1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 5 * Copyright (C) 2020 FORTH-ICS/CARV 6 * Nick Kossifidis <mick@ics.forth.gr> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/memblock.h> 12 #include <linux/initrd.h> 13 #include <linux/swap.h> 14 #include <linux/swiotlb.h> 15 #include <linux/sizes.h> 16 #include <linux/of_fdt.h> 17 #include <linux/of_reserved_mem.h> 18 #include <linux/libfdt.h> 19 #include <linux/set_memory.h> 20 #include <linux/dma-map-ops.h> 21 #include <linux/crash_dump.h> 22 #include <linux/hugetlb.h> 23 #ifdef CONFIG_RELOCATABLE 24 #include <linux/elf.h> 25 #endif 26 #include <linux/kfence.h> 27 #include <linux/execmem.h> 28 29 #include <asm/fixmap.h> 30 #include <asm/io.h> 31 #include <asm/kasan.h> 32 #include <asm/numa.h> 33 #include <asm/pgtable.h> 34 #include <asm/sections.h> 35 #include <asm/soc.h> 36 #include <asm/sparsemem.h> 37 #include <asm/tlbflush.h> 38 39 #include "../kernel/head.h" 40 41 u64 new_vmalloc[NR_CPUS / sizeof(u64) + 1]; 42 43 struct kernel_mapping kernel_map __ro_after_init; 44 EXPORT_SYMBOL(kernel_map); 45 #ifdef CONFIG_XIP_KERNEL 46 #define kernel_map (*(struct kernel_mapping *)XIP_FIXUP(&kernel_map)) 47 #endif 48 49 #ifdef CONFIG_64BIT 50 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39; 51 #else 52 u64 satp_mode __ro_after_init = SATP_MODE_32; 53 #endif 54 EXPORT_SYMBOL(satp_mode); 55 56 #ifdef CONFIG_64BIT 57 bool pgtable_l4_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL); 58 bool pgtable_l5_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL); 59 EXPORT_SYMBOL(pgtable_l4_enabled); 60 EXPORT_SYMBOL(pgtable_l5_enabled); 61 #endif 62 63 phys_addr_t phys_ram_base __ro_after_init; 64 EXPORT_SYMBOL(phys_ram_base); 65 66 #ifdef CONFIG_SPARSEMEM_VMEMMAP 67 #define VMEMMAP_ADDR_ALIGN (1ULL << SECTION_SIZE_BITS) 68 69 unsigned long vmemmap_start_pfn __ro_after_init; 70 EXPORT_SYMBOL(vmemmap_start_pfn); 71 #endif 72 73 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 74 __page_aligned_bss; 75 EXPORT_SYMBOL(empty_zero_page); 76 77 extern char _start[]; 78 void *_dtb_early_va __initdata; 79 uintptr_t _dtb_early_pa __initdata; 80 81 phys_addr_t dma32_phys_limit __initdata; 82 83 static void __init zone_sizes_init(void) 84 { 85 unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, }; 86 87 #ifdef CONFIG_ZONE_DMA32 88 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); 89 #endif 90 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 91 92 free_area_init(max_zone_pfns); 93 } 94 95 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM) 96 97 #define LOG2_SZ_1K ilog2(SZ_1K) 98 #define LOG2_SZ_1M ilog2(SZ_1M) 99 #define LOG2_SZ_1G ilog2(SZ_1G) 100 #define LOG2_SZ_1T ilog2(SZ_1T) 101 102 static inline void print_mlk(char *name, unsigned long b, unsigned long t) 103 { 104 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t, 105 (((t) - (b)) >> LOG2_SZ_1K)); 106 } 107 108 static inline void print_mlm(char *name, unsigned long b, unsigned long t) 109 { 110 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t, 111 (((t) - (b)) >> LOG2_SZ_1M)); 112 } 113 114 static inline void print_mlg(char *name, unsigned long b, unsigned long t) 115 { 116 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld GB)\n", name, b, t, 117 (((t) - (b)) >> LOG2_SZ_1G)); 118 } 119 120 #ifdef CONFIG_64BIT 121 static inline void print_mlt(char *name, unsigned long b, unsigned long t) 122 { 123 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld TB)\n", name, b, t, 124 (((t) - (b)) >> LOG2_SZ_1T)); 125 } 126 #else 127 #define print_mlt(n, b, t) do {} while (0) 128 #endif 129 130 static inline void print_ml(char *name, unsigned long b, unsigned long t) 131 { 132 unsigned long diff = t - b; 133 134 if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10) 135 print_mlt(name, b, t); 136 else if ((diff >> LOG2_SZ_1G) >= 10) 137 print_mlg(name, b, t); 138 else if ((diff >> LOG2_SZ_1M) >= 10) 139 print_mlm(name, b, t); 140 else 141 print_mlk(name, b, t); 142 } 143 144 static void __init print_vm_layout(void) 145 { 146 pr_notice("Virtual kernel memory layout:\n"); 147 print_ml("fixmap", (unsigned long)FIXADDR_START, 148 (unsigned long)FIXADDR_TOP); 149 print_ml("pci io", (unsigned long)PCI_IO_START, 150 (unsigned long)PCI_IO_END); 151 print_ml("vmemmap", (unsigned long)VMEMMAP_START, 152 (unsigned long)VMEMMAP_END); 153 print_ml("vmalloc", (unsigned long)VMALLOC_START, 154 (unsigned long)VMALLOC_END); 155 #ifdef CONFIG_64BIT 156 print_ml("modules", (unsigned long)MODULES_VADDR, 157 (unsigned long)MODULES_END); 158 #endif 159 print_ml("lowmem", (unsigned long)PAGE_OFFSET, 160 (unsigned long)high_memory); 161 if (IS_ENABLED(CONFIG_64BIT)) { 162 #ifdef CONFIG_KASAN 163 print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END); 164 #endif 165 166 print_ml("kernel", (unsigned long)kernel_map.virt_addr, 167 (unsigned long)ADDRESS_SPACE_END); 168 } 169 } 170 #else 171 static void print_vm_layout(void) { } 172 #endif /* CONFIG_DEBUG_VM */ 173 174 void __init mem_init(void) 175 { 176 bool swiotlb = max_pfn > PFN_DOWN(dma32_phys_limit); 177 #ifdef CONFIG_FLATMEM 178 BUG_ON(!mem_map); 179 #endif /* CONFIG_FLATMEM */ 180 181 if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb && 182 dma_cache_alignment != 1) { 183 /* 184 * If no bouncing needed for ZONE_DMA, allocate 1MB swiotlb 185 * buffer per 1GB of RAM for kmalloc() bouncing on 186 * non-coherent platforms. 187 */ 188 unsigned long size = 189 DIV_ROUND_UP(memblock_phys_mem_size(), 1024); 190 swiotlb_adjust_size(min(swiotlb_size_or_default(), size)); 191 swiotlb = true; 192 } 193 194 swiotlb_init(swiotlb, SWIOTLB_VERBOSE); 195 memblock_free_all(); 196 197 print_vm_layout(); 198 } 199 200 /* Limit the memory size via mem. */ 201 static phys_addr_t memory_limit; 202 #ifdef CONFIG_XIP_KERNEL 203 #define memory_limit (*(phys_addr_t *)XIP_FIXUP(&memory_limit)) 204 #endif /* CONFIG_XIP_KERNEL */ 205 206 static int __init early_mem(char *p) 207 { 208 u64 size; 209 210 if (!p) 211 return 1; 212 213 size = memparse(p, &p) & PAGE_MASK; 214 memory_limit = min_t(u64, size, memory_limit); 215 216 pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20); 217 218 return 0; 219 } 220 early_param("mem", early_mem); 221 222 static void __init setup_bootmem(void) 223 { 224 phys_addr_t vmlinux_end = __pa_symbol(&_end); 225 phys_addr_t max_mapped_addr; 226 phys_addr_t phys_ram_end, vmlinux_start; 227 228 if (IS_ENABLED(CONFIG_XIP_KERNEL)) 229 vmlinux_start = __pa_symbol(&_sdata); 230 else 231 vmlinux_start = __pa_symbol(&_start); 232 233 memblock_enforce_memory_limit(memory_limit); 234 235 /* 236 * Make sure we align the reservation on PMD_SIZE since we will 237 * map the kernel in the linear mapping as read-only: we do not want 238 * any allocation to happen between _end and the next pmd aligned page. 239 */ 240 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX)) 241 vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK; 242 /* 243 * Reserve from the start of the kernel to the end of the kernel 244 */ 245 memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start); 246 247 /* 248 * Make sure we align the start of the memory on a PMD boundary so that 249 * at worst, we map the linear mapping with PMD mappings. 250 */ 251 if (!IS_ENABLED(CONFIG_XIP_KERNEL)) { 252 phys_ram_base = memblock_start_of_DRAM() & PMD_MASK; 253 #ifdef CONFIG_SPARSEMEM_VMEMMAP 254 vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT; 255 #endif 256 } 257 258 /* 259 * In 64-bit, any use of __va/__pa before this point is wrong as we 260 * did not know the start of DRAM before. 261 */ 262 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) 263 kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base; 264 265 /* 266 * The size of the linear page mapping may restrict the amount of 267 * usable RAM. 268 */ 269 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) { 270 max_mapped_addr = __pa(PAGE_OFFSET) + KERN_VIRT_SIZE; 271 memblock_cap_memory_range(phys_ram_base, 272 max_mapped_addr - phys_ram_base); 273 } 274 275 /* 276 * Reserve physical address space that would be mapped to virtual 277 * addresses greater than (void *)(-PAGE_SIZE) because: 278 * - This memory would overlap with ERR_PTR 279 * - This memory belongs to high memory, which is not supported 280 * 281 * This is not applicable to 64-bit kernel, because virtual addresses 282 * after (void *)(-PAGE_SIZE) are not linearly mapped: they are 283 * occupied by kernel mapping. Also it is unrealistic for high memory 284 * to exist on 64-bit platforms. 285 */ 286 if (!IS_ENABLED(CONFIG_64BIT)) { 287 max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE); 288 memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr); 289 } 290 291 phys_ram_end = memblock_end_of_DRAM(); 292 min_low_pfn = PFN_UP(phys_ram_base); 293 max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end); 294 high_memory = (void *)(__va(PFN_PHYS(max_low_pfn))); 295 296 dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn)); 297 set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET); 298 299 reserve_initrd_mem(); 300 301 /* 302 * No allocation should be done before reserving the memory as defined 303 * in the device tree, otherwise the allocation could end up in a 304 * reserved region. 305 */ 306 early_init_fdt_scan_reserved_mem(); 307 308 /* 309 * If DTB is built in, no need to reserve its memblock. 310 * Otherwise, do reserve it but avoid using 311 * early_init_fdt_reserve_self() since __pa() does 312 * not work for DTB pointers that are fixmap addresses 313 */ 314 if (!IS_ENABLED(CONFIG_BUILTIN_DTB)) 315 memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va)); 316 317 dma_contiguous_reserve(dma32_phys_limit); 318 if (IS_ENABLED(CONFIG_64BIT)) 319 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 320 } 321 322 #ifdef CONFIG_MMU 323 struct pt_alloc_ops pt_ops __meminitdata; 324 325 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss; 326 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss; 327 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss; 328 329 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE); 330 331 #ifdef CONFIG_XIP_KERNEL 332 #define pt_ops (*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops)) 333 #define trampoline_pg_dir ((pgd_t *)XIP_FIXUP(trampoline_pg_dir)) 334 #define fixmap_pte ((pte_t *)XIP_FIXUP(fixmap_pte)) 335 #define early_pg_dir ((pgd_t *)XIP_FIXUP(early_pg_dir)) 336 #endif /* CONFIG_XIP_KERNEL */ 337 338 static const pgprot_t protection_map[16] = { 339 [VM_NONE] = PAGE_NONE, 340 [VM_READ] = PAGE_READ, 341 [VM_WRITE] = PAGE_COPY, 342 [VM_WRITE | VM_READ] = PAGE_COPY, 343 [VM_EXEC] = PAGE_EXEC, 344 [VM_EXEC | VM_READ] = PAGE_READ_EXEC, 345 [VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC, 346 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_EXEC, 347 [VM_SHARED] = PAGE_NONE, 348 [VM_SHARED | VM_READ] = PAGE_READ, 349 [VM_SHARED | VM_WRITE] = PAGE_SHARED, 350 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED, 351 [VM_SHARED | VM_EXEC] = PAGE_EXEC, 352 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READ_EXEC, 353 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC, 354 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC 355 }; 356 DECLARE_VM_GET_PAGE_PROT 357 358 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) 359 { 360 unsigned long addr = __fix_to_virt(idx); 361 pte_t *ptep; 362 363 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses); 364 365 ptep = &fixmap_pte[pte_index(addr)]; 366 367 if (pgprot_val(prot)) 368 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); 369 else 370 pte_clear(&init_mm, addr, ptep); 371 local_flush_tlb_page(addr); 372 } 373 374 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa) 375 { 376 return (pte_t *)((uintptr_t)pa); 377 } 378 379 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa) 380 { 381 clear_fixmap(FIX_PTE); 382 return (pte_t *)set_fixmap_offset(FIX_PTE, pa); 383 } 384 385 static inline pte_t *__meminit get_pte_virt_late(phys_addr_t pa) 386 { 387 return (pte_t *) __va(pa); 388 } 389 390 static inline phys_addr_t __init alloc_pte_early(uintptr_t va) 391 { 392 /* 393 * We only create PMD or PGD early mappings so we 394 * should never reach here with MMU disabled. 395 */ 396 BUG(); 397 } 398 399 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va) 400 { 401 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 402 } 403 404 static phys_addr_t __meminit alloc_pte_late(uintptr_t va) 405 { 406 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0); 407 408 BUG_ON(!ptdesc || !pagetable_pte_ctor(ptdesc)); 409 return __pa((pte_t *)ptdesc_address(ptdesc)); 410 } 411 412 static void __meminit create_pte_mapping(pte_t *ptep, uintptr_t va, phys_addr_t pa, phys_addr_t sz, 413 pgprot_t prot) 414 { 415 uintptr_t pte_idx = pte_index(va); 416 417 BUG_ON(sz != PAGE_SIZE); 418 419 if (pte_none(ptep[pte_idx])) 420 ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot); 421 } 422 423 #ifndef __PAGETABLE_PMD_FOLDED 424 425 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss; 426 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss; 427 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE); 428 429 #ifdef CONFIG_XIP_KERNEL 430 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd)) 431 #define fixmap_pmd ((pmd_t *)XIP_FIXUP(fixmap_pmd)) 432 #define early_pmd ((pmd_t *)XIP_FIXUP(early_pmd)) 433 #endif /* CONFIG_XIP_KERNEL */ 434 435 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss; 436 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss; 437 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE); 438 439 #ifdef CONFIG_XIP_KERNEL 440 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d)) 441 #define fixmap_p4d ((p4d_t *)XIP_FIXUP(fixmap_p4d)) 442 #define early_p4d ((p4d_t *)XIP_FIXUP(early_p4d)) 443 #endif /* CONFIG_XIP_KERNEL */ 444 445 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss; 446 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss; 447 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE); 448 449 #ifdef CONFIG_XIP_KERNEL 450 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud)) 451 #define fixmap_pud ((pud_t *)XIP_FIXUP(fixmap_pud)) 452 #define early_pud ((pud_t *)XIP_FIXUP(early_pud)) 453 #endif /* CONFIG_XIP_KERNEL */ 454 455 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa) 456 { 457 /* Before MMU is enabled */ 458 return (pmd_t *)((uintptr_t)pa); 459 } 460 461 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa) 462 { 463 clear_fixmap(FIX_PMD); 464 return (pmd_t *)set_fixmap_offset(FIX_PMD, pa); 465 } 466 467 static pmd_t *__meminit get_pmd_virt_late(phys_addr_t pa) 468 { 469 return (pmd_t *) __va(pa); 470 } 471 472 static phys_addr_t __init alloc_pmd_early(uintptr_t va) 473 { 474 BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT); 475 476 return (uintptr_t)early_pmd; 477 } 478 479 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va) 480 { 481 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 482 } 483 484 static phys_addr_t __meminit alloc_pmd_late(uintptr_t va) 485 { 486 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0); 487 488 BUG_ON(!ptdesc || !pagetable_pmd_ctor(ptdesc)); 489 return __pa((pmd_t *)ptdesc_address(ptdesc)); 490 } 491 492 static void __meminit create_pmd_mapping(pmd_t *pmdp, 493 uintptr_t va, phys_addr_t pa, 494 phys_addr_t sz, pgprot_t prot) 495 { 496 pte_t *ptep; 497 phys_addr_t pte_phys; 498 uintptr_t pmd_idx = pmd_index(va); 499 500 if (sz == PMD_SIZE) { 501 if (pmd_none(pmdp[pmd_idx])) 502 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot); 503 return; 504 } 505 506 if (pmd_none(pmdp[pmd_idx])) { 507 pte_phys = pt_ops.alloc_pte(va); 508 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE); 509 ptep = pt_ops.get_pte_virt(pte_phys); 510 memset(ptep, 0, PAGE_SIZE); 511 } else { 512 pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx])); 513 ptep = pt_ops.get_pte_virt(pte_phys); 514 } 515 516 create_pte_mapping(ptep, va, pa, sz, prot); 517 } 518 519 static pud_t *__init get_pud_virt_early(phys_addr_t pa) 520 { 521 return (pud_t *)((uintptr_t)pa); 522 } 523 524 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa) 525 { 526 clear_fixmap(FIX_PUD); 527 return (pud_t *)set_fixmap_offset(FIX_PUD, pa); 528 } 529 530 static pud_t *__meminit get_pud_virt_late(phys_addr_t pa) 531 { 532 return (pud_t *)__va(pa); 533 } 534 535 static phys_addr_t __init alloc_pud_early(uintptr_t va) 536 { 537 /* Only one PUD is available for early mapping */ 538 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); 539 540 return (uintptr_t)early_pud; 541 } 542 543 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va) 544 { 545 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 546 } 547 548 static phys_addr_t __meminit alloc_pud_late(uintptr_t va) 549 { 550 unsigned long vaddr; 551 552 vaddr = __get_free_page(GFP_KERNEL); 553 BUG_ON(!vaddr); 554 return __pa(vaddr); 555 } 556 557 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa) 558 { 559 return (p4d_t *)((uintptr_t)pa); 560 } 561 562 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa) 563 { 564 clear_fixmap(FIX_P4D); 565 return (p4d_t *)set_fixmap_offset(FIX_P4D, pa); 566 } 567 568 static p4d_t *__meminit get_p4d_virt_late(phys_addr_t pa) 569 { 570 return (p4d_t *)__va(pa); 571 } 572 573 static phys_addr_t __init alloc_p4d_early(uintptr_t va) 574 { 575 /* Only one P4D is available for early mapping */ 576 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); 577 578 return (uintptr_t)early_p4d; 579 } 580 581 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va) 582 { 583 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); 584 } 585 586 static phys_addr_t __meminit alloc_p4d_late(uintptr_t va) 587 { 588 unsigned long vaddr; 589 590 vaddr = __get_free_page(GFP_KERNEL); 591 BUG_ON(!vaddr); 592 return __pa(vaddr); 593 } 594 595 static void __meminit create_pud_mapping(pud_t *pudp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, 596 pgprot_t prot) 597 { 598 pmd_t *nextp; 599 phys_addr_t next_phys; 600 uintptr_t pud_index = pud_index(va); 601 602 if (sz == PUD_SIZE) { 603 if (pud_val(pudp[pud_index]) == 0) 604 pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot); 605 return; 606 } 607 608 if (pud_val(pudp[pud_index]) == 0) { 609 next_phys = pt_ops.alloc_pmd(va); 610 pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE); 611 nextp = pt_ops.get_pmd_virt(next_phys); 612 memset(nextp, 0, PAGE_SIZE); 613 } else { 614 next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index])); 615 nextp = pt_ops.get_pmd_virt(next_phys); 616 } 617 618 create_pmd_mapping(nextp, va, pa, sz, prot); 619 } 620 621 static void __meminit create_p4d_mapping(p4d_t *p4dp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, 622 pgprot_t prot) 623 { 624 pud_t *nextp; 625 phys_addr_t next_phys; 626 uintptr_t p4d_index = p4d_index(va); 627 628 if (sz == P4D_SIZE) { 629 if (p4d_val(p4dp[p4d_index]) == 0) 630 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot); 631 return; 632 } 633 634 if (p4d_val(p4dp[p4d_index]) == 0) { 635 next_phys = pt_ops.alloc_pud(va); 636 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE); 637 nextp = pt_ops.get_pud_virt(next_phys); 638 memset(nextp, 0, PAGE_SIZE); 639 } else { 640 next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index])); 641 nextp = pt_ops.get_pud_virt(next_phys); 642 } 643 644 create_pud_mapping(nextp, va, pa, sz, prot); 645 } 646 647 #define pgd_next_t p4d_t 648 #define alloc_pgd_next(__va) (pgtable_l5_enabled ? \ 649 pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ? \ 650 pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va))) 651 #define get_pgd_next_virt(__pa) (pgtable_l5_enabled ? \ 652 pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ? \ 653 pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa))) 654 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ 655 (pgtable_l5_enabled ? \ 656 create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \ 657 (pgtable_l4_enabled ? \ 658 create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) : \ 659 create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot))) 660 #define fixmap_pgd_next (pgtable_l5_enabled ? \ 661 (uintptr_t)fixmap_p4d : (pgtable_l4_enabled ? \ 662 (uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd)) 663 #define trampoline_pgd_next (pgtable_l5_enabled ? \ 664 (uintptr_t)trampoline_p4d : (pgtable_l4_enabled ? \ 665 (uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd)) 666 #else 667 #define pgd_next_t pte_t 668 #define alloc_pgd_next(__va) pt_ops.alloc_pte(__va) 669 #define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa) 670 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ 671 create_pte_mapping(__nextp, __va, __pa, __sz, __prot) 672 #define fixmap_pgd_next ((uintptr_t)fixmap_pte) 673 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 674 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 675 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) 676 #endif /* __PAGETABLE_PMD_FOLDED */ 677 678 void __meminit create_pgd_mapping(pgd_t *pgdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, 679 pgprot_t prot) 680 { 681 pgd_next_t *nextp; 682 phys_addr_t next_phys; 683 uintptr_t pgd_idx = pgd_index(va); 684 685 if (sz == PGDIR_SIZE) { 686 if (pgd_val(pgdp[pgd_idx]) == 0) 687 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot); 688 return; 689 } 690 691 if (pgd_val(pgdp[pgd_idx]) == 0) { 692 next_phys = alloc_pgd_next(va); 693 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE); 694 nextp = get_pgd_next_virt(next_phys); 695 memset(nextp, 0, PAGE_SIZE); 696 } else { 697 next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx])); 698 nextp = get_pgd_next_virt(next_phys); 699 } 700 701 create_pgd_next_mapping(nextp, va, pa, sz, prot); 702 } 703 704 static uintptr_t __meminit best_map_size(phys_addr_t pa, uintptr_t va, phys_addr_t size) 705 { 706 if (debug_pagealloc_enabled()) 707 return PAGE_SIZE; 708 709 if (pgtable_l5_enabled && 710 !(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE) 711 return P4D_SIZE; 712 713 if (pgtable_l4_enabled && 714 !(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE) 715 return PUD_SIZE; 716 717 if (IS_ENABLED(CONFIG_64BIT) && 718 !(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE) 719 return PMD_SIZE; 720 721 return PAGE_SIZE; 722 } 723 724 #ifdef CONFIG_XIP_KERNEL 725 #define phys_ram_base (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base)) 726 extern char _xiprom[], _exiprom[], __data_loc; 727 728 /* called from head.S with MMU off */ 729 asmlinkage void __init __copy_data(void) 730 { 731 void *from = (void *)(&__data_loc); 732 void *to = (void *)CONFIG_PHYS_RAM_BASE; 733 size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata)); 734 735 memcpy(to, from, sz); 736 } 737 #endif 738 739 #ifdef CONFIG_STRICT_KERNEL_RWX 740 static __meminit pgprot_t pgprot_from_va(uintptr_t va) 741 { 742 if (is_va_kernel_text(va)) 743 return PAGE_KERNEL_READ_EXEC; 744 745 /* 746 * In 64-bit kernel, the kernel mapping is outside the linear mapping so 747 * we must protect its linear mapping alias from being executed and 748 * written. 749 * And rodata section is marked readonly in mark_rodata_ro. 750 */ 751 if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va)) 752 return PAGE_KERNEL_READ; 753 754 return PAGE_KERNEL; 755 } 756 757 void mark_rodata_ro(void) 758 { 759 set_kernel_memory(__start_rodata, _data, set_memory_ro); 760 if (IS_ENABLED(CONFIG_64BIT)) 761 set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data), 762 set_memory_ro); 763 } 764 #else 765 static __meminit pgprot_t pgprot_from_va(uintptr_t va) 766 { 767 if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va)) 768 return PAGE_KERNEL; 769 770 return PAGE_KERNEL_EXEC; 771 } 772 #endif /* CONFIG_STRICT_KERNEL_RWX */ 773 774 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) 775 u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa); 776 777 static void __init disable_pgtable_l5(void) 778 { 779 pgtable_l5_enabled = false; 780 kernel_map.page_offset = PAGE_OFFSET_L4; 781 satp_mode = SATP_MODE_48; 782 } 783 784 static void __init disable_pgtable_l4(void) 785 { 786 pgtable_l4_enabled = false; 787 kernel_map.page_offset = PAGE_OFFSET_L3; 788 satp_mode = SATP_MODE_39; 789 } 790 791 static int __init print_no4lvl(char *p) 792 { 793 pr_info("Disabled 4-level and 5-level paging"); 794 return 0; 795 } 796 early_param("no4lvl", print_no4lvl); 797 798 static int __init print_no5lvl(char *p) 799 { 800 pr_info("Disabled 5-level paging"); 801 return 0; 802 } 803 early_param("no5lvl", print_no5lvl); 804 805 static void __init set_mmap_rnd_bits_max(void) 806 { 807 mmap_rnd_bits_max = MMAP_VA_BITS - PAGE_SHIFT - 3; 808 } 809 810 /* 811 * There is a simple way to determine if 4-level is supported by the 812 * underlying hardware: establish 1:1 mapping in 4-level page table mode 813 * then read SATP to see if the configuration was taken into account 814 * meaning sv48 is supported. 815 */ 816 static __init void set_satp_mode(uintptr_t dtb_pa) 817 { 818 u64 identity_satp, hw_satp; 819 uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK; 820 u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa); 821 822 if (satp_mode_cmdline == SATP_MODE_57) { 823 disable_pgtable_l5(); 824 } else if (satp_mode_cmdline == SATP_MODE_48) { 825 disable_pgtable_l5(); 826 disable_pgtable_l4(); 827 return; 828 } 829 830 create_p4d_mapping(early_p4d, 831 set_satp_mode_pmd, (uintptr_t)early_pud, 832 P4D_SIZE, PAGE_TABLE); 833 create_pud_mapping(early_pud, 834 set_satp_mode_pmd, (uintptr_t)early_pmd, 835 PUD_SIZE, PAGE_TABLE); 836 /* Handle the case where set_satp_mode straddles 2 PMDs */ 837 create_pmd_mapping(early_pmd, 838 set_satp_mode_pmd, set_satp_mode_pmd, 839 PMD_SIZE, PAGE_KERNEL_EXEC); 840 create_pmd_mapping(early_pmd, 841 set_satp_mode_pmd + PMD_SIZE, 842 set_satp_mode_pmd + PMD_SIZE, 843 PMD_SIZE, PAGE_KERNEL_EXEC); 844 retry: 845 create_pgd_mapping(early_pg_dir, 846 set_satp_mode_pmd, 847 pgtable_l5_enabled ? 848 (uintptr_t)early_p4d : (uintptr_t)early_pud, 849 PGDIR_SIZE, PAGE_TABLE); 850 851 identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode; 852 853 local_flush_tlb_all(); 854 csr_write(CSR_SATP, identity_satp); 855 hw_satp = csr_swap(CSR_SATP, 0ULL); 856 local_flush_tlb_all(); 857 858 if (hw_satp != identity_satp) { 859 if (pgtable_l5_enabled) { 860 disable_pgtable_l5(); 861 memset(early_pg_dir, 0, PAGE_SIZE); 862 goto retry; 863 } 864 disable_pgtable_l4(); 865 } 866 867 memset(early_pg_dir, 0, PAGE_SIZE); 868 memset(early_p4d, 0, PAGE_SIZE); 869 memset(early_pud, 0, PAGE_SIZE); 870 memset(early_pmd, 0, PAGE_SIZE); 871 } 872 #endif 873 874 /* 875 * setup_vm() is called from head.S with MMU-off. 876 * 877 * Following requirements should be honoured for setup_vm() to work 878 * correctly: 879 * 1) It should use PC-relative addressing for accessing kernel symbols. 880 * To achieve this we always use GCC cmodel=medany. 881 * 2) The compiler instrumentation for FTRACE will not work for setup_vm() 882 * so disable compiler instrumentation when FTRACE is enabled. 883 * 884 * Currently, the above requirements are honoured by using custom CFLAGS 885 * for init.o in mm/Makefile. 886 */ 887 888 #ifndef __riscv_cmodel_medany 889 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing." 890 #endif 891 892 #ifdef CONFIG_RELOCATABLE 893 extern unsigned long __rela_dyn_start, __rela_dyn_end; 894 895 static void __init relocate_kernel(void) 896 { 897 Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start; 898 /* 899 * This holds the offset between the linked virtual address and the 900 * relocated virtual address. 901 */ 902 uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR; 903 /* 904 * This holds the offset between kernel linked virtual address and 905 * physical address. 906 */ 907 uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr; 908 909 for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) { 910 Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset); 911 Elf64_Addr relocated_addr = rela->r_addend; 912 913 if (rela->r_info != R_RISCV_RELATIVE) 914 continue; 915 916 /* 917 * Make sure to not relocate vdso symbols like rt_sigreturn 918 * which are linked from the address 0 in vmlinux since 919 * vdso symbol addresses are actually used as an offset from 920 * mm->context.vdso in VDSO_OFFSET macro. 921 */ 922 if (relocated_addr >= KERNEL_LINK_ADDR) 923 relocated_addr += reloc_offset; 924 925 *(Elf64_Addr *)addr = relocated_addr; 926 } 927 } 928 #endif /* CONFIG_RELOCATABLE */ 929 930 #ifdef CONFIG_XIP_KERNEL 931 static void __init create_kernel_page_table(pgd_t *pgdir, 932 __always_unused bool early) 933 { 934 uintptr_t va, start_va, end_va; 935 936 /* Map the flash resident part */ 937 end_va = kernel_map.virt_addr + kernel_map.xiprom_sz; 938 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) 939 create_pgd_mapping(pgdir, va, 940 kernel_map.xiprom + (va - kernel_map.virt_addr), 941 PMD_SIZE, PAGE_KERNEL_EXEC); 942 943 /* Map the data in RAM */ 944 start_va = kernel_map.virt_addr + (uintptr_t)&_sdata - (uintptr_t)&_start; 945 end_va = kernel_map.virt_addr + kernel_map.size; 946 for (va = start_va; va < end_va; va += PMD_SIZE) 947 create_pgd_mapping(pgdir, va, 948 kernel_map.phys_addr + (va - start_va), 949 PMD_SIZE, PAGE_KERNEL); 950 } 951 #else 952 static void __init create_kernel_page_table(pgd_t *pgdir, bool early) 953 { 954 uintptr_t va, end_va; 955 956 end_va = kernel_map.virt_addr + kernel_map.size; 957 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) 958 create_pgd_mapping(pgdir, va, 959 kernel_map.phys_addr + (va - kernel_map.virt_addr), 960 PMD_SIZE, 961 early ? 962 PAGE_KERNEL_EXEC : pgprot_from_va(va)); 963 } 964 #endif 965 966 /* 967 * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel, 968 * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR 969 * entry. 970 */ 971 static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va, 972 uintptr_t dtb_pa) 973 { 974 #ifndef CONFIG_BUILTIN_DTB 975 uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1); 976 977 /* Make sure the fdt fixmap address is always aligned on PMD size */ 978 BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE)); 979 980 /* In 32-bit only, the fdt lies in its own PGD */ 981 if (!IS_ENABLED(CONFIG_64BIT)) { 982 create_pgd_mapping(early_pg_dir, fix_fdt_va, 983 pa, MAX_FDT_SIZE, PAGE_KERNEL); 984 } else { 985 create_pmd_mapping(fixmap_pmd, fix_fdt_va, 986 pa, PMD_SIZE, PAGE_KERNEL); 987 create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE, 988 pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL); 989 } 990 991 dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1)); 992 #else 993 /* 994 * For 64-bit kernel, __va can't be used since it would return a linear 995 * mapping address whereas dtb_early_va will be used before 996 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the 997 * kernel is mapped in the linear mapping, that makes no difference. 998 */ 999 dtb_early_va = kernel_mapping_pa_to_va(dtb_pa); 1000 #endif 1001 1002 dtb_early_pa = dtb_pa; 1003 } 1004 1005 /* 1006 * MMU is not enabled, the page tables are allocated directly using 1007 * early_pmd/pud/p4d and the address returned is the physical one. 1008 */ 1009 static void __init pt_ops_set_early(void) 1010 { 1011 pt_ops.alloc_pte = alloc_pte_early; 1012 pt_ops.get_pte_virt = get_pte_virt_early; 1013 #ifndef __PAGETABLE_PMD_FOLDED 1014 pt_ops.alloc_pmd = alloc_pmd_early; 1015 pt_ops.get_pmd_virt = get_pmd_virt_early; 1016 pt_ops.alloc_pud = alloc_pud_early; 1017 pt_ops.get_pud_virt = get_pud_virt_early; 1018 pt_ops.alloc_p4d = alloc_p4d_early; 1019 pt_ops.get_p4d_virt = get_p4d_virt_early; 1020 #endif 1021 } 1022 1023 /* 1024 * MMU is enabled but page table setup is not complete yet. 1025 * fixmap page table alloc functions must be used as a means to temporarily 1026 * map the allocated physical pages since the linear mapping does not exist yet. 1027 * 1028 * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va, 1029 * but it will be used as described above. 1030 */ 1031 static void __init pt_ops_set_fixmap(void) 1032 { 1033 pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap); 1034 pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap); 1035 #ifndef __PAGETABLE_PMD_FOLDED 1036 pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap); 1037 pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap); 1038 pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap); 1039 pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap); 1040 pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap); 1041 pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap); 1042 #endif 1043 } 1044 1045 /* 1046 * MMU is enabled and page table setup is complete, so from now, we can use 1047 * generic page allocation functions to setup page table. 1048 */ 1049 static void __init pt_ops_set_late(void) 1050 { 1051 pt_ops.alloc_pte = alloc_pte_late; 1052 pt_ops.get_pte_virt = get_pte_virt_late; 1053 #ifndef __PAGETABLE_PMD_FOLDED 1054 pt_ops.alloc_pmd = alloc_pmd_late; 1055 pt_ops.get_pmd_virt = get_pmd_virt_late; 1056 pt_ops.alloc_pud = alloc_pud_late; 1057 pt_ops.get_pud_virt = get_pud_virt_late; 1058 pt_ops.alloc_p4d = alloc_p4d_late; 1059 pt_ops.get_p4d_virt = get_p4d_virt_late; 1060 #endif 1061 } 1062 1063 #ifdef CONFIG_RANDOMIZE_BASE 1064 extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa); 1065 extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa); 1066 extern u64 __init __pi_get_kaslr_seed_zkr(const uintptr_t dtb_pa); 1067 1068 static int __init print_nokaslr(char *p) 1069 { 1070 pr_info("Disabled KASLR"); 1071 return 0; 1072 } 1073 early_param("nokaslr", print_nokaslr); 1074 1075 unsigned long kaslr_offset(void) 1076 { 1077 return kernel_map.virt_offset; 1078 } 1079 #endif 1080 1081 asmlinkage void __init setup_vm(uintptr_t dtb_pa) 1082 { 1083 pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd; 1084 1085 #ifdef CONFIG_RANDOMIZE_BASE 1086 if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) { 1087 u64 kaslr_seed = __pi_get_kaslr_seed_zkr(dtb_pa); 1088 u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start); 1089 u32 nr_pos; 1090 1091 if (kaslr_seed == 0) 1092 kaslr_seed = __pi_get_kaslr_seed(dtb_pa); 1093 /* 1094 * Compute the number of positions available: we are limited 1095 * by the early page table that only has one PUD and we must 1096 * be aligned on PMD_SIZE. 1097 */ 1098 nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE; 1099 1100 kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE; 1101 } 1102 #endif 1103 1104 kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset; 1105 1106 #ifdef CONFIG_XIP_KERNEL 1107 #ifdef CONFIG_64BIT 1108 kernel_map.page_offset = PAGE_OFFSET_L3; 1109 #else 1110 kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL); 1111 #endif 1112 kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR; 1113 kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom); 1114 1115 phys_ram_base = CONFIG_PHYS_RAM_BASE; 1116 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1117 vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT; 1118 #endif 1119 kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE; 1120 kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_start); 1121 1122 kernel_map.va_kernel_xip_text_pa_offset = kernel_map.virt_addr - kernel_map.xiprom; 1123 kernel_map.va_kernel_xip_data_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr 1124 + (uintptr_t)&_sdata - (uintptr_t)&_start; 1125 #else 1126 kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL); 1127 kernel_map.phys_addr = (uintptr_t)(&_start); 1128 kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr; 1129 kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr; 1130 #endif 1131 1132 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) 1133 set_satp_mode(dtb_pa); 1134 set_mmap_rnd_bits_max(); 1135 #endif 1136 1137 /* 1138 * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem, 1139 * where we have the system memory layout: this allows us to align 1140 * the physical and virtual mappings and then make use of PUD/P4D/PGD 1141 * for the linear mapping. This is only possible because the kernel 1142 * mapping lies outside the linear mapping. 1143 * In 32-bit however, as the kernel resides in the linear mapping, 1144 * setup_vm_final can not change the mapping established here, 1145 * otherwise the same kernel addresses would get mapped to different 1146 * physical addresses (if the start of dram is different from the 1147 * kernel physical address start). 1148 */ 1149 kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ? 1150 0UL : PAGE_OFFSET - kernel_map.phys_addr; 1151 1152 memory_limit = KERN_VIRT_SIZE; 1153 1154 /* Sanity check alignment and size */ 1155 BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0); 1156 BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0); 1157 1158 #ifdef CONFIG_64BIT 1159 /* 1160 * The last 4K bytes of the addressable memory can not be mapped because 1161 * of IS_ERR_VALUE macro. 1162 */ 1163 BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K); 1164 #endif 1165 1166 #ifdef CONFIG_RELOCATABLE 1167 /* 1168 * Early page table uses only one PUD, which makes it possible 1169 * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset 1170 * makes the kernel cross over a PUD_SIZE boundary, raise a bug 1171 * since a part of the kernel would not get mapped. 1172 */ 1173 BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size); 1174 relocate_kernel(); 1175 #endif 1176 1177 apply_early_boot_alternatives(); 1178 pt_ops_set_early(); 1179 1180 /* Setup early PGD for fixmap */ 1181 create_pgd_mapping(early_pg_dir, FIXADDR_START, 1182 fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE); 1183 1184 #ifndef __PAGETABLE_PMD_FOLDED 1185 /* Setup fixmap P4D and PUD */ 1186 if (pgtable_l5_enabled) 1187 create_p4d_mapping(fixmap_p4d, FIXADDR_START, 1188 (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE); 1189 /* Setup fixmap PUD and PMD */ 1190 if (pgtable_l4_enabled) 1191 create_pud_mapping(fixmap_pud, FIXADDR_START, 1192 (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE); 1193 create_pmd_mapping(fixmap_pmd, FIXADDR_START, 1194 (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE); 1195 /* Setup trampoline PGD and PMD */ 1196 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, 1197 trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE); 1198 if (pgtable_l5_enabled) 1199 create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr, 1200 (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE); 1201 if (pgtable_l4_enabled) 1202 create_pud_mapping(trampoline_pud, kernel_map.virt_addr, 1203 (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE); 1204 #ifdef CONFIG_XIP_KERNEL 1205 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, 1206 kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC); 1207 #else 1208 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, 1209 kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC); 1210 #endif 1211 #else 1212 /* Setup trampoline PGD */ 1213 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, 1214 kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC); 1215 #endif 1216 1217 /* 1218 * Setup early PGD covering entire kernel which will allow 1219 * us to reach paging_init(). We map all memory banks later 1220 * in setup_vm_final() below. 1221 */ 1222 create_kernel_page_table(early_pg_dir, true); 1223 1224 /* Setup early mapping for FDT early scan */ 1225 create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa); 1226 1227 /* 1228 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap 1229 * range can not span multiple pmds. 1230 */ 1231 BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) 1232 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); 1233 1234 #ifndef __PAGETABLE_PMD_FOLDED 1235 /* 1236 * Early ioremap fixmap is already created as it lies within first 2MB 1237 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END 1238 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn 1239 * the user if not. 1240 */ 1241 fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))]; 1242 fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))]; 1243 if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) { 1244 WARN_ON(1); 1245 pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n", 1246 pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd)); 1247 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", 1248 fix_to_virt(FIX_BTMAP_BEGIN)); 1249 pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n", 1250 fix_to_virt(FIX_BTMAP_END)); 1251 1252 pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END); 1253 pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN); 1254 } 1255 #endif 1256 1257 pt_ops_set_fixmap(); 1258 } 1259 1260 static void __meminit create_linear_mapping_range(phys_addr_t start, phys_addr_t end, 1261 uintptr_t fixed_map_size, const pgprot_t *pgprot) 1262 { 1263 phys_addr_t pa; 1264 uintptr_t va, map_size; 1265 1266 for (pa = start; pa < end; pa += map_size) { 1267 va = (uintptr_t)__va(pa); 1268 map_size = fixed_map_size ? fixed_map_size : 1269 best_map_size(pa, va, end - pa); 1270 1271 create_pgd_mapping(swapper_pg_dir, va, pa, map_size, 1272 pgprot ? *pgprot : pgprot_from_va(va)); 1273 } 1274 } 1275 1276 static void __init create_linear_mapping_page_table(void) 1277 { 1278 phys_addr_t start, end; 1279 phys_addr_t kfence_pool __maybe_unused; 1280 u64 i; 1281 1282 #ifdef CONFIG_STRICT_KERNEL_RWX 1283 phys_addr_t ktext_start = __pa_symbol(_start); 1284 phys_addr_t ktext_size = __init_data_begin - _start; 1285 phys_addr_t krodata_start = __pa_symbol(__start_rodata); 1286 phys_addr_t krodata_size = _data - __start_rodata; 1287 1288 /* Isolate kernel text and rodata so they don't get mapped with a PUD */ 1289 memblock_mark_nomap(ktext_start, ktext_size); 1290 memblock_mark_nomap(krodata_start, krodata_size); 1291 #endif 1292 1293 #ifdef CONFIG_KFENCE 1294 /* 1295 * kfence pool must be backed by PAGE_SIZE mappings, so allocate it 1296 * before we setup the linear mapping so that we avoid using hugepages 1297 * for this region. 1298 */ 1299 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 1300 BUG_ON(!kfence_pool); 1301 1302 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE); 1303 __kfence_pool = __va(kfence_pool); 1304 #endif 1305 1306 /* Map all memory banks in the linear mapping */ 1307 for_each_mem_range(i, &start, &end) { 1308 if (start >= end) 1309 break; 1310 if (start <= __pa(PAGE_OFFSET) && 1311 __pa(PAGE_OFFSET) < end) 1312 start = __pa(PAGE_OFFSET); 1313 1314 create_linear_mapping_range(start, end, 0, NULL); 1315 } 1316 1317 #ifdef CONFIG_STRICT_KERNEL_RWX 1318 create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0, NULL); 1319 create_linear_mapping_range(krodata_start, krodata_start + krodata_size, 0, NULL); 1320 1321 memblock_clear_nomap(ktext_start, ktext_size); 1322 memblock_clear_nomap(krodata_start, krodata_size); 1323 #endif 1324 1325 #ifdef CONFIG_KFENCE 1326 create_linear_mapping_range(kfence_pool, kfence_pool + KFENCE_POOL_SIZE, PAGE_SIZE, NULL); 1327 1328 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE); 1329 #endif 1330 } 1331 1332 static void __init setup_vm_final(void) 1333 { 1334 /* Setup swapper PGD for fixmap */ 1335 #if !defined(CONFIG_64BIT) 1336 /* 1337 * In 32-bit, the device tree lies in a pgd entry, so it must be copied 1338 * directly in swapper_pg_dir in addition to the pgd entry that points 1339 * to fixmap_pte. 1340 */ 1341 unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT)); 1342 1343 set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]); 1344 #endif 1345 create_pgd_mapping(swapper_pg_dir, FIXADDR_START, 1346 __pa_symbol(fixmap_pgd_next), 1347 PGDIR_SIZE, PAGE_TABLE); 1348 1349 /* Map the linear mapping */ 1350 create_linear_mapping_page_table(); 1351 1352 /* Map the kernel */ 1353 if (IS_ENABLED(CONFIG_64BIT)) 1354 create_kernel_page_table(swapper_pg_dir, false); 1355 1356 #ifdef CONFIG_KASAN 1357 kasan_swapper_init(); 1358 #endif 1359 1360 /* Clear fixmap PTE and PMD mappings */ 1361 clear_fixmap(FIX_PTE); 1362 clear_fixmap(FIX_PMD); 1363 clear_fixmap(FIX_PUD); 1364 clear_fixmap(FIX_P4D); 1365 1366 /* Move to swapper page table */ 1367 csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode); 1368 local_flush_tlb_all(); 1369 1370 pt_ops_set_late(); 1371 } 1372 #else 1373 asmlinkage void __init setup_vm(uintptr_t dtb_pa) 1374 { 1375 dtb_early_va = (void *)dtb_pa; 1376 dtb_early_pa = dtb_pa; 1377 } 1378 1379 static inline void setup_vm_final(void) 1380 { 1381 } 1382 #endif /* CONFIG_MMU */ 1383 1384 /* 1385 * reserve_crashkernel() - reserves memory for crash kernel 1386 * 1387 * This function reserves memory area given in "crashkernel=" kernel command 1388 * line parameter. The memory reserved is used by dump capture kernel when 1389 * primary kernel is crashing. 1390 */ 1391 static void __init arch_reserve_crashkernel(void) 1392 { 1393 unsigned long long low_size = 0; 1394 unsigned long long crash_base, crash_size; 1395 char *cmdline = boot_command_line; 1396 bool high = false; 1397 int ret; 1398 1399 if (!IS_ENABLED(CONFIG_CRASH_RESERVE)) 1400 return; 1401 1402 ret = parse_crashkernel(cmdline, memblock_phys_mem_size(), 1403 &crash_size, &crash_base, 1404 &low_size, &high); 1405 if (ret) 1406 return; 1407 1408 reserve_crashkernel_generic(cmdline, crash_size, crash_base, 1409 low_size, high); 1410 } 1411 1412 void __init paging_init(void) 1413 { 1414 setup_bootmem(); 1415 setup_vm_final(); 1416 1417 /* Depend on that Linear Mapping is ready */ 1418 memblock_allow_resize(); 1419 } 1420 1421 void __init misc_mem_init(void) 1422 { 1423 early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT); 1424 arch_numa_init(); 1425 sparse_init(); 1426 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1427 /* The entire VMEMMAP region has been populated. Flush TLB for this region */ 1428 local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END); 1429 #endif 1430 zone_sizes_init(); 1431 arch_reserve_crashkernel(); 1432 memblock_dump_all(); 1433 } 1434 1435 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1436 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 1437 unsigned long addr, unsigned long next) 1438 { 1439 pmd_set_huge(pmd, virt_to_phys(p), PAGE_KERNEL); 1440 } 1441 1442 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node, 1443 unsigned long addr, unsigned long next) 1444 { 1445 vmemmap_verify((pte_t *)pmdp, node, addr, next); 1446 return 1; 1447 } 1448 1449 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, 1450 struct vmem_altmap *altmap) 1451 { 1452 /* 1453 * Note that SPARSEMEM_VMEMMAP is only selected for rv64 and that we 1454 * can't use hugepage mappings for 2-level page table because in case of 1455 * memory hotplug, we are not able to update all the page tables with 1456 * the new PMDs. 1457 */ 1458 return vmemmap_populate_hugepages(start, end, node, altmap); 1459 } 1460 #endif 1461 1462 #if defined(CONFIG_MMU) && defined(CONFIG_64BIT) 1463 /* 1464 * Pre-allocates page-table pages for a specific area in the kernel 1465 * page-table. Only the level which needs to be synchronized between 1466 * all page-tables is allocated because the synchronization can be 1467 * expensive. 1468 */ 1469 static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end, 1470 const char *area) 1471 { 1472 unsigned long addr; 1473 const char *lvl; 1474 1475 for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) { 1476 pgd_t *pgd = pgd_offset_k(addr); 1477 p4d_t *p4d; 1478 pud_t *pud; 1479 pmd_t *pmd; 1480 1481 lvl = "p4d"; 1482 p4d = p4d_alloc(&init_mm, pgd, addr); 1483 if (!p4d) 1484 goto failed; 1485 1486 if (pgtable_l5_enabled) 1487 continue; 1488 1489 lvl = "pud"; 1490 pud = pud_alloc(&init_mm, p4d, addr); 1491 if (!pud) 1492 goto failed; 1493 1494 if (pgtable_l4_enabled) 1495 continue; 1496 1497 lvl = "pmd"; 1498 pmd = pmd_alloc(&init_mm, pud, addr); 1499 if (!pmd) 1500 goto failed; 1501 } 1502 return; 1503 1504 failed: 1505 /* 1506 * The pages have to be there now or they will be missing in 1507 * process page-tables later. 1508 */ 1509 panic("Failed to pre-allocate %s pages for %s area\n", lvl, area); 1510 } 1511 1512 #define PAGE_END KASAN_SHADOW_START 1513 1514 void __init pgtable_cache_init(void) 1515 { 1516 preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc"); 1517 if (IS_ENABLED(CONFIG_MODULES)) 1518 preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules"); 1519 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) { 1520 preallocate_pgd_pages_range(VMEMMAP_START, VMEMMAP_END, "vmemmap"); 1521 preallocate_pgd_pages_range(PAGE_OFFSET, PAGE_END, "direct map"); 1522 if (IS_ENABLED(CONFIG_KASAN)) 1523 preallocate_pgd_pages_range(KASAN_SHADOW_START, KASAN_SHADOW_END, "kasan"); 1524 } 1525 } 1526 #endif 1527 1528 #ifdef CONFIG_EXECMEM 1529 #ifdef CONFIG_MMU 1530 static struct execmem_info execmem_info __ro_after_init; 1531 1532 struct execmem_info __init *execmem_arch_setup(void) 1533 { 1534 execmem_info = (struct execmem_info){ 1535 .ranges = { 1536 [EXECMEM_DEFAULT] = { 1537 .start = MODULES_VADDR, 1538 .end = MODULES_END, 1539 .pgprot = PAGE_KERNEL, 1540 .alignment = 1, 1541 }, 1542 [EXECMEM_KPROBES] = { 1543 .start = VMALLOC_START, 1544 .end = VMALLOC_END, 1545 .pgprot = PAGE_KERNEL_READ_EXEC, 1546 .alignment = 1, 1547 }, 1548 [EXECMEM_BPF] = { 1549 .start = BPF_JIT_REGION_START, 1550 .end = BPF_JIT_REGION_END, 1551 .pgprot = PAGE_KERNEL, 1552 .alignment = PAGE_SIZE, 1553 }, 1554 }, 1555 }; 1556 1557 return &execmem_info; 1558 } 1559 #endif /* CONFIG_MMU */ 1560 #endif /* CONFIG_EXECMEM */ 1561 1562 #ifdef CONFIG_MEMORY_HOTPLUG 1563 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) 1564 { 1565 struct page *page = pmd_page(*pmd); 1566 struct ptdesc *ptdesc = page_ptdesc(page); 1567 pte_t *pte; 1568 int i; 1569 1570 for (i = 0; i < PTRS_PER_PTE; i++) { 1571 pte = pte_start + i; 1572 if (!pte_none(*pte)) 1573 return; 1574 } 1575 1576 pagetable_pte_dtor(ptdesc); 1577 if (PageReserved(page)) 1578 free_reserved_page(page); 1579 else 1580 pagetable_free(ptdesc); 1581 pmd_clear(pmd); 1582 } 1583 1584 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud, bool is_vmemmap) 1585 { 1586 struct page *page = pud_page(*pud); 1587 struct ptdesc *ptdesc = page_ptdesc(page); 1588 pmd_t *pmd; 1589 int i; 1590 1591 for (i = 0; i < PTRS_PER_PMD; i++) { 1592 pmd = pmd_start + i; 1593 if (!pmd_none(*pmd)) 1594 return; 1595 } 1596 1597 if (!is_vmemmap) 1598 pagetable_pmd_dtor(ptdesc); 1599 if (PageReserved(page)) 1600 free_reserved_page(page); 1601 else 1602 pagetable_free(ptdesc); 1603 pud_clear(pud); 1604 } 1605 1606 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d) 1607 { 1608 struct page *page = p4d_page(*p4d); 1609 pud_t *pud; 1610 int i; 1611 1612 for (i = 0; i < PTRS_PER_PUD; i++) { 1613 pud = pud_start + i; 1614 if (!pud_none(*pud)) 1615 return; 1616 } 1617 1618 if (PageReserved(page)) 1619 free_reserved_page(page); 1620 else 1621 free_pages((unsigned long)page_address(page), 0); 1622 p4d_clear(p4d); 1623 } 1624 1625 static void __meminit free_vmemmap_storage(struct page *page, size_t size, 1626 struct vmem_altmap *altmap) 1627 { 1628 int order = get_order(size); 1629 1630 if (altmap) { 1631 vmem_altmap_free(altmap, size >> PAGE_SHIFT); 1632 return; 1633 } 1634 1635 if (PageReserved(page)) { 1636 unsigned int nr_pages = 1 << order; 1637 1638 while (nr_pages--) 1639 free_reserved_page(page++); 1640 return; 1641 } 1642 1643 free_pages((unsigned long)page_address(page), order); 1644 } 1645 1646 static void __meminit remove_pte_mapping(pte_t *pte_base, unsigned long addr, unsigned long end, 1647 bool is_vmemmap, struct vmem_altmap *altmap) 1648 { 1649 unsigned long next; 1650 pte_t *ptep, pte; 1651 1652 for (; addr < end; addr = next) { 1653 next = (addr + PAGE_SIZE) & PAGE_MASK; 1654 if (next > end) 1655 next = end; 1656 1657 ptep = pte_base + pte_index(addr); 1658 pte = ptep_get(ptep); 1659 if (!pte_present(*ptep)) 1660 continue; 1661 1662 pte_clear(&init_mm, addr, ptep); 1663 if (is_vmemmap) 1664 free_vmemmap_storage(pte_page(pte), PAGE_SIZE, altmap); 1665 } 1666 } 1667 1668 static void __meminit remove_pmd_mapping(pmd_t *pmd_base, unsigned long addr, unsigned long end, 1669 bool is_vmemmap, struct vmem_altmap *altmap) 1670 { 1671 unsigned long next; 1672 pte_t *pte_base; 1673 pmd_t *pmdp, pmd; 1674 1675 for (; addr < end; addr = next) { 1676 next = pmd_addr_end(addr, end); 1677 pmdp = pmd_base + pmd_index(addr); 1678 pmd = pmdp_get(pmdp); 1679 if (!pmd_present(pmd)) 1680 continue; 1681 1682 if (pmd_leaf(pmd)) { 1683 pmd_clear(pmdp); 1684 if (is_vmemmap) 1685 free_vmemmap_storage(pmd_page(pmd), PMD_SIZE, altmap); 1686 continue; 1687 } 1688 1689 pte_base = (pte_t *)pmd_page_vaddr(*pmdp); 1690 remove_pte_mapping(pte_base, addr, next, is_vmemmap, altmap); 1691 free_pte_table(pte_base, pmdp); 1692 } 1693 } 1694 1695 static void __meminit remove_pud_mapping(pud_t *pud_base, unsigned long addr, unsigned long end, 1696 bool is_vmemmap, struct vmem_altmap *altmap) 1697 { 1698 unsigned long next; 1699 pud_t *pudp, pud; 1700 pmd_t *pmd_base; 1701 1702 for (; addr < end; addr = next) { 1703 next = pud_addr_end(addr, end); 1704 pudp = pud_base + pud_index(addr); 1705 pud = pudp_get(pudp); 1706 if (!pud_present(pud)) 1707 continue; 1708 1709 if (pud_leaf(pud)) { 1710 if (pgtable_l4_enabled) { 1711 pud_clear(pudp); 1712 if (is_vmemmap) 1713 free_vmemmap_storage(pud_page(pud), PUD_SIZE, altmap); 1714 } 1715 continue; 1716 } 1717 1718 pmd_base = pmd_offset(pudp, 0); 1719 remove_pmd_mapping(pmd_base, addr, next, is_vmemmap, altmap); 1720 1721 if (pgtable_l4_enabled) 1722 free_pmd_table(pmd_base, pudp, is_vmemmap); 1723 } 1724 } 1725 1726 static void __meminit remove_p4d_mapping(p4d_t *p4d_base, unsigned long addr, unsigned long end, 1727 bool is_vmemmap, struct vmem_altmap *altmap) 1728 { 1729 unsigned long next; 1730 p4d_t *p4dp, p4d; 1731 pud_t *pud_base; 1732 1733 for (; addr < end; addr = next) { 1734 next = p4d_addr_end(addr, end); 1735 p4dp = p4d_base + p4d_index(addr); 1736 p4d = p4dp_get(p4dp); 1737 if (!p4d_present(p4d)) 1738 continue; 1739 1740 if (p4d_leaf(p4d)) { 1741 if (pgtable_l5_enabled) { 1742 p4d_clear(p4dp); 1743 if (is_vmemmap) 1744 free_vmemmap_storage(p4d_page(p4d), P4D_SIZE, altmap); 1745 } 1746 continue; 1747 } 1748 1749 pud_base = pud_offset(p4dp, 0); 1750 remove_pud_mapping(pud_base, addr, next, is_vmemmap, altmap); 1751 1752 if (pgtable_l5_enabled) 1753 free_pud_table(pud_base, p4dp); 1754 } 1755 } 1756 1757 static void __meminit remove_pgd_mapping(unsigned long va, unsigned long end, bool is_vmemmap, 1758 struct vmem_altmap *altmap) 1759 { 1760 unsigned long addr, next; 1761 p4d_t *p4d_base; 1762 pgd_t *pgd; 1763 1764 for (addr = va; addr < end; addr = next) { 1765 next = pgd_addr_end(addr, end); 1766 pgd = pgd_offset_k(addr); 1767 1768 if (!pgd_present(*pgd)) 1769 continue; 1770 1771 if (pgd_leaf(*pgd)) 1772 continue; 1773 1774 p4d_base = p4d_offset(pgd, 0); 1775 remove_p4d_mapping(p4d_base, addr, next, is_vmemmap, altmap); 1776 } 1777 1778 flush_tlb_all(); 1779 } 1780 1781 static void __meminit remove_linear_mapping(phys_addr_t start, u64 size) 1782 { 1783 unsigned long va = (unsigned long)__va(start); 1784 unsigned long end = (unsigned long)__va(start + size); 1785 1786 remove_pgd_mapping(va, end, false, NULL); 1787 } 1788 1789 struct range arch_get_mappable_range(void) 1790 { 1791 struct range mhp_range; 1792 1793 mhp_range.start = __pa(PAGE_OFFSET); 1794 mhp_range.end = __pa(PAGE_END - 1); 1795 return mhp_range; 1796 } 1797 1798 int __ref arch_add_memory(int nid, u64 start, u64 size, struct mhp_params *params) 1799 { 1800 int ret = 0; 1801 1802 create_linear_mapping_range(start, start + size, 0, ¶ms->pgprot); 1803 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT, params); 1804 if (ret) { 1805 remove_linear_mapping(start, size); 1806 goto out; 1807 } 1808 1809 max_pfn = PFN_UP(start + size); 1810 max_low_pfn = max_pfn; 1811 1812 out: 1813 flush_tlb_all(); 1814 return ret; 1815 } 1816 1817 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap) 1818 { 1819 __remove_pages(start >> PAGE_SHIFT, size >> PAGE_SHIFT, altmap); 1820 remove_linear_mapping(start, size); 1821 flush_tlb_all(); 1822 } 1823 1824 void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap) 1825 { 1826 remove_pgd_mapping(start, end, true, altmap); 1827 } 1828 #endif /* CONFIG_MEMORY_HOTPLUG */ 1829