xref: /linux/arch/riscv/kvm/vcpu.c (revision fa8a4d3659d0c1ad73d5f59b2e0a6d408de5b317)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/entry-kvm.h>
11 #include <linux/errno.h>
12 #include <linux/err.h>
13 #include <linux/kdebug.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sched/signal.h>
18 #include <linux/fs.h>
19 #include <linux/kvm_host.h>
20 #include <asm/csr.h>
21 #include <asm/cacheflush.h>
22 #include <asm/kvm_vcpu_vector.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26 
27 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
28 	KVM_GENERIC_VCPU_STATS(),
29 	STATS_DESC_COUNTER(VCPU, ecall_exit_stat),
30 	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
31 	STATS_DESC_COUNTER(VCPU, wrs_exit_stat),
32 	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
33 	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
34 	STATS_DESC_COUNTER(VCPU, csr_exit_user),
35 	STATS_DESC_COUNTER(VCPU, csr_exit_kernel),
36 	STATS_DESC_COUNTER(VCPU, signal_exits),
37 	STATS_DESC_COUNTER(VCPU, exits)
38 };
39 
40 const struct kvm_stats_header kvm_vcpu_stats_header = {
41 	.name_size = KVM_STATS_NAME_SIZE,
42 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
43 	.id_offset = sizeof(struct kvm_stats_header),
44 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
45 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
46 		       sizeof(kvm_vcpu_stats_desc),
47 };
48 
49 static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu)
50 {
51 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
52 	struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
53 	struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
54 	struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context;
55 	bool loaded;
56 
57 	/**
58 	 * The preemption should be disabled here because it races with
59 	 * kvm_sched_out/kvm_sched_in(called from preempt notifiers) which
60 	 * also calls vcpu_load/put.
61 	 */
62 	get_cpu();
63 	loaded = (vcpu->cpu != -1);
64 	if (loaded)
65 		kvm_arch_vcpu_put(vcpu);
66 
67 	vcpu->arch.last_exit_cpu = -1;
68 
69 	memcpy(csr, reset_csr, sizeof(*csr));
70 
71 	spin_lock(&vcpu->arch.reset_cntx_lock);
72 	memcpy(cntx, reset_cntx, sizeof(*cntx));
73 	spin_unlock(&vcpu->arch.reset_cntx_lock);
74 
75 	kvm_riscv_vcpu_fp_reset(vcpu);
76 
77 	kvm_riscv_vcpu_vector_reset(vcpu);
78 
79 	kvm_riscv_vcpu_timer_reset(vcpu);
80 
81 	kvm_riscv_vcpu_aia_reset(vcpu);
82 
83 	bitmap_zero(vcpu->arch.irqs_pending, KVM_RISCV_VCPU_NR_IRQS);
84 	bitmap_zero(vcpu->arch.irqs_pending_mask, KVM_RISCV_VCPU_NR_IRQS);
85 
86 	kvm_riscv_vcpu_pmu_reset(vcpu);
87 
88 	vcpu->arch.hfence_head = 0;
89 	vcpu->arch.hfence_tail = 0;
90 	memset(vcpu->arch.hfence_queue, 0, sizeof(vcpu->arch.hfence_queue));
91 
92 	kvm_riscv_vcpu_sbi_sta_reset(vcpu);
93 
94 	/* Reset the guest CSRs for hotplug usecase */
95 	if (loaded)
96 		kvm_arch_vcpu_load(vcpu, smp_processor_id());
97 	put_cpu();
98 }
99 
100 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
101 {
102 	return 0;
103 }
104 
105 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
106 {
107 	int rc;
108 	struct kvm_cpu_context *cntx;
109 	struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
110 
111 	spin_lock_init(&vcpu->arch.mp_state_lock);
112 
113 	/* Mark this VCPU never ran */
114 	vcpu->arch.ran_atleast_once = false;
115 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
116 	bitmap_zero(vcpu->arch.isa, RISCV_ISA_EXT_MAX);
117 
118 	/* Setup ISA features available to VCPU */
119 	kvm_riscv_vcpu_setup_isa(vcpu);
120 
121 	/* Setup vendor, arch, and implementation details */
122 	vcpu->arch.mvendorid = sbi_get_mvendorid();
123 	vcpu->arch.marchid = sbi_get_marchid();
124 	vcpu->arch.mimpid = sbi_get_mimpid();
125 
126 	/* Setup VCPU hfence queue */
127 	spin_lock_init(&vcpu->arch.hfence_lock);
128 
129 	/* Setup reset state of shadow SSTATUS and HSTATUS CSRs */
130 	spin_lock_init(&vcpu->arch.reset_cntx_lock);
131 
132 	spin_lock(&vcpu->arch.reset_cntx_lock);
133 	cntx = &vcpu->arch.guest_reset_context;
134 	cntx->sstatus = SR_SPP | SR_SPIE;
135 	cntx->hstatus = 0;
136 	cntx->hstatus |= HSTATUS_VTW;
137 	cntx->hstatus |= HSTATUS_SPVP;
138 	cntx->hstatus |= HSTATUS_SPV;
139 	spin_unlock(&vcpu->arch.reset_cntx_lock);
140 
141 	if (kvm_riscv_vcpu_alloc_vector_context(vcpu, cntx))
142 		return -ENOMEM;
143 
144 	/* By default, make CY, TM, and IR counters accessible in VU mode */
145 	reset_csr->scounteren = 0x7;
146 
147 	/* Setup VCPU timer */
148 	kvm_riscv_vcpu_timer_init(vcpu);
149 
150 	/* setup performance monitoring */
151 	kvm_riscv_vcpu_pmu_init(vcpu);
152 
153 	/* Setup VCPU AIA */
154 	rc = kvm_riscv_vcpu_aia_init(vcpu);
155 	if (rc)
156 		return rc;
157 
158 	/*
159 	 * Setup SBI extensions
160 	 * NOTE: This must be the last thing to be initialized.
161 	 */
162 	kvm_riscv_vcpu_sbi_init(vcpu);
163 
164 	/* Reset VCPU */
165 	kvm_riscv_reset_vcpu(vcpu);
166 
167 	return 0;
168 }
169 
170 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
171 {
172 	/**
173 	 * vcpu with id 0 is the designated boot cpu.
174 	 * Keep all vcpus with non-zero id in power-off state so that
175 	 * they can be brought up using SBI HSM extension.
176 	 */
177 	if (vcpu->vcpu_idx != 0)
178 		kvm_riscv_vcpu_power_off(vcpu);
179 }
180 
181 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
182 {
183 	/* Cleanup VCPU AIA context */
184 	kvm_riscv_vcpu_aia_deinit(vcpu);
185 
186 	/* Cleanup VCPU timer */
187 	kvm_riscv_vcpu_timer_deinit(vcpu);
188 
189 	kvm_riscv_vcpu_pmu_deinit(vcpu);
190 
191 	/* Free unused pages pre-allocated for G-stage page table mappings */
192 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
193 
194 	/* Free vector context space for host and guest kernel */
195 	kvm_riscv_vcpu_free_vector_context(vcpu);
196 }
197 
198 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
199 {
200 	return kvm_riscv_vcpu_timer_pending(vcpu);
201 }
202 
203 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
204 {
205 	kvm_riscv_aia_wakeon_hgei(vcpu, true);
206 }
207 
208 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
209 {
210 	kvm_riscv_aia_wakeon_hgei(vcpu, false);
211 }
212 
213 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
214 {
215 	return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) &&
216 		!kvm_riscv_vcpu_stopped(vcpu) && !vcpu->arch.pause);
217 }
218 
219 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
220 {
221 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
222 }
223 
224 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
225 {
226 	return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false;
227 }
228 
229 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
230 {
231 	return VM_FAULT_SIGBUS;
232 }
233 
234 long kvm_arch_vcpu_async_ioctl(struct file *filp,
235 			       unsigned int ioctl, unsigned long arg)
236 {
237 	struct kvm_vcpu *vcpu = filp->private_data;
238 	void __user *argp = (void __user *)arg;
239 
240 	if (ioctl == KVM_INTERRUPT) {
241 		struct kvm_interrupt irq;
242 
243 		if (copy_from_user(&irq, argp, sizeof(irq)))
244 			return -EFAULT;
245 
246 		if (irq.irq == KVM_INTERRUPT_SET)
247 			return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT);
248 		else
249 			return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT);
250 	}
251 
252 	return -ENOIOCTLCMD;
253 }
254 
255 long kvm_arch_vcpu_ioctl(struct file *filp,
256 			 unsigned int ioctl, unsigned long arg)
257 {
258 	struct kvm_vcpu *vcpu = filp->private_data;
259 	void __user *argp = (void __user *)arg;
260 	long r = -EINVAL;
261 
262 	switch (ioctl) {
263 	case KVM_SET_ONE_REG:
264 	case KVM_GET_ONE_REG: {
265 		struct kvm_one_reg reg;
266 
267 		r = -EFAULT;
268 		if (copy_from_user(&reg, argp, sizeof(reg)))
269 			break;
270 
271 		if (ioctl == KVM_SET_ONE_REG)
272 			r = kvm_riscv_vcpu_set_reg(vcpu, &reg);
273 		else
274 			r = kvm_riscv_vcpu_get_reg(vcpu, &reg);
275 		break;
276 	}
277 	case KVM_GET_REG_LIST: {
278 		struct kvm_reg_list __user *user_list = argp;
279 		struct kvm_reg_list reg_list;
280 		unsigned int n;
281 
282 		r = -EFAULT;
283 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
284 			break;
285 		n = reg_list.n;
286 		reg_list.n = kvm_riscv_vcpu_num_regs(vcpu);
287 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
288 			break;
289 		r = -E2BIG;
290 		if (n < reg_list.n)
291 			break;
292 		r = kvm_riscv_vcpu_copy_reg_indices(vcpu, user_list->reg);
293 		break;
294 	}
295 	default:
296 		break;
297 	}
298 
299 	return r;
300 }
301 
302 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
303 				  struct kvm_sregs *sregs)
304 {
305 	return -EINVAL;
306 }
307 
308 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
309 				  struct kvm_sregs *sregs)
310 {
311 	return -EINVAL;
312 }
313 
314 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
315 {
316 	return -EINVAL;
317 }
318 
319 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
320 {
321 	return -EINVAL;
322 }
323 
324 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
325 				  struct kvm_translation *tr)
326 {
327 	return -EINVAL;
328 }
329 
330 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
331 {
332 	return -EINVAL;
333 }
334 
335 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
336 {
337 	return -EINVAL;
338 }
339 
340 void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu)
341 {
342 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
343 	unsigned long mask, val;
344 
345 	if (READ_ONCE(vcpu->arch.irqs_pending_mask[0])) {
346 		mask = xchg_acquire(&vcpu->arch.irqs_pending_mask[0], 0);
347 		val = READ_ONCE(vcpu->arch.irqs_pending[0]) & mask;
348 
349 		csr->hvip &= ~mask;
350 		csr->hvip |= val;
351 	}
352 
353 	/* Flush AIA high interrupts */
354 	kvm_riscv_vcpu_aia_flush_interrupts(vcpu);
355 }
356 
357 void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu)
358 {
359 	unsigned long hvip;
360 	struct kvm_vcpu_arch *v = &vcpu->arch;
361 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
362 
363 	/* Read current HVIP and VSIE CSRs */
364 	csr->vsie = csr_read(CSR_VSIE);
365 
366 	/* Sync-up HVIP.VSSIP bit changes does by Guest */
367 	hvip = csr_read(CSR_HVIP);
368 	if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) {
369 		if (hvip & (1UL << IRQ_VS_SOFT)) {
370 			if (!test_and_set_bit(IRQ_VS_SOFT,
371 					      v->irqs_pending_mask))
372 				set_bit(IRQ_VS_SOFT, v->irqs_pending);
373 		} else {
374 			if (!test_and_set_bit(IRQ_VS_SOFT,
375 					      v->irqs_pending_mask))
376 				clear_bit(IRQ_VS_SOFT, v->irqs_pending);
377 		}
378 	}
379 
380 	/* Sync up the HVIP.LCOFIP bit changes (only clear) by the guest */
381 	if ((csr->hvip ^ hvip) & (1UL << IRQ_PMU_OVF)) {
382 		if (!(hvip & (1UL << IRQ_PMU_OVF)) &&
383 		    !test_and_set_bit(IRQ_PMU_OVF, v->irqs_pending_mask))
384 			clear_bit(IRQ_PMU_OVF, v->irqs_pending);
385 	}
386 
387 	/* Sync-up AIA high interrupts */
388 	kvm_riscv_vcpu_aia_sync_interrupts(vcpu);
389 
390 	/* Sync-up timer CSRs */
391 	kvm_riscv_vcpu_timer_sync(vcpu);
392 }
393 
394 int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
395 {
396 	/*
397 	 * We only allow VS-mode software, timer, and external
398 	 * interrupts when irq is one of the local interrupts
399 	 * defined by RISC-V privilege specification.
400 	 */
401 	if (irq < IRQ_LOCAL_MAX &&
402 	    irq != IRQ_VS_SOFT &&
403 	    irq != IRQ_VS_TIMER &&
404 	    irq != IRQ_VS_EXT &&
405 	    irq != IRQ_PMU_OVF)
406 		return -EINVAL;
407 
408 	set_bit(irq, vcpu->arch.irqs_pending);
409 	smp_mb__before_atomic();
410 	set_bit(irq, vcpu->arch.irqs_pending_mask);
411 
412 	kvm_vcpu_kick(vcpu);
413 
414 	return 0;
415 }
416 
417 int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
418 {
419 	/*
420 	 * We only allow VS-mode software, timer, counter overflow and external
421 	 * interrupts when irq is one of the local interrupts
422 	 * defined by RISC-V privilege specification.
423 	 */
424 	if (irq < IRQ_LOCAL_MAX &&
425 	    irq != IRQ_VS_SOFT &&
426 	    irq != IRQ_VS_TIMER &&
427 	    irq != IRQ_VS_EXT &&
428 	    irq != IRQ_PMU_OVF)
429 		return -EINVAL;
430 
431 	clear_bit(irq, vcpu->arch.irqs_pending);
432 	smp_mb__before_atomic();
433 	set_bit(irq, vcpu->arch.irqs_pending_mask);
434 
435 	return 0;
436 }
437 
438 bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, u64 mask)
439 {
440 	unsigned long ie;
441 
442 	ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK)
443 		<< VSIP_TO_HVIP_SHIFT) & (unsigned long)mask;
444 	ie |= vcpu->arch.guest_csr.vsie & ~IRQ_LOCAL_MASK &
445 		(unsigned long)mask;
446 	if (READ_ONCE(vcpu->arch.irqs_pending[0]) & ie)
447 		return true;
448 
449 	/* Check AIA high interrupts */
450 	return kvm_riscv_vcpu_aia_has_interrupts(vcpu, mask);
451 }
452 
453 void __kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
454 {
455 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
456 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
457 	kvm_vcpu_kick(vcpu);
458 }
459 
460 void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
461 {
462 	spin_lock(&vcpu->arch.mp_state_lock);
463 	__kvm_riscv_vcpu_power_off(vcpu);
464 	spin_unlock(&vcpu->arch.mp_state_lock);
465 }
466 
467 void __kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
468 {
469 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
470 	kvm_vcpu_wake_up(vcpu);
471 }
472 
473 void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
474 {
475 	spin_lock(&vcpu->arch.mp_state_lock);
476 	__kvm_riscv_vcpu_power_on(vcpu);
477 	spin_unlock(&vcpu->arch.mp_state_lock);
478 }
479 
480 bool kvm_riscv_vcpu_stopped(struct kvm_vcpu *vcpu)
481 {
482 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
483 }
484 
485 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
486 				    struct kvm_mp_state *mp_state)
487 {
488 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
489 
490 	return 0;
491 }
492 
493 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
494 				    struct kvm_mp_state *mp_state)
495 {
496 	int ret = 0;
497 
498 	spin_lock(&vcpu->arch.mp_state_lock);
499 
500 	switch (mp_state->mp_state) {
501 	case KVM_MP_STATE_RUNNABLE:
502 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
503 		break;
504 	case KVM_MP_STATE_STOPPED:
505 		__kvm_riscv_vcpu_power_off(vcpu);
506 		break;
507 	default:
508 		ret = -EINVAL;
509 	}
510 
511 	spin_unlock(&vcpu->arch.mp_state_lock);
512 
513 	return ret;
514 }
515 
516 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
517 					struct kvm_guest_debug *dbg)
518 {
519 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
520 		vcpu->guest_debug = dbg->control;
521 		vcpu->arch.cfg.hedeleg &= ~BIT(EXC_BREAKPOINT);
522 	} else {
523 		vcpu->guest_debug = 0;
524 		vcpu->arch.cfg.hedeleg |= BIT(EXC_BREAKPOINT);
525 	}
526 
527 	return 0;
528 }
529 
530 static void kvm_riscv_vcpu_setup_config(struct kvm_vcpu *vcpu)
531 {
532 	const unsigned long *isa = vcpu->arch.isa;
533 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
534 
535 	if (riscv_isa_extension_available(isa, SVPBMT))
536 		cfg->henvcfg |= ENVCFG_PBMTE;
537 
538 	if (riscv_isa_extension_available(isa, SSTC))
539 		cfg->henvcfg |= ENVCFG_STCE;
540 
541 	if (riscv_isa_extension_available(isa, ZICBOM))
542 		cfg->henvcfg |= (ENVCFG_CBIE | ENVCFG_CBCFE);
543 
544 	if (riscv_isa_extension_available(isa, ZICBOZ))
545 		cfg->henvcfg |= ENVCFG_CBZE;
546 
547 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
548 		cfg->hstateen0 |= SMSTATEEN0_HSENVCFG;
549 		if (riscv_isa_extension_available(isa, SSAIA))
550 			cfg->hstateen0 |= SMSTATEEN0_AIA_IMSIC |
551 					  SMSTATEEN0_AIA |
552 					  SMSTATEEN0_AIA_ISEL;
553 		if (riscv_isa_extension_available(isa, SMSTATEEN))
554 			cfg->hstateen0 |= SMSTATEEN0_SSTATEEN0;
555 	}
556 
557 	cfg->hedeleg = KVM_HEDELEG_DEFAULT;
558 	if (vcpu->guest_debug)
559 		cfg->hedeleg &= ~BIT(EXC_BREAKPOINT);
560 }
561 
562 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
563 {
564 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
565 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
566 
567 	csr_write(CSR_VSSTATUS, csr->vsstatus);
568 	csr_write(CSR_VSIE, csr->vsie);
569 	csr_write(CSR_VSTVEC, csr->vstvec);
570 	csr_write(CSR_VSSCRATCH, csr->vsscratch);
571 	csr_write(CSR_VSEPC, csr->vsepc);
572 	csr_write(CSR_VSCAUSE, csr->vscause);
573 	csr_write(CSR_VSTVAL, csr->vstval);
574 	csr_write(CSR_HEDELEG, cfg->hedeleg);
575 	csr_write(CSR_HVIP, csr->hvip);
576 	csr_write(CSR_VSATP, csr->vsatp);
577 	csr_write(CSR_HENVCFG, cfg->henvcfg);
578 	if (IS_ENABLED(CONFIG_32BIT))
579 		csr_write(CSR_HENVCFGH, cfg->henvcfg >> 32);
580 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
581 		csr_write(CSR_HSTATEEN0, cfg->hstateen0);
582 		if (IS_ENABLED(CONFIG_32BIT))
583 			csr_write(CSR_HSTATEEN0H, cfg->hstateen0 >> 32);
584 	}
585 
586 	kvm_riscv_gstage_update_hgatp(vcpu);
587 
588 	kvm_riscv_vcpu_timer_restore(vcpu);
589 
590 	kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context);
591 	kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context,
592 					vcpu->arch.isa);
593 	kvm_riscv_vcpu_host_vector_save(&vcpu->arch.host_context);
594 	kvm_riscv_vcpu_guest_vector_restore(&vcpu->arch.guest_context,
595 					    vcpu->arch.isa);
596 
597 	kvm_riscv_vcpu_aia_load(vcpu, cpu);
598 
599 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
600 
601 	vcpu->cpu = cpu;
602 }
603 
604 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
605 {
606 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
607 
608 	vcpu->cpu = -1;
609 
610 	kvm_riscv_vcpu_aia_put(vcpu);
611 
612 	kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context,
613 				     vcpu->arch.isa);
614 	kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context);
615 
616 	kvm_riscv_vcpu_timer_save(vcpu);
617 	kvm_riscv_vcpu_guest_vector_save(&vcpu->arch.guest_context,
618 					 vcpu->arch.isa);
619 	kvm_riscv_vcpu_host_vector_restore(&vcpu->arch.host_context);
620 
621 	csr->vsstatus = csr_read(CSR_VSSTATUS);
622 	csr->vsie = csr_read(CSR_VSIE);
623 	csr->vstvec = csr_read(CSR_VSTVEC);
624 	csr->vsscratch = csr_read(CSR_VSSCRATCH);
625 	csr->vsepc = csr_read(CSR_VSEPC);
626 	csr->vscause = csr_read(CSR_VSCAUSE);
627 	csr->vstval = csr_read(CSR_VSTVAL);
628 	csr->hvip = csr_read(CSR_HVIP);
629 	csr->vsatp = csr_read(CSR_VSATP);
630 }
631 
632 static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu)
633 {
634 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
635 
636 	if (kvm_request_pending(vcpu)) {
637 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) {
638 			kvm_vcpu_srcu_read_unlock(vcpu);
639 			rcuwait_wait_event(wait,
640 				(!kvm_riscv_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
641 				TASK_INTERRUPTIBLE);
642 			kvm_vcpu_srcu_read_lock(vcpu);
643 
644 			if (kvm_riscv_vcpu_stopped(vcpu) || vcpu->arch.pause) {
645 				/*
646 				 * Awaken to handle a signal, request to
647 				 * sleep again later.
648 				 */
649 				kvm_make_request(KVM_REQ_SLEEP, vcpu);
650 			}
651 		}
652 
653 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
654 			kvm_riscv_reset_vcpu(vcpu);
655 
656 		if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu))
657 			kvm_riscv_gstage_update_hgatp(vcpu);
658 
659 		if (kvm_check_request(KVM_REQ_FENCE_I, vcpu))
660 			kvm_riscv_fence_i_process(vcpu);
661 
662 		/*
663 		 * The generic KVM_REQ_TLB_FLUSH is same as
664 		 * KVM_REQ_HFENCE_GVMA_VMID_ALL
665 		 */
666 		if (kvm_check_request(KVM_REQ_HFENCE_GVMA_VMID_ALL, vcpu))
667 			kvm_riscv_hfence_gvma_vmid_all_process(vcpu);
668 
669 		if (kvm_check_request(KVM_REQ_HFENCE_VVMA_ALL, vcpu))
670 			kvm_riscv_hfence_vvma_all_process(vcpu);
671 
672 		if (kvm_check_request(KVM_REQ_HFENCE, vcpu))
673 			kvm_riscv_hfence_process(vcpu);
674 
675 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
676 			kvm_riscv_vcpu_record_steal_time(vcpu);
677 	}
678 }
679 
680 static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu)
681 {
682 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
683 
684 	csr_write(CSR_HVIP, csr->hvip);
685 	kvm_riscv_vcpu_aia_update_hvip(vcpu);
686 }
687 
688 static __always_inline void kvm_riscv_vcpu_swap_in_guest_state(struct kvm_vcpu *vcpu)
689 {
690 	struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr;
691 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
692 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
693 
694 	vcpu->arch.host_senvcfg = csr_swap(CSR_SENVCFG, csr->senvcfg);
695 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) &&
696 	    (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0))
697 		vcpu->arch.host_sstateen0 = csr_swap(CSR_SSTATEEN0,
698 						     smcsr->sstateen0);
699 }
700 
701 static __always_inline void kvm_riscv_vcpu_swap_in_host_state(struct kvm_vcpu *vcpu)
702 {
703 	struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr;
704 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
705 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
706 
707 	csr->senvcfg = csr_swap(CSR_SENVCFG, vcpu->arch.host_senvcfg);
708 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) &&
709 	    (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0))
710 		smcsr->sstateen0 = csr_swap(CSR_SSTATEEN0,
711 					    vcpu->arch.host_sstateen0);
712 }
713 
714 /*
715  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
716  * the vCPU is running.
717  *
718  * This must be noinstr as instrumentation may make use of RCU, and this is not
719  * safe during the EQS.
720  */
721 static void noinstr kvm_riscv_vcpu_enter_exit(struct kvm_vcpu *vcpu)
722 {
723 	kvm_riscv_vcpu_swap_in_guest_state(vcpu);
724 	guest_state_enter_irqoff();
725 	__kvm_riscv_switch_to(&vcpu->arch);
726 	vcpu->arch.last_exit_cpu = vcpu->cpu;
727 	guest_state_exit_irqoff();
728 	kvm_riscv_vcpu_swap_in_host_state(vcpu);
729 }
730 
731 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
732 {
733 	int ret;
734 	struct kvm_cpu_trap trap;
735 	struct kvm_run *run = vcpu->run;
736 
737 	if (!vcpu->arch.ran_atleast_once)
738 		kvm_riscv_vcpu_setup_config(vcpu);
739 
740 	/* Mark this VCPU ran at least once */
741 	vcpu->arch.ran_atleast_once = true;
742 
743 	kvm_vcpu_srcu_read_lock(vcpu);
744 
745 	switch (run->exit_reason) {
746 	case KVM_EXIT_MMIO:
747 		/* Process MMIO value returned from user-space */
748 		ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run);
749 		break;
750 	case KVM_EXIT_RISCV_SBI:
751 		/* Process SBI value returned from user-space */
752 		ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run);
753 		break;
754 	case KVM_EXIT_RISCV_CSR:
755 		/* Process CSR value returned from user-space */
756 		ret = kvm_riscv_vcpu_csr_return(vcpu, vcpu->run);
757 		break;
758 	default:
759 		ret = 0;
760 		break;
761 	}
762 	if (ret) {
763 		kvm_vcpu_srcu_read_unlock(vcpu);
764 		return ret;
765 	}
766 
767 	if (!vcpu->wants_to_run) {
768 		kvm_vcpu_srcu_read_unlock(vcpu);
769 		return -EINTR;
770 	}
771 
772 	vcpu_load(vcpu);
773 
774 	kvm_sigset_activate(vcpu);
775 
776 	ret = 1;
777 	run->exit_reason = KVM_EXIT_UNKNOWN;
778 	while (ret > 0) {
779 		/* Check conditions before entering the guest */
780 		ret = xfer_to_guest_mode_handle_work(vcpu);
781 		if (ret)
782 			continue;
783 		ret = 1;
784 
785 		kvm_riscv_gstage_vmid_update(vcpu);
786 
787 		kvm_riscv_check_vcpu_requests(vcpu);
788 
789 		preempt_disable();
790 
791 		/* Update AIA HW state before entering guest */
792 		ret = kvm_riscv_vcpu_aia_update(vcpu);
793 		if (ret <= 0) {
794 			preempt_enable();
795 			continue;
796 		}
797 
798 		local_irq_disable();
799 
800 		/*
801 		 * Ensure we set mode to IN_GUEST_MODE after we disable
802 		 * interrupts and before the final VCPU requests check.
803 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
804 		 * Documentation/virt/kvm/vcpu-requests.rst
805 		 */
806 		vcpu->mode = IN_GUEST_MODE;
807 
808 		kvm_vcpu_srcu_read_unlock(vcpu);
809 		smp_mb__after_srcu_read_unlock();
810 
811 		/*
812 		 * We might have got VCPU interrupts updated asynchronously
813 		 * so update it in HW.
814 		 */
815 		kvm_riscv_vcpu_flush_interrupts(vcpu);
816 
817 		/* Update HVIP CSR for current CPU */
818 		kvm_riscv_update_hvip(vcpu);
819 
820 		if (kvm_riscv_gstage_vmid_ver_changed(&vcpu->kvm->arch.vmid) ||
821 		    kvm_request_pending(vcpu) ||
822 		    xfer_to_guest_mode_work_pending()) {
823 			vcpu->mode = OUTSIDE_GUEST_MODE;
824 			local_irq_enable();
825 			preempt_enable();
826 			kvm_vcpu_srcu_read_lock(vcpu);
827 			continue;
828 		}
829 
830 		/*
831 		 * Cleanup stale TLB enteries
832 		 *
833 		 * Note: This should be done after G-stage VMID has been
834 		 * updated using kvm_riscv_gstage_vmid_ver_changed()
835 		 */
836 		kvm_riscv_local_tlb_sanitize(vcpu);
837 
838 		trace_kvm_entry(vcpu);
839 
840 		guest_timing_enter_irqoff();
841 
842 		kvm_riscv_vcpu_enter_exit(vcpu);
843 
844 		vcpu->mode = OUTSIDE_GUEST_MODE;
845 		vcpu->stat.exits++;
846 
847 		/*
848 		 * Save SCAUSE, STVAL, HTVAL, and HTINST because we might
849 		 * get an interrupt between __kvm_riscv_switch_to() and
850 		 * local_irq_enable() which can potentially change CSRs.
851 		 */
852 		trap.sepc = vcpu->arch.guest_context.sepc;
853 		trap.scause = csr_read(CSR_SCAUSE);
854 		trap.stval = csr_read(CSR_STVAL);
855 		trap.htval = csr_read(CSR_HTVAL);
856 		trap.htinst = csr_read(CSR_HTINST);
857 
858 		/* Syncup interrupts state with HW */
859 		kvm_riscv_vcpu_sync_interrupts(vcpu);
860 
861 		/*
862 		 * We must ensure that any pending interrupts are taken before
863 		 * we exit guest timing so that timer ticks are accounted as
864 		 * guest time. Transiently unmask interrupts so that any
865 		 * pending interrupts are taken.
866 		 *
867 		 * There's no barrier which ensures that pending interrupts are
868 		 * recognised, so we just hope that the CPU takes any pending
869 		 * interrupts between the enable and disable.
870 		 */
871 		local_irq_enable();
872 		local_irq_disable();
873 
874 		guest_timing_exit_irqoff();
875 
876 		local_irq_enable();
877 
878 		trace_kvm_exit(&trap);
879 
880 		preempt_enable();
881 
882 		kvm_vcpu_srcu_read_lock(vcpu);
883 
884 		ret = kvm_riscv_vcpu_exit(vcpu, run, &trap);
885 	}
886 
887 	kvm_sigset_deactivate(vcpu);
888 
889 	vcpu_put(vcpu);
890 
891 	kvm_vcpu_srcu_read_unlock(vcpu);
892 
893 	return ret;
894 }
895