xref: /linux/arch/riscv/kvm/vcpu_insn.c (revision 6a02124c87f0b61dcaaeb65e7fd406d8afb40fd4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  * Copyright (c) 2022 Ventana Micro Systems Inc.
5  */
6 
7 #include <linux/bitops.h>
8 #include <linux/kvm_host.h>
9 
10 #define INSN_OPCODE_MASK	0x007c
11 #define INSN_OPCODE_SHIFT	2
12 #define INSN_OPCODE_SYSTEM	28
13 
14 #define INSN_MASK_WFI		0xffffffff
15 #define INSN_MATCH_WFI		0x10500073
16 
17 #define INSN_MATCH_CSRRW	0x1073
18 #define INSN_MASK_CSRRW		0x707f
19 #define INSN_MATCH_CSRRS	0x2073
20 #define INSN_MASK_CSRRS		0x707f
21 #define INSN_MATCH_CSRRC	0x3073
22 #define INSN_MASK_CSRRC		0x707f
23 #define INSN_MATCH_CSRRWI	0x5073
24 #define INSN_MASK_CSRRWI	0x707f
25 #define INSN_MATCH_CSRRSI	0x6073
26 #define INSN_MASK_CSRRSI	0x707f
27 #define INSN_MATCH_CSRRCI	0x7073
28 #define INSN_MASK_CSRRCI	0x707f
29 
30 #define INSN_MATCH_LB		0x3
31 #define INSN_MASK_LB		0x707f
32 #define INSN_MATCH_LH		0x1003
33 #define INSN_MASK_LH		0x707f
34 #define INSN_MATCH_LW		0x2003
35 #define INSN_MASK_LW		0x707f
36 #define INSN_MATCH_LD		0x3003
37 #define INSN_MASK_LD		0x707f
38 #define INSN_MATCH_LBU		0x4003
39 #define INSN_MASK_LBU		0x707f
40 #define INSN_MATCH_LHU		0x5003
41 #define INSN_MASK_LHU		0x707f
42 #define INSN_MATCH_LWU		0x6003
43 #define INSN_MASK_LWU		0x707f
44 #define INSN_MATCH_SB		0x23
45 #define INSN_MASK_SB		0x707f
46 #define INSN_MATCH_SH		0x1023
47 #define INSN_MASK_SH		0x707f
48 #define INSN_MATCH_SW		0x2023
49 #define INSN_MASK_SW		0x707f
50 #define INSN_MATCH_SD		0x3023
51 #define INSN_MASK_SD		0x707f
52 
53 #define INSN_MATCH_C_LD		0x6000
54 #define INSN_MASK_C_LD		0xe003
55 #define INSN_MATCH_C_SD		0xe000
56 #define INSN_MASK_C_SD		0xe003
57 #define INSN_MATCH_C_LW		0x4000
58 #define INSN_MASK_C_LW		0xe003
59 #define INSN_MATCH_C_SW		0xc000
60 #define INSN_MASK_C_SW		0xe003
61 #define INSN_MATCH_C_LDSP	0x6002
62 #define INSN_MASK_C_LDSP	0xe003
63 #define INSN_MATCH_C_SDSP	0xe002
64 #define INSN_MASK_C_SDSP	0xe003
65 #define INSN_MATCH_C_LWSP	0x4002
66 #define INSN_MASK_C_LWSP	0xe003
67 #define INSN_MATCH_C_SWSP	0xc002
68 #define INSN_MASK_C_SWSP	0xe003
69 
70 #define INSN_16BIT_MASK		0x3
71 
72 #define INSN_IS_16BIT(insn)	(((insn) & INSN_16BIT_MASK) != INSN_16BIT_MASK)
73 
74 #define INSN_LEN(insn)		(INSN_IS_16BIT(insn) ? 2 : 4)
75 
76 #ifdef CONFIG_64BIT
77 #define LOG_REGBYTES		3
78 #else
79 #define LOG_REGBYTES		2
80 #endif
81 #define REGBYTES		(1 << LOG_REGBYTES)
82 
83 #define SH_RD			7
84 #define SH_RS1			15
85 #define SH_RS2			20
86 #define SH_RS2C			2
87 #define MASK_RX			0x1f
88 
89 #define RV_X(x, s, n)		(((x) >> (s)) & ((1 << (n)) - 1))
90 #define RVC_LW_IMM(x)		((RV_X(x, 6, 1) << 2) | \
91 				 (RV_X(x, 10, 3) << 3) | \
92 				 (RV_X(x, 5, 1) << 6))
93 #define RVC_LD_IMM(x)		((RV_X(x, 10, 3) << 3) | \
94 				 (RV_X(x, 5, 2) << 6))
95 #define RVC_LWSP_IMM(x)		((RV_X(x, 4, 3) << 2) | \
96 				 (RV_X(x, 12, 1) << 5) | \
97 				 (RV_X(x, 2, 2) << 6))
98 #define RVC_LDSP_IMM(x)		((RV_X(x, 5, 2) << 3) | \
99 				 (RV_X(x, 12, 1) << 5) | \
100 				 (RV_X(x, 2, 3) << 6))
101 #define RVC_SWSP_IMM(x)		((RV_X(x, 9, 4) << 2) | \
102 				 (RV_X(x, 7, 2) << 6))
103 #define RVC_SDSP_IMM(x)		((RV_X(x, 10, 3) << 3) | \
104 				 (RV_X(x, 7, 3) << 6))
105 #define RVC_RS1S(insn)		(8 + RV_X(insn, SH_RD, 3))
106 #define RVC_RS2S(insn)		(8 + RV_X(insn, SH_RS2C, 3))
107 #define RVC_RS2(insn)		RV_X(insn, SH_RS2C, 5)
108 
109 #define SHIFT_RIGHT(x, y)		\
110 	((y) < 0 ? ((x) << -(y)) : ((x) >> (y)))
111 
112 #define REG_MASK			\
113 	((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES))
114 
115 #define REG_OFFSET(insn, pos)		\
116 	(SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK)
117 
118 #define REG_PTR(insn, pos, regs)	\
119 	((ulong *)((ulong)(regs) + REG_OFFSET(insn, pos)))
120 
121 #define GET_FUNCT3(insn)	(((insn) >> 12) & 7)
122 
123 #define GET_RS1(insn, regs)	(*REG_PTR(insn, SH_RS1, regs))
124 #define GET_RS2(insn, regs)	(*REG_PTR(insn, SH_RS2, regs))
125 #define GET_RS1S(insn, regs)	(*REG_PTR(RVC_RS1S(insn), 0, regs))
126 #define GET_RS2S(insn, regs)	(*REG_PTR(RVC_RS2S(insn), 0, regs))
127 #define GET_RS2C(insn, regs)	(*REG_PTR(insn, SH_RS2C, regs))
128 #define GET_SP(regs)		(*REG_PTR(2, 0, regs))
129 #define SET_RD(insn, regs, val)	(*REG_PTR(insn, SH_RD, regs) = (val))
130 #define IMM_I(insn)		((s32)(insn) >> 20)
131 #define IMM_S(insn)		(((s32)(insn) >> 25 << 5) | \
132 				 (s32)(((insn) >> 7) & 0x1f))
133 
134 struct insn_func {
135 	unsigned long mask;
136 	unsigned long match;
137 	/*
138 	 * Possible return values are as follows:
139 	 * 1) Returns < 0 for error case
140 	 * 2) Returns 0 for exit to user-space
141 	 * 3) Returns 1 to continue with next sepc
142 	 * 4) Returns 2 to continue with same sepc
143 	 * 5) Returns 3 to inject illegal instruction trap and continue
144 	 * 6) Returns 4 to inject virtual instruction trap and continue
145 	 *
146 	 * Use enum kvm_insn_return for return values
147 	 */
148 	int (*func)(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn);
149 };
150 
151 static int truly_illegal_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
152 			      ulong insn)
153 {
154 	struct kvm_cpu_trap utrap = { 0 };
155 
156 	/* Redirect trap to Guest VCPU */
157 	utrap.sepc = vcpu->arch.guest_context.sepc;
158 	utrap.scause = EXC_INST_ILLEGAL;
159 	utrap.stval = insn;
160 	utrap.htval = 0;
161 	utrap.htinst = 0;
162 	kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
163 
164 	return 1;
165 }
166 
167 static int truly_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
168 			      ulong insn)
169 {
170 	struct kvm_cpu_trap utrap = { 0 };
171 
172 	/* Redirect trap to Guest VCPU */
173 	utrap.sepc = vcpu->arch.guest_context.sepc;
174 	utrap.scause = EXC_VIRTUAL_INST_FAULT;
175 	utrap.stval = insn;
176 	utrap.htval = 0;
177 	utrap.htinst = 0;
178 	kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
179 
180 	return 1;
181 }
182 
183 /**
184  * kvm_riscv_vcpu_wfi -- Emulate wait for interrupt (WFI) behaviour
185  *
186  * @vcpu: The VCPU pointer
187  */
188 void kvm_riscv_vcpu_wfi(struct kvm_vcpu *vcpu)
189 {
190 	if (!kvm_arch_vcpu_runnable(vcpu)) {
191 		kvm_vcpu_srcu_read_unlock(vcpu);
192 		kvm_vcpu_halt(vcpu);
193 		kvm_vcpu_srcu_read_lock(vcpu);
194 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
195 	}
196 }
197 
198 static int wfi_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
199 {
200 	vcpu->stat.wfi_exit_stat++;
201 	kvm_riscv_vcpu_wfi(vcpu);
202 	return KVM_INSN_CONTINUE_NEXT_SEPC;
203 }
204 
205 struct csr_func {
206 	unsigned int base;
207 	unsigned int count;
208 	/*
209 	 * Possible return values are as same as "func" callback in
210 	 * "struct insn_func".
211 	 */
212 	int (*func)(struct kvm_vcpu *vcpu, unsigned int csr_num,
213 		    unsigned long *val, unsigned long new_val,
214 		    unsigned long wr_mask);
215 };
216 
217 static const struct csr_func csr_funcs[] = { };
218 
219 /**
220  * kvm_riscv_vcpu_csr_return -- Handle CSR read/write after user space
221  *				emulation or in-kernel emulation
222  *
223  * @vcpu: The VCPU pointer
224  * @run:  The VCPU run struct containing the CSR data
225  *
226  * Returns > 0 upon failure and 0 upon success
227  */
228 int kvm_riscv_vcpu_csr_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
229 {
230 	ulong insn;
231 
232 	if (vcpu->arch.csr_decode.return_handled)
233 		return 0;
234 	vcpu->arch.csr_decode.return_handled = 1;
235 
236 	/* Update destination register for CSR reads */
237 	insn = vcpu->arch.csr_decode.insn;
238 	if ((insn >> SH_RD) & MASK_RX)
239 		SET_RD(insn, &vcpu->arch.guest_context,
240 		       run->riscv_csr.ret_value);
241 
242 	/* Move to next instruction */
243 	vcpu->arch.guest_context.sepc += INSN_LEN(insn);
244 
245 	return 0;
246 }
247 
248 static int csr_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
249 {
250 	int i, rc = KVM_INSN_ILLEGAL_TRAP;
251 	unsigned int csr_num = insn >> SH_RS2;
252 	unsigned int rs1_num = (insn >> SH_RS1) & MASK_RX;
253 	ulong rs1_val = GET_RS1(insn, &vcpu->arch.guest_context);
254 	const struct csr_func *tcfn, *cfn = NULL;
255 	ulong val = 0, wr_mask = 0, new_val = 0;
256 
257 	/* Decode the CSR instruction */
258 	switch (GET_FUNCT3(insn)) {
259 	case GET_FUNCT3(INSN_MATCH_CSRRW):
260 		wr_mask = -1UL;
261 		new_val = rs1_val;
262 		break;
263 	case GET_FUNCT3(INSN_MATCH_CSRRS):
264 		wr_mask = rs1_val;
265 		new_val = -1UL;
266 		break;
267 	case GET_FUNCT3(INSN_MATCH_CSRRC):
268 		wr_mask = rs1_val;
269 		new_val = 0;
270 		break;
271 	case GET_FUNCT3(INSN_MATCH_CSRRWI):
272 		wr_mask = -1UL;
273 		new_val = rs1_num;
274 		break;
275 	case GET_FUNCT3(INSN_MATCH_CSRRSI):
276 		wr_mask = rs1_num;
277 		new_val = -1UL;
278 		break;
279 	case GET_FUNCT3(INSN_MATCH_CSRRCI):
280 		wr_mask = rs1_num;
281 		new_val = 0;
282 		break;
283 	default:
284 		return rc;
285 	}
286 
287 	/* Save instruction decode info */
288 	vcpu->arch.csr_decode.insn = insn;
289 	vcpu->arch.csr_decode.return_handled = 0;
290 
291 	/* Update CSR details in kvm_run struct */
292 	run->riscv_csr.csr_num = csr_num;
293 	run->riscv_csr.new_value = new_val;
294 	run->riscv_csr.write_mask = wr_mask;
295 	run->riscv_csr.ret_value = 0;
296 
297 	/* Find in-kernel CSR function */
298 	for (i = 0; i < ARRAY_SIZE(csr_funcs); i++) {
299 		tcfn = &csr_funcs[i];
300 		if ((tcfn->base <= csr_num) &&
301 		    (csr_num < (tcfn->base + tcfn->count))) {
302 			cfn = tcfn;
303 			break;
304 		}
305 	}
306 
307 	/* First try in-kernel CSR emulation */
308 	if (cfn && cfn->func) {
309 		rc = cfn->func(vcpu, csr_num, &val, new_val, wr_mask);
310 		if (rc > KVM_INSN_EXIT_TO_USER_SPACE) {
311 			if (rc == KVM_INSN_CONTINUE_NEXT_SEPC) {
312 				run->riscv_csr.ret_value = val;
313 				vcpu->stat.csr_exit_kernel++;
314 				kvm_riscv_vcpu_csr_return(vcpu, run);
315 				rc = KVM_INSN_CONTINUE_SAME_SEPC;
316 			}
317 			return rc;
318 		}
319 	}
320 
321 	/* Exit to user-space for CSR emulation */
322 	if (rc <= KVM_INSN_EXIT_TO_USER_SPACE) {
323 		vcpu->stat.csr_exit_user++;
324 		run->exit_reason = KVM_EXIT_RISCV_CSR;
325 	}
326 
327 	return rc;
328 }
329 
330 static const struct insn_func system_opcode_funcs[] = {
331 	{
332 		.mask  = INSN_MASK_CSRRW,
333 		.match = INSN_MATCH_CSRRW,
334 		.func  = csr_insn,
335 	},
336 	{
337 		.mask  = INSN_MASK_CSRRS,
338 		.match = INSN_MATCH_CSRRS,
339 		.func  = csr_insn,
340 	},
341 	{
342 		.mask  = INSN_MASK_CSRRC,
343 		.match = INSN_MATCH_CSRRC,
344 		.func  = csr_insn,
345 	},
346 	{
347 		.mask  = INSN_MASK_CSRRWI,
348 		.match = INSN_MATCH_CSRRWI,
349 		.func  = csr_insn,
350 	},
351 	{
352 		.mask  = INSN_MASK_CSRRSI,
353 		.match = INSN_MATCH_CSRRSI,
354 		.func  = csr_insn,
355 	},
356 	{
357 		.mask  = INSN_MASK_CSRRCI,
358 		.match = INSN_MATCH_CSRRCI,
359 		.func  = csr_insn,
360 	},
361 	{
362 		.mask  = INSN_MASK_WFI,
363 		.match = INSN_MATCH_WFI,
364 		.func  = wfi_insn,
365 	},
366 };
367 
368 static int system_opcode_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
369 			      ulong insn)
370 {
371 	int i, rc = KVM_INSN_ILLEGAL_TRAP;
372 	const struct insn_func *ifn;
373 
374 	for (i = 0; i < ARRAY_SIZE(system_opcode_funcs); i++) {
375 		ifn = &system_opcode_funcs[i];
376 		if ((insn & ifn->mask) == ifn->match) {
377 			rc = ifn->func(vcpu, run, insn);
378 			break;
379 		}
380 	}
381 
382 	switch (rc) {
383 	case KVM_INSN_ILLEGAL_TRAP:
384 		return truly_illegal_insn(vcpu, run, insn);
385 	case KVM_INSN_VIRTUAL_TRAP:
386 		return truly_virtual_insn(vcpu, run, insn);
387 	case KVM_INSN_CONTINUE_NEXT_SEPC:
388 		vcpu->arch.guest_context.sepc += INSN_LEN(insn);
389 		break;
390 	default:
391 		break;
392 	}
393 
394 	return (rc <= 0) ? rc : 1;
395 }
396 
397 /**
398  * kvm_riscv_vcpu_virtual_insn -- Handle virtual instruction trap
399  *
400  * @vcpu: The VCPU pointer
401  * @run:  The VCPU run struct containing the mmio data
402  * @trap: Trap details
403  *
404  * Returns > 0 to continue run-loop
405  * Returns   0 to exit run-loop and handle in user-space.
406  * Returns < 0 to report failure and exit run-loop
407  */
408 int kvm_riscv_vcpu_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
409 				struct kvm_cpu_trap *trap)
410 {
411 	unsigned long insn = trap->stval;
412 	struct kvm_cpu_trap utrap = { 0 };
413 	struct kvm_cpu_context *ct;
414 
415 	if (unlikely(INSN_IS_16BIT(insn))) {
416 		if (insn == 0) {
417 			ct = &vcpu->arch.guest_context;
418 			insn = kvm_riscv_vcpu_unpriv_read(vcpu, true,
419 							  ct->sepc,
420 							  &utrap);
421 			if (utrap.scause) {
422 				utrap.sepc = ct->sepc;
423 				kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
424 				return 1;
425 			}
426 		}
427 		if (INSN_IS_16BIT(insn))
428 			return truly_illegal_insn(vcpu, run, insn);
429 	}
430 
431 	switch ((insn & INSN_OPCODE_MASK) >> INSN_OPCODE_SHIFT) {
432 	case INSN_OPCODE_SYSTEM:
433 		return system_opcode_insn(vcpu, run, insn);
434 	default:
435 		return truly_illegal_insn(vcpu, run, insn);
436 	}
437 }
438 
439 /**
440  * kvm_riscv_vcpu_mmio_load -- Emulate MMIO load instruction
441  *
442  * @vcpu: The VCPU pointer
443  * @run:  The VCPU run struct containing the mmio data
444  * @fault_addr: Guest physical address to load
445  * @htinst: Transformed encoding of the load instruction
446  *
447  * Returns > 0 to continue run-loop
448  * Returns   0 to exit run-loop and handle in user-space.
449  * Returns < 0 to report failure and exit run-loop
450  */
451 int kvm_riscv_vcpu_mmio_load(struct kvm_vcpu *vcpu, struct kvm_run *run,
452 			     unsigned long fault_addr,
453 			     unsigned long htinst)
454 {
455 	u8 data_buf[8];
456 	unsigned long insn;
457 	int shift = 0, len = 0, insn_len = 0;
458 	struct kvm_cpu_trap utrap = { 0 };
459 	struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
460 
461 	/* Determine trapped instruction */
462 	if (htinst & 0x1) {
463 		/*
464 		 * Bit[0] == 1 implies trapped instruction value is
465 		 * transformed instruction or custom instruction.
466 		 */
467 		insn = htinst | INSN_16BIT_MASK;
468 		insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
469 	} else {
470 		/*
471 		 * Bit[0] == 0 implies trapped instruction value is
472 		 * zero or special value.
473 		 */
474 		insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
475 						  &utrap);
476 		if (utrap.scause) {
477 			/* Redirect trap if we failed to read instruction */
478 			utrap.sepc = ct->sepc;
479 			kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
480 			return 1;
481 		}
482 		insn_len = INSN_LEN(insn);
483 	}
484 
485 	/* Decode length of MMIO and shift */
486 	if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
487 		len = 4;
488 		shift = 8 * (sizeof(ulong) - len);
489 	} else if ((insn & INSN_MASK_LB) == INSN_MATCH_LB) {
490 		len = 1;
491 		shift = 8 * (sizeof(ulong) - len);
492 	} else if ((insn & INSN_MASK_LBU) == INSN_MATCH_LBU) {
493 		len = 1;
494 		shift = 8 * (sizeof(ulong) - len);
495 #ifdef CONFIG_64BIT
496 	} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
497 		len = 8;
498 		shift = 8 * (sizeof(ulong) - len);
499 	} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
500 		len = 4;
501 #endif
502 	} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
503 		len = 2;
504 		shift = 8 * (sizeof(ulong) - len);
505 	} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
506 		len = 2;
507 #ifdef CONFIG_64BIT
508 	} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
509 		len = 8;
510 		shift = 8 * (sizeof(ulong) - len);
511 		insn = RVC_RS2S(insn) << SH_RD;
512 	} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
513 		   ((insn >> SH_RD) & 0x1f)) {
514 		len = 8;
515 		shift = 8 * (sizeof(ulong) - len);
516 #endif
517 	} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
518 		len = 4;
519 		shift = 8 * (sizeof(ulong) - len);
520 		insn = RVC_RS2S(insn) << SH_RD;
521 	} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
522 		   ((insn >> SH_RD) & 0x1f)) {
523 		len = 4;
524 		shift = 8 * (sizeof(ulong) - len);
525 	} else {
526 		return -EOPNOTSUPP;
527 	}
528 
529 	/* Fault address should be aligned to length of MMIO */
530 	if (fault_addr & (len - 1))
531 		return -EIO;
532 
533 	/* Save instruction decode info */
534 	vcpu->arch.mmio_decode.insn = insn;
535 	vcpu->arch.mmio_decode.insn_len = insn_len;
536 	vcpu->arch.mmio_decode.shift = shift;
537 	vcpu->arch.mmio_decode.len = len;
538 	vcpu->arch.mmio_decode.return_handled = 0;
539 
540 	/* Update MMIO details in kvm_run struct */
541 	run->mmio.is_write = false;
542 	run->mmio.phys_addr = fault_addr;
543 	run->mmio.len = len;
544 
545 	/* Try to handle MMIO access in the kernel */
546 	if (!kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_addr, len, data_buf)) {
547 		/* Successfully handled MMIO access in the kernel so resume */
548 		memcpy(run->mmio.data, data_buf, len);
549 		vcpu->stat.mmio_exit_kernel++;
550 		kvm_riscv_vcpu_mmio_return(vcpu, run);
551 		return 1;
552 	}
553 
554 	/* Exit to userspace for MMIO emulation */
555 	vcpu->stat.mmio_exit_user++;
556 	run->exit_reason = KVM_EXIT_MMIO;
557 
558 	return 0;
559 }
560 
561 /**
562  * kvm_riscv_vcpu_mmio_store -- Emulate MMIO store instruction
563  *
564  * @vcpu: The VCPU pointer
565  * @run:  The VCPU run struct containing the mmio data
566  * @fault_addr: Guest physical address to store
567  * @htinst: Transformed encoding of the store instruction
568  *
569  * Returns > 0 to continue run-loop
570  * Returns   0 to exit run-loop and handle in user-space.
571  * Returns < 0 to report failure and exit run-loop
572  */
573 int kvm_riscv_vcpu_mmio_store(struct kvm_vcpu *vcpu, struct kvm_run *run,
574 			      unsigned long fault_addr,
575 			      unsigned long htinst)
576 {
577 	u8 data8;
578 	u16 data16;
579 	u32 data32;
580 	u64 data64;
581 	ulong data;
582 	unsigned long insn;
583 	int len = 0, insn_len = 0;
584 	struct kvm_cpu_trap utrap = { 0 };
585 	struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
586 
587 	/* Determine trapped instruction */
588 	if (htinst & 0x1) {
589 		/*
590 		 * Bit[0] == 1 implies trapped instruction value is
591 		 * transformed instruction or custom instruction.
592 		 */
593 		insn = htinst | INSN_16BIT_MASK;
594 		insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
595 	} else {
596 		/*
597 		 * Bit[0] == 0 implies trapped instruction value is
598 		 * zero or special value.
599 		 */
600 		insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
601 						  &utrap);
602 		if (utrap.scause) {
603 			/* Redirect trap if we failed to read instruction */
604 			utrap.sepc = ct->sepc;
605 			kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
606 			return 1;
607 		}
608 		insn_len = INSN_LEN(insn);
609 	}
610 
611 	data = GET_RS2(insn, &vcpu->arch.guest_context);
612 	data8 = data16 = data32 = data64 = data;
613 
614 	if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
615 		len = 4;
616 	} else if ((insn & INSN_MASK_SB) == INSN_MATCH_SB) {
617 		len = 1;
618 #ifdef CONFIG_64BIT
619 	} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
620 		len = 8;
621 #endif
622 	} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
623 		len = 2;
624 #ifdef CONFIG_64BIT
625 	} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
626 		len = 8;
627 		data64 = GET_RS2S(insn, &vcpu->arch.guest_context);
628 	} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP &&
629 		   ((insn >> SH_RD) & 0x1f)) {
630 		len = 8;
631 		data64 = GET_RS2C(insn, &vcpu->arch.guest_context);
632 #endif
633 	} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
634 		len = 4;
635 		data32 = GET_RS2S(insn, &vcpu->arch.guest_context);
636 	} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP &&
637 		   ((insn >> SH_RD) & 0x1f)) {
638 		len = 4;
639 		data32 = GET_RS2C(insn, &vcpu->arch.guest_context);
640 	} else {
641 		return -EOPNOTSUPP;
642 	}
643 
644 	/* Fault address should be aligned to length of MMIO */
645 	if (fault_addr & (len - 1))
646 		return -EIO;
647 
648 	/* Save instruction decode info */
649 	vcpu->arch.mmio_decode.insn = insn;
650 	vcpu->arch.mmio_decode.insn_len = insn_len;
651 	vcpu->arch.mmio_decode.shift = 0;
652 	vcpu->arch.mmio_decode.len = len;
653 	vcpu->arch.mmio_decode.return_handled = 0;
654 
655 	/* Copy data to kvm_run instance */
656 	switch (len) {
657 	case 1:
658 		*((u8 *)run->mmio.data) = data8;
659 		break;
660 	case 2:
661 		*((u16 *)run->mmio.data) = data16;
662 		break;
663 	case 4:
664 		*((u32 *)run->mmio.data) = data32;
665 		break;
666 	case 8:
667 		*((u64 *)run->mmio.data) = data64;
668 		break;
669 	default:
670 		return -EOPNOTSUPP;
671 	}
672 
673 	/* Update MMIO details in kvm_run struct */
674 	run->mmio.is_write = true;
675 	run->mmio.phys_addr = fault_addr;
676 	run->mmio.len = len;
677 
678 	/* Try to handle MMIO access in the kernel */
679 	if (!kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
680 			      fault_addr, len, run->mmio.data)) {
681 		/* Successfully handled MMIO access in the kernel so resume */
682 		vcpu->stat.mmio_exit_kernel++;
683 		kvm_riscv_vcpu_mmio_return(vcpu, run);
684 		return 1;
685 	}
686 
687 	/* Exit to userspace for MMIO emulation */
688 	vcpu->stat.mmio_exit_user++;
689 	run->exit_reason = KVM_EXIT_MMIO;
690 
691 	return 0;
692 }
693 
694 /**
695  * kvm_riscv_vcpu_mmio_return -- Handle MMIO loads after user space emulation
696  *			     or in-kernel IO emulation
697  *
698  * @vcpu: The VCPU pointer
699  * @run:  The VCPU run struct containing the mmio data
700  */
701 int kvm_riscv_vcpu_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
702 {
703 	u8 data8;
704 	u16 data16;
705 	u32 data32;
706 	u64 data64;
707 	ulong insn;
708 	int len, shift;
709 
710 	if (vcpu->arch.mmio_decode.return_handled)
711 		return 0;
712 
713 	vcpu->arch.mmio_decode.return_handled = 1;
714 	insn = vcpu->arch.mmio_decode.insn;
715 
716 	if (run->mmio.is_write)
717 		goto done;
718 
719 	len = vcpu->arch.mmio_decode.len;
720 	shift = vcpu->arch.mmio_decode.shift;
721 
722 	switch (len) {
723 	case 1:
724 		data8 = *((u8 *)run->mmio.data);
725 		SET_RD(insn, &vcpu->arch.guest_context,
726 			(ulong)data8 << shift >> shift);
727 		break;
728 	case 2:
729 		data16 = *((u16 *)run->mmio.data);
730 		SET_RD(insn, &vcpu->arch.guest_context,
731 			(ulong)data16 << shift >> shift);
732 		break;
733 	case 4:
734 		data32 = *((u32 *)run->mmio.data);
735 		SET_RD(insn, &vcpu->arch.guest_context,
736 			(ulong)data32 << shift >> shift);
737 		break;
738 	case 8:
739 		data64 = *((u64 *)run->mmio.data);
740 		SET_RD(insn, &vcpu->arch.guest_context,
741 			(ulong)data64 << shift >> shift);
742 		break;
743 	default:
744 		return -EOPNOTSUPP;
745 	}
746 
747 done:
748 	/* Move to next instruction */
749 	vcpu->arch.guest_context.sepc += vcpu->arch.mmio_decode.insn_len;
750 
751 	return 0;
752 }
753