xref: /linux/arch/riscv/mm/init.c (revision 3daee2e4b3568f0ed88b0598df96547fcf21cb9b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
5  * Copyright (C) 2020 FORTH-ICS/CARV
6  *  Nick Kossifidis <mick@ics.forth.gr>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/memblock.h>
12 #include <linux/initrd.h>
13 #include <linux/swap.h>
14 #include <linux/swiotlb.h>
15 #include <linux/sizes.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/libfdt.h>
19 #include <linux/set_memory.h>
20 #include <linux/dma-map-ops.h>
21 #include <linux/crash_dump.h>
22 #include <linux/hugetlb.h>
23 #ifdef CONFIG_RELOCATABLE
24 #include <linux/elf.h>
25 #endif
26 #include <linux/kfence.h>
27 #include <linux/execmem.h>
28 
29 #include <asm/fixmap.h>
30 #include <asm/io.h>
31 #include <asm/numa.h>
32 #include <asm/pgtable.h>
33 #include <asm/sections.h>
34 #include <asm/soc.h>
35 #include <asm/tlbflush.h>
36 
37 #include "../kernel/head.h"
38 
39 struct kernel_mapping kernel_map __ro_after_init;
40 EXPORT_SYMBOL(kernel_map);
41 #ifdef CONFIG_XIP_KERNEL
42 #define kernel_map	(*(struct kernel_mapping *)XIP_FIXUP(&kernel_map))
43 #endif
44 
45 #ifdef CONFIG_64BIT
46 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39;
47 #else
48 u64 satp_mode __ro_after_init = SATP_MODE_32;
49 #endif
50 EXPORT_SYMBOL(satp_mode);
51 
52 #ifdef CONFIG_64BIT
53 bool pgtable_l4_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
54 bool pgtable_l5_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
55 EXPORT_SYMBOL(pgtable_l4_enabled);
56 EXPORT_SYMBOL(pgtable_l5_enabled);
57 #endif
58 
59 phys_addr_t phys_ram_base __ro_after_init;
60 EXPORT_SYMBOL(phys_ram_base);
61 
62 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
63 							__page_aligned_bss;
64 EXPORT_SYMBOL(empty_zero_page);
65 
66 extern char _start[];
67 void *_dtb_early_va __initdata;
68 uintptr_t _dtb_early_pa __initdata;
69 
70 phys_addr_t dma32_phys_limit __initdata;
71 
72 static void __init zone_sizes_init(void)
73 {
74 	unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, };
75 
76 #ifdef CONFIG_ZONE_DMA32
77 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
78 #endif
79 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
80 
81 	free_area_init(max_zone_pfns);
82 }
83 
84 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM)
85 
86 #define LOG2_SZ_1K  ilog2(SZ_1K)
87 #define LOG2_SZ_1M  ilog2(SZ_1M)
88 #define LOG2_SZ_1G  ilog2(SZ_1G)
89 #define LOG2_SZ_1T  ilog2(SZ_1T)
90 
91 static inline void print_mlk(char *name, unsigned long b, unsigned long t)
92 {
93 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld kB)\n", name, b, t,
94 		  (((t) - (b)) >> LOG2_SZ_1K));
95 }
96 
97 static inline void print_mlm(char *name, unsigned long b, unsigned long t)
98 {
99 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld MB)\n", name, b, t,
100 		  (((t) - (b)) >> LOG2_SZ_1M));
101 }
102 
103 static inline void print_mlg(char *name, unsigned long b, unsigned long t)
104 {
105 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld GB)\n", name, b, t,
106 		   (((t) - (b)) >> LOG2_SZ_1G));
107 }
108 
109 #ifdef CONFIG_64BIT
110 static inline void print_mlt(char *name, unsigned long b, unsigned long t)
111 {
112 	pr_notice("%12s : 0x%08lx - 0x%08lx   (%4ld TB)\n", name, b, t,
113 		   (((t) - (b)) >> LOG2_SZ_1T));
114 }
115 #else
116 #define print_mlt(n, b, t) do {} while (0)
117 #endif
118 
119 static inline void print_ml(char *name, unsigned long b, unsigned long t)
120 {
121 	unsigned long diff = t - b;
122 
123 	if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10)
124 		print_mlt(name, b, t);
125 	else if ((diff >> LOG2_SZ_1G) >= 10)
126 		print_mlg(name, b, t);
127 	else if ((diff >> LOG2_SZ_1M) >= 10)
128 		print_mlm(name, b, t);
129 	else
130 		print_mlk(name, b, t);
131 }
132 
133 static void __init print_vm_layout(void)
134 {
135 	pr_notice("Virtual kernel memory layout:\n");
136 	print_ml("fixmap", (unsigned long)FIXADDR_START,
137 		(unsigned long)FIXADDR_TOP);
138 	print_ml("pci io", (unsigned long)PCI_IO_START,
139 		(unsigned long)PCI_IO_END);
140 	print_ml("vmemmap", (unsigned long)VMEMMAP_START,
141 		(unsigned long)VMEMMAP_END);
142 	print_ml("vmalloc", (unsigned long)VMALLOC_START,
143 		(unsigned long)VMALLOC_END);
144 #ifdef CONFIG_64BIT
145 	print_ml("modules", (unsigned long)MODULES_VADDR,
146 		(unsigned long)MODULES_END);
147 #endif
148 	print_ml("lowmem", (unsigned long)PAGE_OFFSET,
149 		(unsigned long)high_memory);
150 	if (IS_ENABLED(CONFIG_64BIT)) {
151 #ifdef CONFIG_KASAN
152 		print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END);
153 #endif
154 
155 		print_ml("kernel", (unsigned long)kernel_map.virt_addr,
156 			 (unsigned long)ADDRESS_SPACE_END);
157 	}
158 }
159 #else
160 static void print_vm_layout(void) { }
161 #endif /* CONFIG_DEBUG_VM */
162 
163 void __init mem_init(void)
164 {
165 	bool swiotlb = max_pfn > PFN_DOWN(dma32_phys_limit);
166 #ifdef CONFIG_FLATMEM
167 	BUG_ON(!mem_map);
168 #endif /* CONFIG_FLATMEM */
169 
170 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb &&
171 	    dma_cache_alignment != 1) {
172 		/*
173 		 * If no bouncing needed for ZONE_DMA, allocate 1MB swiotlb
174 		 * buffer per 1GB of RAM for kmalloc() bouncing on
175 		 * non-coherent platforms.
176 		 */
177 		unsigned long size =
178 			DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
179 		swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
180 		swiotlb = true;
181 	}
182 
183 	swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
184 	memblock_free_all();
185 
186 	print_vm_layout();
187 }
188 
189 /* Limit the memory size via mem. */
190 static phys_addr_t memory_limit;
191 #ifdef CONFIG_XIP_KERNEL
192 #define memory_limit	(*(phys_addr_t *)XIP_FIXUP(&memory_limit))
193 #endif /* CONFIG_XIP_KERNEL */
194 
195 static int __init early_mem(char *p)
196 {
197 	u64 size;
198 
199 	if (!p)
200 		return 1;
201 
202 	size = memparse(p, &p) & PAGE_MASK;
203 	memory_limit = min_t(u64, size, memory_limit);
204 
205 	pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20);
206 
207 	return 0;
208 }
209 early_param("mem", early_mem);
210 
211 static void __init setup_bootmem(void)
212 {
213 	phys_addr_t vmlinux_end = __pa_symbol(&_end);
214 	phys_addr_t max_mapped_addr;
215 	phys_addr_t phys_ram_end, vmlinux_start;
216 
217 	if (IS_ENABLED(CONFIG_XIP_KERNEL))
218 		vmlinux_start = __pa_symbol(&_sdata);
219 	else
220 		vmlinux_start = __pa_symbol(&_start);
221 
222 	memblock_enforce_memory_limit(memory_limit);
223 
224 	/*
225 	 * Make sure we align the reservation on PMD_SIZE since we will
226 	 * map the kernel in the linear mapping as read-only: we do not want
227 	 * any allocation to happen between _end and the next pmd aligned page.
228 	 */
229 	if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
230 		vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK;
231 	/*
232 	 * Reserve from the start of the kernel to the end of the kernel
233 	 */
234 	memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start);
235 
236 	phys_ram_end = memblock_end_of_DRAM();
237 
238 	/*
239 	 * Make sure we align the start of the memory on a PMD boundary so that
240 	 * at worst, we map the linear mapping with PMD mappings.
241 	 */
242 	if (!IS_ENABLED(CONFIG_XIP_KERNEL))
243 		phys_ram_base = memblock_start_of_DRAM() & PMD_MASK;
244 
245 	/*
246 	 * In 64-bit, any use of __va/__pa before this point is wrong as we
247 	 * did not know the start of DRAM before.
248 	 */
249 	if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU))
250 		kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base;
251 
252 	/*
253 	 * Reserve physical address space that would be mapped to virtual
254 	 * addresses greater than (void *)(-PAGE_SIZE) because:
255 	 *  - This memory would overlap with ERR_PTR
256 	 *  - This memory belongs to high memory, which is not supported
257 	 *
258 	 * This is not applicable to 64-bit kernel, because virtual addresses
259 	 * after (void *)(-PAGE_SIZE) are not linearly mapped: they are
260 	 * occupied by kernel mapping. Also it is unrealistic for high memory
261 	 * to exist on 64-bit platforms.
262 	 */
263 	if (!IS_ENABLED(CONFIG_64BIT)) {
264 		max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE);
265 		memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr);
266 	}
267 
268 	min_low_pfn = PFN_UP(phys_ram_base);
269 	max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end);
270 	high_memory = (void *)(__va(PFN_PHYS(max_low_pfn)));
271 
272 	dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn));
273 	set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET);
274 
275 	reserve_initrd_mem();
276 
277 	/*
278 	 * No allocation should be done before reserving the memory as defined
279 	 * in the device tree, otherwise the allocation could end up in a
280 	 * reserved region.
281 	 */
282 	early_init_fdt_scan_reserved_mem();
283 
284 	/*
285 	 * If DTB is built in, no need to reserve its memblock.
286 	 * Otherwise, do reserve it but avoid using
287 	 * early_init_fdt_reserve_self() since __pa() does
288 	 * not work for DTB pointers that are fixmap addresses
289 	 */
290 	if (!IS_ENABLED(CONFIG_BUILTIN_DTB))
291 		memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va));
292 
293 	dma_contiguous_reserve(dma32_phys_limit);
294 	if (IS_ENABLED(CONFIG_64BIT))
295 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
296 }
297 
298 #ifdef CONFIG_MMU
299 struct pt_alloc_ops pt_ops __initdata;
300 
301 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
302 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
303 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss;
304 
305 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE);
306 
307 #ifdef CONFIG_XIP_KERNEL
308 #define pt_ops			(*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops))
309 #define trampoline_pg_dir      ((pgd_t *)XIP_FIXUP(trampoline_pg_dir))
310 #define fixmap_pte             ((pte_t *)XIP_FIXUP(fixmap_pte))
311 #define early_pg_dir           ((pgd_t *)XIP_FIXUP(early_pg_dir))
312 #endif /* CONFIG_XIP_KERNEL */
313 
314 static const pgprot_t protection_map[16] = {
315 	[VM_NONE]					= PAGE_NONE,
316 	[VM_READ]					= PAGE_READ,
317 	[VM_WRITE]					= PAGE_COPY,
318 	[VM_WRITE | VM_READ]				= PAGE_COPY,
319 	[VM_EXEC]					= PAGE_EXEC,
320 	[VM_EXEC | VM_READ]				= PAGE_READ_EXEC,
321 	[VM_EXEC | VM_WRITE]				= PAGE_COPY_EXEC,
322 	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_EXEC,
323 	[VM_SHARED]					= PAGE_NONE,
324 	[VM_SHARED | VM_READ]				= PAGE_READ,
325 	[VM_SHARED | VM_WRITE]				= PAGE_SHARED,
326 	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
327 	[VM_SHARED | VM_EXEC]				= PAGE_EXEC,
328 	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_READ_EXEC,
329 	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_SHARED_EXEC,
330 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_SHARED_EXEC
331 };
332 DECLARE_VM_GET_PAGE_PROT
333 
334 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
335 {
336 	unsigned long addr = __fix_to_virt(idx);
337 	pte_t *ptep;
338 
339 	BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
340 
341 	ptep = &fixmap_pte[pte_index(addr)];
342 
343 	if (pgprot_val(prot))
344 		set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
345 	else
346 		pte_clear(&init_mm, addr, ptep);
347 	local_flush_tlb_page(addr);
348 }
349 
350 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa)
351 {
352 	return (pte_t *)((uintptr_t)pa);
353 }
354 
355 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa)
356 {
357 	clear_fixmap(FIX_PTE);
358 	return (pte_t *)set_fixmap_offset(FIX_PTE, pa);
359 }
360 
361 static inline pte_t *__init get_pte_virt_late(phys_addr_t pa)
362 {
363 	return (pte_t *) __va(pa);
364 }
365 
366 static inline phys_addr_t __init alloc_pte_early(uintptr_t va)
367 {
368 	/*
369 	 * We only create PMD or PGD early mappings so we
370 	 * should never reach here with MMU disabled.
371 	 */
372 	BUG();
373 }
374 
375 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va)
376 {
377 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
378 }
379 
380 static phys_addr_t __init alloc_pte_late(uintptr_t va)
381 {
382 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
383 
384 	BUG_ON(!ptdesc || !pagetable_pte_ctor(ptdesc));
385 	return __pa((pte_t *)ptdesc_address(ptdesc));
386 }
387 
388 static void __init create_pte_mapping(pte_t *ptep,
389 				      uintptr_t va, phys_addr_t pa,
390 				      phys_addr_t sz, pgprot_t prot)
391 {
392 	uintptr_t pte_idx = pte_index(va);
393 
394 	BUG_ON(sz != PAGE_SIZE);
395 
396 	if (pte_none(ptep[pte_idx]))
397 		ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot);
398 }
399 
400 #ifndef __PAGETABLE_PMD_FOLDED
401 
402 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss;
403 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss;
404 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE);
405 
406 #ifdef CONFIG_XIP_KERNEL
407 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd))
408 #define fixmap_pmd     ((pmd_t *)XIP_FIXUP(fixmap_pmd))
409 #define early_pmd      ((pmd_t *)XIP_FIXUP(early_pmd))
410 #endif /* CONFIG_XIP_KERNEL */
411 
412 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss;
413 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss;
414 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
415 
416 #ifdef CONFIG_XIP_KERNEL
417 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d))
418 #define fixmap_p4d     ((p4d_t *)XIP_FIXUP(fixmap_p4d))
419 #define early_p4d      ((p4d_t *)XIP_FIXUP(early_p4d))
420 #endif /* CONFIG_XIP_KERNEL */
421 
422 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss;
423 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss;
424 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE);
425 
426 #ifdef CONFIG_XIP_KERNEL
427 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud))
428 #define fixmap_pud     ((pud_t *)XIP_FIXUP(fixmap_pud))
429 #define early_pud      ((pud_t *)XIP_FIXUP(early_pud))
430 #endif /* CONFIG_XIP_KERNEL */
431 
432 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa)
433 {
434 	/* Before MMU is enabled */
435 	return (pmd_t *)((uintptr_t)pa);
436 }
437 
438 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa)
439 {
440 	clear_fixmap(FIX_PMD);
441 	return (pmd_t *)set_fixmap_offset(FIX_PMD, pa);
442 }
443 
444 static pmd_t *__init get_pmd_virt_late(phys_addr_t pa)
445 {
446 	return (pmd_t *) __va(pa);
447 }
448 
449 static phys_addr_t __init alloc_pmd_early(uintptr_t va)
450 {
451 	BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT);
452 
453 	return (uintptr_t)early_pmd;
454 }
455 
456 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va)
457 {
458 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
459 }
460 
461 static phys_addr_t __init alloc_pmd_late(uintptr_t va)
462 {
463 	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
464 
465 	BUG_ON(!ptdesc || !pagetable_pmd_ctor(ptdesc));
466 	return __pa((pmd_t *)ptdesc_address(ptdesc));
467 }
468 
469 static void __init create_pmd_mapping(pmd_t *pmdp,
470 				      uintptr_t va, phys_addr_t pa,
471 				      phys_addr_t sz, pgprot_t prot)
472 {
473 	pte_t *ptep;
474 	phys_addr_t pte_phys;
475 	uintptr_t pmd_idx = pmd_index(va);
476 
477 	if (sz == PMD_SIZE) {
478 		if (pmd_none(pmdp[pmd_idx]))
479 			pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot);
480 		return;
481 	}
482 
483 	if (pmd_none(pmdp[pmd_idx])) {
484 		pte_phys = pt_ops.alloc_pte(va);
485 		pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE);
486 		ptep = pt_ops.get_pte_virt(pte_phys);
487 		memset(ptep, 0, PAGE_SIZE);
488 	} else {
489 		pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx]));
490 		ptep = pt_ops.get_pte_virt(pte_phys);
491 	}
492 
493 	create_pte_mapping(ptep, va, pa, sz, prot);
494 }
495 
496 static pud_t *__init get_pud_virt_early(phys_addr_t pa)
497 {
498 	return (pud_t *)((uintptr_t)pa);
499 }
500 
501 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa)
502 {
503 	clear_fixmap(FIX_PUD);
504 	return (pud_t *)set_fixmap_offset(FIX_PUD, pa);
505 }
506 
507 static pud_t *__init get_pud_virt_late(phys_addr_t pa)
508 {
509 	return (pud_t *)__va(pa);
510 }
511 
512 static phys_addr_t __init alloc_pud_early(uintptr_t va)
513 {
514 	/* Only one PUD is available for early mapping */
515 	BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
516 
517 	return (uintptr_t)early_pud;
518 }
519 
520 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va)
521 {
522 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
523 }
524 
525 static phys_addr_t alloc_pud_late(uintptr_t va)
526 {
527 	unsigned long vaddr;
528 
529 	vaddr = __get_free_page(GFP_KERNEL);
530 	BUG_ON(!vaddr);
531 	return __pa(vaddr);
532 }
533 
534 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa)
535 {
536 	return (p4d_t *)((uintptr_t)pa);
537 }
538 
539 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa)
540 {
541 	clear_fixmap(FIX_P4D);
542 	return (p4d_t *)set_fixmap_offset(FIX_P4D, pa);
543 }
544 
545 static p4d_t *__init get_p4d_virt_late(phys_addr_t pa)
546 {
547 	return (p4d_t *)__va(pa);
548 }
549 
550 static phys_addr_t __init alloc_p4d_early(uintptr_t va)
551 {
552 	/* Only one P4D is available for early mapping */
553 	BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
554 
555 	return (uintptr_t)early_p4d;
556 }
557 
558 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va)
559 {
560 	return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
561 }
562 
563 static phys_addr_t alloc_p4d_late(uintptr_t va)
564 {
565 	unsigned long vaddr;
566 
567 	vaddr = __get_free_page(GFP_KERNEL);
568 	BUG_ON(!vaddr);
569 	return __pa(vaddr);
570 }
571 
572 static void __init create_pud_mapping(pud_t *pudp,
573 				      uintptr_t va, phys_addr_t pa,
574 				      phys_addr_t sz, pgprot_t prot)
575 {
576 	pmd_t *nextp;
577 	phys_addr_t next_phys;
578 	uintptr_t pud_index = pud_index(va);
579 
580 	if (sz == PUD_SIZE) {
581 		if (pud_val(pudp[pud_index]) == 0)
582 			pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot);
583 		return;
584 	}
585 
586 	if (pud_val(pudp[pud_index]) == 0) {
587 		next_phys = pt_ops.alloc_pmd(va);
588 		pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE);
589 		nextp = pt_ops.get_pmd_virt(next_phys);
590 		memset(nextp, 0, PAGE_SIZE);
591 	} else {
592 		next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index]));
593 		nextp = pt_ops.get_pmd_virt(next_phys);
594 	}
595 
596 	create_pmd_mapping(nextp, va, pa, sz, prot);
597 }
598 
599 static void __init create_p4d_mapping(p4d_t *p4dp,
600 				      uintptr_t va, phys_addr_t pa,
601 				      phys_addr_t sz, pgprot_t prot)
602 {
603 	pud_t *nextp;
604 	phys_addr_t next_phys;
605 	uintptr_t p4d_index = p4d_index(va);
606 
607 	if (sz == P4D_SIZE) {
608 		if (p4d_val(p4dp[p4d_index]) == 0)
609 			p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot);
610 		return;
611 	}
612 
613 	if (p4d_val(p4dp[p4d_index]) == 0) {
614 		next_phys = pt_ops.alloc_pud(va);
615 		p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE);
616 		nextp = pt_ops.get_pud_virt(next_phys);
617 		memset(nextp, 0, PAGE_SIZE);
618 	} else {
619 		next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index]));
620 		nextp = pt_ops.get_pud_virt(next_phys);
621 	}
622 
623 	create_pud_mapping(nextp, va, pa, sz, prot);
624 }
625 
626 #define pgd_next_t		p4d_t
627 #define alloc_pgd_next(__va)	(pgtable_l5_enabled ?			\
628 		pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ?		\
629 		pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va)))
630 #define get_pgd_next_virt(__pa)	(pgtable_l5_enabled ?			\
631 		pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ?	\
632 		pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa)))
633 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot)	\
634 				(pgtable_l5_enabled ?			\
635 		create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \
636 				(pgtable_l4_enabled ?			\
637 		create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) :	\
638 		create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot)))
639 #define fixmap_pgd_next		(pgtable_l5_enabled ?			\
640 		(uintptr_t)fixmap_p4d : (pgtable_l4_enabled ?		\
641 		(uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd))
642 #define trampoline_pgd_next	(pgtable_l5_enabled ?			\
643 		(uintptr_t)trampoline_p4d : (pgtable_l4_enabled ?	\
644 		(uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd))
645 #else
646 #define pgd_next_t		pte_t
647 #define alloc_pgd_next(__va)	pt_ops.alloc_pte(__va)
648 #define get_pgd_next_virt(__pa)	pt_ops.get_pte_virt(__pa)
649 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot)	\
650 	create_pte_mapping(__nextp, __va, __pa, __sz, __prot)
651 #define fixmap_pgd_next		((uintptr_t)fixmap_pte)
652 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
653 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
654 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
655 #endif /* __PAGETABLE_PMD_FOLDED */
656 
657 void __init create_pgd_mapping(pgd_t *pgdp,
658 				      uintptr_t va, phys_addr_t pa,
659 				      phys_addr_t sz, pgprot_t prot)
660 {
661 	pgd_next_t *nextp;
662 	phys_addr_t next_phys;
663 	uintptr_t pgd_idx = pgd_index(va);
664 
665 	if (sz == PGDIR_SIZE) {
666 		if (pgd_val(pgdp[pgd_idx]) == 0)
667 			pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot);
668 		return;
669 	}
670 
671 	if (pgd_val(pgdp[pgd_idx]) == 0) {
672 		next_phys = alloc_pgd_next(va);
673 		pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE);
674 		nextp = get_pgd_next_virt(next_phys);
675 		memset(nextp, 0, PAGE_SIZE);
676 	} else {
677 		next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx]));
678 		nextp = get_pgd_next_virt(next_phys);
679 	}
680 
681 	create_pgd_next_mapping(nextp, va, pa, sz, prot);
682 }
683 
684 static uintptr_t __init best_map_size(phys_addr_t pa, uintptr_t va,
685 				      phys_addr_t size)
686 {
687 	if (debug_pagealloc_enabled())
688 		return PAGE_SIZE;
689 
690 	if (pgtable_l5_enabled &&
691 	    !(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE)
692 		return P4D_SIZE;
693 
694 	if (pgtable_l4_enabled &&
695 	    !(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE)
696 		return PUD_SIZE;
697 
698 	if (IS_ENABLED(CONFIG_64BIT) &&
699 	    !(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE)
700 		return PMD_SIZE;
701 
702 	return PAGE_SIZE;
703 }
704 
705 #ifdef CONFIG_XIP_KERNEL
706 #define phys_ram_base  (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base))
707 extern char _xiprom[], _exiprom[], __data_loc;
708 
709 /* called from head.S with MMU off */
710 asmlinkage void __init __copy_data(void)
711 {
712 	void *from = (void *)(&__data_loc);
713 	void *to = (void *)CONFIG_PHYS_RAM_BASE;
714 	size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata));
715 
716 	memcpy(to, from, sz);
717 }
718 #endif
719 
720 #ifdef CONFIG_STRICT_KERNEL_RWX
721 static __init pgprot_t pgprot_from_va(uintptr_t va)
722 {
723 	if (is_va_kernel_text(va))
724 		return PAGE_KERNEL_READ_EXEC;
725 
726 	/*
727 	 * In 64-bit kernel, the kernel mapping is outside the linear mapping so
728 	 * we must protect its linear mapping alias from being executed and
729 	 * written.
730 	 * And rodata section is marked readonly in mark_rodata_ro.
731 	 */
732 	if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va))
733 		return PAGE_KERNEL_READ;
734 
735 	return PAGE_KERNEL;
736 }
737 
738 void mark_rodata_ro(void)
739 {
740 	set_kernel_memory(__start_rodata, _data, set_memory_ro);
741 	if (IS_ENABLED(CONFIG_64BIT))
742 		set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data),
743 				  set_memory_ro);
744 }
745 #else
746 static __init pgprot_t pgprot_from_va(uintptr_t va)
747 {
748 	if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va))
749 		return PAGE_KERNEL;
750 
751 	return PAGE_KERNEL_EXEC;
752 }
753 #endif /* CONFIG_STRICT_KERNEL_RWX */
754 
755 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
756 u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa);
757 
758 static void __init disable_pgtable_l5(void)
759 {
760 	pgtable_l5_enabled = false;
761 	kernel_map.page_offset = PAGE_OFFSET_L4;
762 	satp_mode = SATP_MODE_48;
763 }
764 
765 static void __init disable_pgtable_l4(void)
766 {
767 	pgtable_l4_enabled = false;
768 	kernel_map.page_offset = PAGE_OFFSET_L3;
769 	satp_mode = SATP_MODE_39;
770 }
771 
772 static int __init print_no4lvl(char *p)
773 {
774 	pr_info("Disabled 4-level and 5-level paging");
775 	return 0;
776 }
777 early_param("no4lvl", print_no4lvl);
778 
779 static int __init print_no5lvl(char *p)
780 {
781 	pr_info("Disabled 5-level paging");
782 	return 0;
783 }
784 early_param("no5lvl", print_no5lvl);
785 
786 static void __init set_mmap_rnd_bits_max(void)
787 {
788 	mmap_rnd_bits_max = MMAP_VA_BITS - PAGE_SHIFT - 3;
789 }
790 
791 /*
792  * There is a simple way to determine if 4-level is supported by the
793  * underlying hardware: establish 1:1 mapping in 4-level page table mode
794  * then read SATP to see if the configuration was taken into account
795  * meaning sv48 is supported.
796  */
797 static __init void set_satp_mode(uintptr_t dtb_pa)
798 {
799 	u64 identity_satp, hw_satp;
800 	uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK;
801 	u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa);
802 
803 	if (satp_mode_cmdline == SATP_MODE_57) {
804 		disable_pgtable_l5();
805 	} else if (satp_mode_cmdline == SATP_MODE_48) {
806 		disable_pgtable_l5();
807 		disable_pgtable_l4();
808 		return;
809 	}
810 
811 	create_p4d_mapping(early_p4d,
812 			set_satp_mode_pmd, (uintptr_t)early_pud,
813 			P4D_SIZE, PAGE_TABLE);
814 	create_pud_mapping(early_pud,
815 			   set_satp_mode_pmd, (uintptr_t)early_pmd,
816 			   PUD_SIZE, PAGE_TABLE);
817 	/* Handle the case where set_satp_mode straddles 2 PMDs */
818 	create_pmd_mapping(early_pmd,
819 			   set_satp_mode_pmd, set_satp_mode_pmd,
820 			   PMD_SIZE, PAGE_KERNEL_EXEC);
821 	create_pmd_mapping(early_pmd,
822 			   set_satp_mode_pmd + PMD_SIZE,
823 			   set_satp_mode_pmd + PMD_SIZE,
824 			   PMD_SIZE, PAGE_KERNEL_EXEC);
825 retry:
826 	create_pgd_mapping(early_pg_dir,
827 			   set_satp_mode_pmd,
828 			   pgtable_l5_enabled ?
829 				(uintptr_t)early_p4d : (uintptr_t)early_pud,
830 			   PGDIR_SIZE, PAGE_TABLE);
831 
832 	identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode;
833 
834 	local_flush_tlb_all();
835 	csr_write(CSR_SATP, identity_satp);
836 	hw_satp = csr_swap(CSR_SATP, 0ULL);
837 	local_flush_tlb_all();
838 
839 	if (hw_satp != identity_satp) {
840 		if (pgtable_l5_enabled) {
841 			disable_pgtable_l5();
842 			memset(early_pg_dir, 0, PAGE_SIZE);
843 			goto retry;
844 		}
845 		disable_pgtable_l4();
846 	}
847 
848 	memset(early_pg_dir, 0, PAGE_SIZE);
849 	memset(early_p4d, 0, PAGE_SIZE);
850 	memset(early_pud, 0, PAGE_SIZE);
851 	memset(early_pmd, 0, PAGE_SIZE);
852 }
853 #endif
854 
855 /*
856  * setup_vm() is called from head.S with MMU-off.
857  *
858  * Following requirements should be honoured for setup_vm() to work
859  * correctly:
860  * 1) It should use PC-relative addressing for accessing kernel symbols.
861  *    To achieve this we always use GCC cmodel=medany.
862  * 2) The compiler instrumentation for FTRACE will not work for setup_vm()
863  *    so disable compiler instrumentation when FTRACE is enabled.
864  *
865  * Currently, the above requirements are honoured by using custom CFLAGS
866  * for init.o in mm/Makefile.
867  */
868 
869 #ifndef __riscv_cmodel_medany
870 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing."
871 #endif
872 
873 #ifdef CONFIG_RELOCATABLE
874 extern unsigned long __rela_dyn_start, __rela_dyn_end;
875 
876 static void __init relocate_kernel(void)
877 {
878 	Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start;
879 	/*
880 	 * This holds the offset between the linked virtual address and the
881 	 * relocated virtual address.
882 	 */
883 	uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR;
884 	/*
885 	 * This holds the offset between kernel linked virtual address and
886 	 * physical address.
887 	 */
888 	uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr;
889 
890 	for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) {
891 		Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset);
892 		Elf64_Addr relocated_addr = rela->r_addend;
893 
894 		if (rela->r_info != R_RISCV_RELATIVE)
895 			continue;
896 
897 		/*
898 		 * Make sure to not relocate vdso symbols like rt_sigreturn
899 		 * which are linked from the address 0 in vmlinux since
900 		 * vdso symbol addresses are actually used as an offset from
901 		 * mm->context.vdso in VDSO_OFFSET macro.
902 		 */
903 		if (relocated_addr >= KERNEL_LINK_ADDR)
904 			relocated_addr += reloc_offset;
905 
906 		*(Elf64_Addr *)addr = relocated_addr;
907 	}
908 }
909 #endif /* CONFIG_RELOCATABLE */
910 
911 #ifdef CONFIG_XIP_KERNEL
912 static void __init create_kernel_page_table(pgd_t *pgdir,
913 					    __always_unused bool early)
914 {
915 	uintptr_t va, end_va;
916 
917 	/* Map the flash resident part */
918 	end_va = kernel_map.virt_addr + kernel_map.xiprom_sz;
919 	for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
920 		create_pgd_mapping(pgdir, va,
921 				   kernel_map.xiprom + (va - kernel_map.virt_addr),
922 				   PMD_SIZE, PAGE_KERNEL_EXEC);
923 
924 	/* Map the data in RAM */
925 	end_va = kernel_map.virt_addr + XIP_OFFSET + kernel_map.size;
926 	for (va = kernel_map.virt_addr + XIP_OFFSET; va < end_va; va += PMD_SIZE)
927 		create_pgd_mapping(pgdir, va,
928 				   kernel_map.phys_addr + (va - (kernel_map.virt_addr + XIP_OFFSET)),
929 				   PMD_SIZE, PAGE_KERNEL);
930 }
931 #else
932 static void __init create_kernel_page_table(pgd_t *pgdir, bool early)
933 {
934 	uintptr_t va, end_va;
935 
936 	end_va = kernel_map.virt_addr + kernel_map.size;
937 	for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
938 		create_pgd_mapping(pgdir, va,
939 				   kernel_map.phys_addr + (va - kernel_map.virt_addr),
940 				   PMD_SIZE,
941 				   early ?
942 					PAGE_KERNEL_EXEC : pgprot_from_va(va));
943 }
944 #endif
945 
946 /*
947  * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel,
948  * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR
949  * entry.
950  */
951 static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va,
952 					       uintptr_t dtb_pa)
953 {
954 #ifndef CONFIG_BUILTIN_DTB
955 	uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1);
956 
957 	/* Make sure the fdt fixmap address is always aligned on PMD size */
958 	BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE));
959 
960 	/* In 32-bit only, the fdt lies in its own PGD */
961 	if (!IS_ENABLED(CONFIG_64BIT)) {
962 		create_pgd_mapping(early_pg_dir, fix_fdt_va,
963 				   pa, MAX_FDT_SIZE, PAGE_KERNEL);
964 	} else {
965 		create_pmd_mapping(fixmap_pmd, fix_fdt_va,
966 				   pa, PMD_SIZE, PAGE_KERNEL);
967 		create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE,
968 				   pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL);
969 	}
970 
971 	dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1));
972 #else
973 	/*
974 	 * For 64-bit kernel, __va can't be used since it would return a linear
975 	 * mapping address whereas dtb_early_va will be used before
976 	 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the
977 	 * kernel is mapped in the linear mapping, that makes no difference.
978 	 */
979 	dtb_early_va = kernel_mapping_pa_to_va(dtb_pa);
980 #endif
981 
982 	dtb_early_pa = dtb_pa;
983 }
984 
985 /*
986  * MMU is not enabled, the page tables are allocated directly using
987  * early_pmd/pud/p4d and the address returned is the physical one.
988  */
989 static void __init pt_ops_set_early(void)
990 {
991 	pt_ops.alloc_pte = alloc_pte_early;
992 	pt_ops.get_pte_virt = get_pte_virt_early;
993 #ifndef __PAGETABLE_PMD_FOLDED
994 	pt_ops.alloc_pmd = alloc_pmd_early;
995 	pt_ops.get_pmd_virt = get_pmd_virt_early;
996 	pt_ops.alloc_pud = alloc_pud_early;
997 	pt_ops.get_pud_virt = get_pud_virt_early;
998 	pt_ops.alloc_p4d = alloc_p4d_early;
999 	pt_ops.get_p4d_virt = get_p4d_virt_early;
1000 #endif
1001 }
1002 
1003 /*
1004  * MMU is enabled but page table setup is not complete yet.
1005  * fixmap page table alloc functions must be used as a means to temporarily
1006  * map the allocated physical pages since the linear mapping does not exist yet.
1007  *
1008  * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va,
1009  * but it will be used as described above.
1010  */
1011 static void __init pt_ops_set_fixmap(void)
1012 {
1013 	pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap);
1014 	pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap);
1015 #ifndef __PAGETABLE_PMD_FOLDED
1016 	pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap);
1017 	pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap);
1018 	pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap);
1019 	pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap);
1020 	pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap);
1021 	pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap);
1022 #endif
1023 }
1024 
1025 /*
1026  * MMU is enabled and page table setup is complete, so from now, we can use
1027  * generic page allocation functions to setup page table.
1028  */
1029 static void __init pt_ops_set_late(void)
1030 {
1031 	pt_ops.alloc_pte = alloc_pte_late;
1032 	pt_ops.get_pte_virt = get_pte_virt_late;
1033 #ifndef __PAGETABLE_PMD_FOLDED
1034 	pt_ops.alloc_pmd = alloc_pmd_late;
1035 	pt_ops.get_pmd_virt = get_pmd_virt_late;
1036 	pt_ops.alloc_pud = alloc_pud_late;
1037 	pt_ops.get_pud_virt = get_pud_virt_late;
1038 	pt_ops.alloc_p4d = alloc_p4d_late;
1039 	pt_ops.get_p4d_virt = get_p4d_virt_late;
1040 #endif
1041 }
1042 
1043 #ifdef CONFIG_RANDOMIZE_BASE
1044 extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa);
1045 extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa);
1046 
1047 static int __init print_nokaslr(char *p)
1048 {
1049 	pr_info("Disabled KASLR");
1050 	return 0;
1051 }
1052 early_param("nokaslr", print_nokaslr);
1053 
1054 unsigned long kaslr_offset(void)
1055 {
1056 	return kernel_map.virt_offset;
1057 }
1058 #endif
1059 
1060 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1061 {
1062 	pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd;
1063 
1064 #ifdef CONFIG_RANDOMIZE_BASE
1065 	if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) {
1066 		u64 kaslr_seed = __pi_get_kaslr_seed(dtb_pa);
1067 		u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1068 		u32 nr_pos;
1069 
1070 		/*
1071 		 * Compute the number of positions available: we are limited
1072 		 * by the early page table that only has one PUD and we must
1073 		 * be aligned on PMD_SIZE.
1074 		 */
1075 		nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE;
1076 
1077 		kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE;
1078 	}
1079 #endif
1080 
1081 	kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset;
1082 
1083 #ifdef CONFIG_XIP_KERNEL
1084 #ifdef CONFIG_64BIT
1085 	kernel_map.page_offset = PAGE_OFFSET_L3;
1086 #else
1087 	kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
1088 #endif
1089 	kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR;
1090 	kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom);
1091 
1092 	phys_ram_base = CONFIG_PHYS_RAM_BASE;
1093 	kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE;
1094 	kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_sdata);
1095 
1096 	kernel_map.va_kernel_xip_pa_offset = kernel_map.virt_addr - kernel_map.xiprom;
1097 #else
1098 	kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
1099 	kernel_map.phys_addr = (uintptr_t)(&_start);
1100 	kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr;
1101 #endif
1102 
1103 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
1104 	set_satp_mode(dtb_pa);
1105 	set_mmap_rnd_bits_max();
1106 #endif
1107 
1108 	/*
1109 	 * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem,
1110 	 * where we have the system memory layout: this allows us to align
1111 	 * the physical and virtual mappings and then make use of PUD/P4D/PGD
1112 	 * for the linear mapping. This is only possible because the kernel
1113 	 * mapping lies outside the linear mapping.
1114 	 * In 32-bit however, as the kernel resides in the linear mapping,
1115 	 * setup_vm_final can not change the mapping established here,
1116 	 * otherwise the same kernel addresses would get mapped to different
1117 	 * physical addresses (if the start of dram is different from the
1118 	 * kernel physical address start).
1119 	 */
1120 	kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ?
1121 				0UL : PAGE_OFFSET - kernel_map.phys_addr;
1122 	kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr;
1123 
1124 	/*
1125 	 * The default maximal physical memory size is KERN_VIRT_SIZE for 32-bit
1126 	 * kernel, whereas for 64-bit kernel, the end of the virtual address
1127 	 * space is occupied by the modules/BPF/kernel mappings which reduces
1128 	 * the available size of the linear mapping.
1129 	 */
1130 	memory_limit = KERN_VIRT_SIZE - (IS_ENABLED(CONFIG_64BIT) ? SZ_4G : 0);
1131 
1132 	/* Sanity check alignment and size */
1133 	BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0);
1134 	BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0);
1135 
1136 #ifdef CONFIG_64BIT
1137 	/*
1138 	 * The last 4K bytes of the addressable memory can not be mapped because
1139 	 * of IS_ERR_VALUE macro.
1140 	 */
1141 	BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K);
1142 #endif
1143 
1144 #ifdef CONFIG_RELOCATABLE
1145 	/*
1146 	 * Early page table uses only one PUD, which makes it possible
1147 	 * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset
1148 	 * makes the kernel cross over a PUD_SIZE boundary, raise a bug
1149 	 * since a part of the kernel would not get mapped.
1150 	 */
1151 	BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size);
1152 	relocate_kernel();
1153 #endif
1154 
1155 	apply_early_boot_alternatives();
1156 	pt_ops_set_early();
1157 
1158 	/* Setup early PGD for fixmap */
1159 	create_pgd_mapping(early_pg_dir, FIXADDR_START,
1160 			   fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1161 
1162 #ifndef __PAGETABLE_PMD_FOLDED
1163 	/* Setup fixmap P4D and PUD */
1164 	if (pgtable_l5_enabled)
1165 		create_p4d_mapping(fixmap_p4d, FIXADDR_START,
1166 				   (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE);
1167 	/* Setup fixmap PUD and PMD */
1168 	if (pgtable_l4_enabled)
1169 		create_pud_mapping(fixmap_pud, FIXADDR_START,
1170 				   (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE);
1171 	create_pmd_mapping(fixmap_pmd, FIXADDR_START,
1172 			   (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE);
1173 	/* Setup trampoline PGD and PMD */
1174 	create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1175 			   trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1176 	if (pgtable_l5_enabled)
1177 		create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr,
1178 				   (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE);
1179 	if (pgtable_l4_enabled)
1180 		create_pud_mapping(trampoline_pud, kernel_map.virt_addr,
1181 				   (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE);
1182 #ifdef CONFIG_XIP_KERNEL
1183 	create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1184 			   kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC);
1185 #else
1186 	create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1187 			   kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC);
1188 #endif
1189 #else
1190 	/* Setup trampoline PGD */
1191 	create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1192 			   kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC);
1193 #endif
1194 
1195 	/*
1196 	 * Setup early PGD covering entire kernel which will allow
1197 	 * us to reach paging_init(). We map all memory banks later
1198 	 * in setup_vm_final() below.
1199 	 */
1200 	create_kernel_page_table(early_pg_dir, true);
1201 
1202 	/* Setup early mapping for FDT early scan */
1203 	create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa);
1204 
1205 	/*
1206 	 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap
1207 	 * range can not span multiple pmds.
1208 	 */
1209 	BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1210 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1211 
1212 #ifndef __PAGETABLE_PMD_FOLDED
1213 	/*
1214 	 * Early ioremap fixmap is already created as it lies within first 2MB
1215 	 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END
1216 	 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn
1217 	 * the user if not.
1218 	 */
1219 	fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))];
1220 	fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))];
1221 	if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) {
1222 		WARN_ON(1);
1223 		pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n",
1224 			pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd));
1225 		pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1226 			fix_to_virt(FIX_BTMAP_BEGIN));
1227 		pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n",
1228 			fix_to_virt(FIX_BTMAP_END));
1229 
1230 		pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
1231 		pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN);
1232 	}
1233 #endif
1234 
1235 	pt_ops_set_fixmap();
1236 }
1237 
1238 static void __init create_linear_mapping_range(phys_addr_t start,
1239 					       phys_addr_t end,
1240 					       uintptr_t fixed_map_size)
1241 {
1242 	phys_addr_t pa;
1243 	uintptr_t va, map_size;
1244 
1245 	for (pa = start; pa < end; pa += map_size) {
1246 		va = (uintptr_t)__va(pa);
1247 		map_size = fixed_map_size ? fixed_map_size :
1248 					    best_map_size(pa, va, end - pa);
1249 
1250 		create_pgd_mapping(swapper_pg_dir, va, pa, map_size,
1251 				   pgprot_from_va(va));
1252 	}
1253 }
1254 
1255 static void __init create_linear_mapping_page_table(void)
1256 {
1257 	phys_addr_t start, end;
1258 	phys_addr_t kfence_pool __maybe_unused;
1259 	u64 i;
1260 
1261 #ifdef CONFIG_STRICT_KERNEL_RWX
1262 	phys_addr_t ktext_start = __pa_symbol(_start);
1263 	phys_addr_t ktext_size = __init_data_begin - _start;
1264 	phys_addr_t krodata_start = __pa_symbol(__start_rodata);
1265 	phys_addr_t krodata_size = _data - __start_rodata;
1266 
1267 	/* Isolate kernel text and rodata so they don't get mapped with a PUD */
1268 	memblock_mark_nomap(ktext_start,  ktext_size);
1269 	memblock_mark_nomap(krodata_start, krodata_size);
1270 #endif
1271 
1272 #ifdef CONFIG_KFENCE
1273 	/*
1274 	 *  kfence pool must be backed by PAGE_SIZE mappings, so allocate it
1275 	 *  before we setup the linear mapping so that we avoid using hugepages
1276 	 *  for this region.
1277 	 */
1278 	kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
1279 	BUG_ON(!kfence_pool);
1280 
1281 	memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
1282 	__kfence_pool = __va(kfence_pool);
1283 #endif
1284 
1285 	/* Map all memory banks in the linear mapping */
1286 	for_each_mem_range(i, &start, &end) {
1287 		if (start >= end)
1288 			break;
1289 		if (start <= __pa(PAGE_OFFSET) &&
1290 		    __pa(PAGE_OFFSET) < end)
1291 			start = __pa(PAGE_OFFSET);
1292 		if (end >= __pa(PAGE_OFFSET) + memory_limit)
1293 			end = __pa(PAGE_OFFSET) + memory_limit;
1294 
1295 		create_linear_mapping_range(start, end, 0);
1296 	}
1297 
1298 #ifdef CONFIG_STRICT_KERNEL_RWX
1299 	create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0);
1300 	create_linear_mapping_range(krodata_start,
1301 				    krodata_start + krodata_size, 0);
1302 
1303 	memblock_clear_nomap(ktext_start,  ktext_size);
1304 	memblock_clear_nomap(krodata_start, krodata_size);
1305 #endif
1306 
1307 #ifdef CONFIG_KFENCE
1308 	create_linear_mapping_range(kfence_pool,
1309 				    kfence_pool + KFENCE_POOL_SIZE,
1310 				    PAGE_SIZE);
1311 
1312 	memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1313 #endif
1314 }
1315 
1316 static void __init setup_vm_final(void)
1317 {
1318 	/* Setup swapper PGD for fixmap */
1319 #if !defined(CONFIG_64BIT)
1320 	/*
1321 	 * In 32-bit, the device tree lies in a pgd entry, so it must be copied
1322 	 * directly in swapper_pg_dir in addition to the pgd entry that points
1323 	 * to fixmap_pte.
1324 	 */
1325 	unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT));
1326 
1327 	set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]);
1328 #endif
1329 	create_pgd_mapping(swapper_pg_dir, FIXADDR_START,
1330 			   __pa_symbol(fixmap_pgd_next),
1331 			   PGDIR_SIZE, PAGE_TABLE);
1332 
1333 	/* Map the linear mapping */
1334 	create_linear_mapping_page_table();
1335 
1336 	/* Map the kernel */
1337 	if (IS_ENABLED(CONFIG_64BIT))
1338 		create_kernel_page_table(swapper_pg_dir, false);
1339 
1340 #ifdef CONFIG_KASAN
1341 	kasan_swapper_init();
1342 #endif
1343 
1344 	/* Clear fixmap PTE and PMD mappings */
1345 	clear_fixmap(FIX_PTE);
1346 	clear_fixmap(FIX_PMD);
1347 	clear_fixmap(FIX_PUD);
1348 	clear_fixmap(FIX_P4D);
1349 
1350 	/* Move to swapper page table */
1351 	csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode);
1352 	local_flush_tlb_all();
1353 
1354 	pt_ops_set_late();
1355 }
1356 #else
1357 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1358 {
1359 	dtb_early_va = (void *)dtb_pa;
1360 	dtb_early_pa = dtb_pa;
1361 }
1362 
1363 static inline void setup_vm_final(void)
1364 {
1365 }
1366 #endif /* CONFIG_MMU */
1367 
1368 /*
1369  * reserve_crashkernel() - reserves memory for crash kernel
1370  *
1371  * This function reserves memory area given in "crashkernel=" kernel command
1372  * line parameter. The memory reserved is used by dump capture kernel when
1373  * primary kernel is crashing.
1374  */
1375 static void __init arch_reserve_crashkernel(void)
1376 {
1377 	unsigned long long low_size = 0;
1378 	unsigned long long crash_base, crash_size;
1379 	char *cmdline = boot_command_line;
1380 	bool high = false;
1381 	int ret;
1382 
1383 	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
1384 		return;
1385 
1386 	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
1387 				&crash_size, &crash_base,
1388 				&low_size, &high);
1389 	if (ret)
1390 		return;
1391 
1392 	reserve_crashkernel_generic(cmdline, crash_size, crash_base,
1393 				    low_size, high);
1394 }
1395 
1396 void __init paging_init(void)
1397 {
1398 	setup_bootmem();
1399 	setup_vm_final();
1400 
1401 	/* Depend on that Linear Mapping is ready */
1402 	memblock_allow_resize();
1403 }
1404 
1405 void __init misc_mem_init(void)
1406 {
1407 	early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
1408 	arch_numa_init();
1409 	sparse_init();
1410 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1411 	/* The entire VMEMMAP region has been populated. Flush TLB for this region */
1412 	local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END);
1413 #endif
1414 	zone_sizes_init();
1415 	arch_reserve_crashkernel();
1416 	memblock_dump_all();
1417 }
1418 
1419 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1420 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1421 			       unsigned long addr, unsigned long next)
1422 {
1423 	pmd_set_huge(pmd, virt_to_phys(p), PAGE_KERNEL);
1424 }
1425 
1426 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1427 				unsigned long addr, unsigned long next)
1428 {
1429 	vmemmap_verify((pte_t *)pmdp, node, addr, next);
1430 	return 1;
1431 }
1432 
1433 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1434 			       struct vmem_altmap *altmap)
1435 {
1436 	/*
1437 	 * Note that SPARSEMEM_VMEMMAP is only selected for rv64 and that we
1438 	 * can't use hugepage mappings for 2-level page table because in case of
1439 	 * memory hotplug, we are not able to update all the page tables with
1440 	 * the new PMDs.
1441 	 */
1442 	return vmemmap_populate_hugepages(start, end, node, NULL);
1443 }
1444 #endif
1445 
1446 #if defined(CONFIG_MMU) && defined(CONFIG_64BIT)
1447 /*
1448  * Pre-allocates page-table pages for a specific area in the kernel
1449  * page-table. Only the level which needs to be synchronized between
1450  * all page-tables is allocated because the synchronization can be
1451  * expensive.
1452  */
1453 static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end,
1454 					       const char *area)
1455 {
1456 	unsigned long addr;
1457 	const char *lvl;
1458 
1459 	for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1460 		pgd_t *pgd = pgd_offset_k(addr);
1461 		p4d_t *p4d;
1462 		pud_t *pud;
1463 		pmd_t *pmd;
1464 
1465 		lvl = "p4d";
1466 		p4d = p4d_alloc(&init_mm, pgd, addr);
1467 		if (!p4d)
1468 			goto failed;
1469 
1470 		if (pgtable_l5_enabled)
1471 			continue;
1472 
1473 		lvl = "pud";
1474 		pud = pud_alloc(&init_mm, p4d, addr);
1475 		if (!pud)
1476 			goto failed;
1477 
1478 		if (pgtable_l4_enabled)
1479 			continue;
1480 
1481 		lvl = "pmd";
1482 		pmd = pmd_alloc(&init_mm, pud, addr);
1483 		if (!pmd)
1484 			goto failed;
1485 	}
1486 	return;
1487 
1488 failed:
1489 	/*
1490 	 * The pages have to be there now or they will be missing in
1491 	 * process page-tables later.
1492 	 */
1493 	panic("Failed to pre-allocate %s pages for %s area\n", lvl, area);
1494 }
1495 
1496 void __init pgtable_cache_init(void)
1497 {
1498 	preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc");
1499 	if (IS_ENABLED(CONFIG_MODULES))
1500 		preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules");
1501 }
1502 #endif
1503 
1504 #ifdef CONFIG_EXECMEM
1505 #ifdef CONFIG_MMU
1506 static struct execmem_info execmem_info __ro_after_init;
1507 
1508 struct execmem_info __init *execmem_arch_setup(void)
1509 {
1510 	execmem_info = (struct execmem_info){
1511 		.ranges = {
1512 			[EXECMEM_DEFAULT] = {
1513 				.start	= MODULES_VADDR,
1514 				.end	= MODULES_END,
1515 				.pgprot	= PAGE_KERNEL,
1516 				.alignment = 1,
1517 			},
1518 			[EXECMEM_KPROBES] = {
1519 				.start	= VMALLOC_START,
1520 				.end	= VMALLOC_END,
1521 				.pgprot	= PAGE_KERNEL_READ_EXEC,
1522 				.alignment = 1,
1523 			},
1524 			[EXECMEM_BPF] = {
1525 				.start	= BPF_JIT_REGION_START,
1526 				.end	= BPF_JIT_REGION_END,
1527 				.pgprot	= PAGE_KERNEL,
1528 				.alignment = PAGE_SIZE,
1529 			},
1530 		},
1531 	};
1532 
1533 	return &execmem_info;
1534 }
1535 #endif /* CONFIG_MMU */
1536 #endif /* CONFIG_EXECMEM */
1537