned long end = (unsigned long)__va(start + size); 1789 1790 remove_pgd_mapping(va, end, false, NULL); 1791 } 1792 1793 struct range arch_get_mappable_range(void) 1794 { 1795 struct range mhp_range; 1796 1797 mhp_range.start = __pa(PAGE_OFFSET); 1798 mhp_range.end = __pa(PAGE_END - 1); 1799 return mhp_range; 1800 } 1801 1802 int __ref arch_add_memory(int nid, u64 start, u64 size, struct mhp_params *params) 1803 { 1804 int ret = 0; 1805 1806 create_linear_mapping_range(start, start + size, 0, ¶ms->pgprot); 1807 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT, params); 1808 if (ret) { 1809 remove_linear_mapping(start, size); 1810 goto out; 1811 } 1812 1813 max_pfn = PFN_UP(start + size); 1814 max_low_pfn = max_pfn; 1815 1816 out: 1817 flush_tlb_all(); 1818 return ret; 1819 } 1820 1821 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap) 1822 { 1823 __remove_pages(start >> PAGE_SHIFT, size >> PAGE_SHIFT, altmap); 1824 remove_linear_mapping(start, size); 1825 flush_tlb_all(); 1826 } 1827 1828 void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap) 1829 { 1830 remove_pgd_mapping(start, end, true, altmap); 1831 } 1832 #endif /* CONFIG_MEMORY_HOTPLUG */ 1833