1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 4 * 5 * Authors: 6 * Anup Patel <anup.patel@wdc.com> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kdebug.h> 13 #include <linux/module.h> 14 #include <linux/percpu.h> 15 #include <linux/uaccess.h> 16 #include <linux/vmalloc.h> 17 #include <linux/sched/signal.h> 18 #include <linux/fs.h> 19 #include <linux/kvm_host.h> 20 #include <asm/csr.h> 21 #include <asm/hwcap.h> 22 23 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 24 KVM_GENERIC_VCPU_STATS(), 25 STATS_DESC_COUNTER(VCPU, ecall_exit_stat), 26 STATS_DESC_COUNTER(VCPU, wfi_exit_stat), 27 STATS_DESC_COUNTER(VCPU, mmio_exit_user), 28 STATS_DESC_COUNTER(VCPU, mmio_exit_kernel), 29 STATS_DESC_COUNTER(VCPU, exits) 30 }; 31 32 const struct kvm_stats_header kvm_vcpu_stats_header = { 33 .name_size = KVM_STATS_NAME_SIZE, 34 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 35 .id_offset = sizeof(struct kvm_stats_header), 36 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 37 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 38 sizeof(kvm_vcpu_stats_desc), 39 }; 40 41 #define KVM_RISCV_ISA_ALLOWED (riscv_isa_extension_mask(a) | \ 42 riscv_isa_extension_mask(c) | \ 43 riscv_isa_extension_mask(d) | \ 44 riscv_isa_extension_mask(f) | \ 45 riscv_isa_extension_mask(i) | \ 46 riscv_isa_extension_mask(m) | \ 47 riscv_isa_extension_mask(s) | \ 48 riscv_isa_extension_mask(u)) 49 50 static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu) 51 { 52 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 53 struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr; 54 struct kvm_cpu_context *cntx = &vcpu->arch.guest_context; 55 struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context; 56 57 memcpy(csr, reset_csr, sizeof(*csr)); 58 59 memcpy(cntx, reset_cntx, sizeof(*cntx)); 60 61 kvm_riscv_vcpu_fp_reset(vcpu); 62 63 kvm_riscv_vcpu_timer_reset(vcpu); 64 65 WRITE_ONCE(vcpu->arch.irqs_pending, 0); 66 WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0); 67 } 68 69 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 70 { 71 return 0; 72 } 73 74 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 75 { 76 struct kvm_cpu_context *cntx; 77 78 /* Mark this VCPU never ran */ 79 vcpu->arch.ran_atleast_once = false; 80 81 /* Setup ISA features available to VCPU */ 82 vcpu->arch.isa = riscv_isa_extension_base(NULL) & KVM_RISCV_ISA_ALLOWED; 83 84 /* Setup reset state of shadow SSTATUS and HSTATUS CSRs */ 85 cntx = &vcpu->arch.guest_reset_context; 86 cntx->sstatus = SR_SPP | SR_SPIE; 87 cntx->hstatus = 0; 88 cntx->hstatus |= HSTATUS_VTW; 89 cntx->hstatus |= HSTATUS_SPVP; 90 cntx->hstatus |= HSTATUS_SPV; 91 92 /* Setup VCPU timer */ 93 kvm_riscv_vcpu_timer_init(vcpu); 94 95 /* Reset VCPU */ 96 kvm_riscv_reset_vcpu(vcpu); 97 98 return 0; 99 } 100 101 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 102 { 103 } 104 105 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 106 { 107 /* Cleanup VCPU timer */ 108 kvm_riscv_vcpu_timer_deinit(vcpu); 109 110 /* Flush the pages pre-allocated for Stage2 page table mappings */ 111 kvm_riscv_stage2_flush_cache(vcpu); 112 } 113 114 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 115 { 116 return kvm_riscv_vcpu_has_interrupts(vcpu, 1UL << IRQ_VS_TIMER); 117 } 118 119 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 120 { 121 } 122 123 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 124 { 125 } 126 127 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 128 { 129 return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) && 130 !vcpu->arch.power_off && !vcpu->arch.pause); 131 } 132 133 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 134 { 135 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 136 } 137 138 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 139 { 140 return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false; 141 } 142 143 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 144 { 145 return VM_FAULT_SIGBUS; 146 } 147 148 static int kvm_riscv_vcpu_get_reg_config(struct kvm_vcpu *vcpu, 149 const struct kvm_one_reg *reg) 150 { 151 unsigned long __user *uaddr = 152 (unsigned long __user *)(unsigned long)reg->addr; 153 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | 154 KVM_REG_SIZE_MASK | 155 KVM_REG_RISCV_CONFIG); 156 unsigned long reg_val; 157 158 if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) 159 return -EINVAL; 160 161 switch (reg_num) { 162 case KVM_REG_RISCV_CONFIG_REG(isa): 163 reg_val = vcpu->arch.isa; 164 break; 165 default: 166 return -EINVAL; 167 } 168 169 if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id))) 170 return -EFAULT; 171 172 return 0; 173 } 174 175 static int kvm_riscv_vcpu_set_reg_config(struct kvm_vcpu *vcpu, 176 const struct kvm_one_reg *reg) 177 { 178 unsigned long __user *uaddr = 179 (unsigned long __user *)(unsigned long)reg->addr; 180 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | 181 KVM_REG_SIZE_MASK | 182 KVM_REG_RISCV_CONFIG); 183 unsigned long reg_val; 184 185 if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) 186 return -EINVAL; 187 188 if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id))) 189 return -EFAULT; 190 191 switch (reg_num) { 192 case KVM_REG_RISCV_CONFIG_REG(isa): 193 if (!vcpu->arch.ran_atleast_once) { 194 vcpu->arch.isa = reg_val; 195 vcpu->arch.isa &= riscv_isa_extension_base(NULL); 196 vcpu->arch.isa &= KVM_RISCV_ISA_ALLOWED; 197 kvm_riscv_vcpu_fp_reset(vcpu); 198 } else { 199 return -EOPNOTSUPP; 200 } 201 break; 202 default: 203 return -EINVAL; 204 } 205 206 return 0; 207 } 208 209 static int kvm_riscv_vcpu_get_reg_core(struct kvm_vcpu *vcpu, 210 const struct kvm_one_reg *reg) 211 { 212 struct kvm_cpu_context *cntx = &vcpu->arch.guest_context; 213 unsigned long __user *uaddr = 214 (unsigned long __user *)(unsigned long)reg->addr; 215 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | 216 KVM_REG_SIZE_MASK | 217 KVM_REG_RISCV_CORE); 218 unsigned long reg_val; 219 220 if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) 221 return -EINVAL; 222 if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long)) 223 return -EINVAL; 224 225 if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc)) 226 reg_val = cntx->sepc; 227 else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num && 228 reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6)) 229 reg_val = ((unsigned long *)cntx)[reg_num]; 230 else if (reg_num == KVM_REG_RISCV_CORE_REG(mode)) 231 reg_val = (cntx->sstatus & SR_SPP) ? 232 KVM_RISCV_MODE_S : KVM_RISCV_MODE_U; 233 else 234 return -EINVAL; 235 236 if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id))) 237 return -EFAULT; 238 239 return 0; 240 } 241 242 static int kvm_riscv_vcpu_set_reg_core(struct kvm_vcpu *vcpu, 243 const struct kvm_one_reg *reg) 244 { 245 struct kvm_cpu_context *cntx = &vcpu->arch.guest_context; 246 unsigned long __user *uaddr = 247 (unsigned long __user *)(unsigned long)reg->addr; 248 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | 249 KVM_REG_SIZE_MASK | 250 KVM_REG_RISCV_CORE); 251 unsigned long reg_val; 252 253 if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) 254 return -EINVAL; 255 if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long)) 256 return -EINVAL; 257 258 if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id))) 259 return -EFAULT; 260 261 if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc)) 262 cntx->sepc = reg_val; 263 else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num && 264 reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6)) 265 ((unsigned long *)cntx)[reg_num] = reg_val; 266 else if (reg_num == KVM_REG_RISCV_CORE_REG(mode)) { 267 if (reg_val == KVM_RISCV_MODE_S) 268 cntx->sstatus |= SR_SPP; 269 else 270 cntx->sstatus &= ~SR_SPP; 271 } else 272 return -EINVAL; 273 274 return 0; 275 } 276 277 static int kvm_riscv_vcpu_get_reg_csr(struct kvm_vcpu *vcpu, 278 const struct kvm_one_reg *reg) 279 { 280 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 281 unsigned long __user *uaddr = 282 (unsigned long __user *)(unsigned long)reg->addr; 283 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | 284 KVM_REG_SIZE_MASK | 285 KVM_REG_RISCV_CSR); 286 unsigned long reg_val; 287 288 if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) 289 return -EINVAL; 290 if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long)) 291 return -EINVAL; 292 293 if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) { 294 kvm_riscv_vcpu_flush_interrupts(vcpu); 295 reg_val = (csr->hvip >> VSIP_TO_HVIP_SHIFT) & VSIP_VALID_MASK; 296 } else 297 reg_val = ((unsigned long *)csr)[reg_num]; 298 299 if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id))) 300 return -EFAULT; 301 302 return 0; 303 } 304 305 static int kvm_riscv_vcpu_set_reg_csr(struct kvm_vcpu *vcpu, 306 const struct kvm_one_reg *reg) 307 { 308 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 309 unsigned long __user *uaddr = 310 (unsigned long __user *)(unsigned long)reg->addr; 311 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK | 312 KVM_REG_SIZE_MASK | 313 KVM_REG_RISCV_CSR); 314 unsigned long reg_val; 315 316 if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long)) 317 return -EINVAL; 318 if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long)) 319 return -EINVAL; 320 321 if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id))) 322 return -EFAULT; 323 324 if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) { 325 reg_val &= VSIP_VALID_MASK; 326 reg_val <<= VSIP_TO_HVIP_SHIFT; 327 } 328 329 ((unsigned long *)csr)[reg_num] = reg_val; 330 331 if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) 332 WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0); 333 334 return 0; 335 } 336 337 static int kvm_riscv_vcpu_set_reg(struct kvm_vcpu *vcpu, 338 const struct kvm_one_reg *reg) 339 { 340 if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG) 341 return kvm_riscv_vcpu_set_reg_config(vcpu, reg); 342 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE) 343 return kvm_riscv_vcpu_set_reg_core(vcpu, reg); 344 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR) 345 return kvm_riscv_vcpu_set_reg_csr(vcpu, reg); 346 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER) 347 return kvm_riscv_vcpu_set_reg_timer(vcpu, reg); 348 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F) 349 return kvm_riscv_vcpu_set_reg_fp(vcpu, reg, 350 KVM_REG_RISCV_FP_F); 351 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D) 352 return kvm_riscv_vcpu_set_reg_fp(vcpu, reg, 353 KVM_REG_RISCV_FP_D); 354 355 return -EINVAL; 356 } 357 358 static int kvm_riscv_vcpu_get_reg(struct kvm_vcpu *vcpu, 359 const struct kvm_one_reg *reg) 360 { 361 if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG) 362 return kvm_riscv_vcpu_get_reg_config(vcpu, reg); 363 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE) 364 return kvm_riscv_vcpu_get_reg_core(vcpu, reg); 365 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR) 366 return kvm_riscv_vcpu_get_reg_csr(vcpu, reg); 367 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER) 368 return kvm_riscv_vcpu_get_reg_timer(vcpu, reg); 369 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F) 370 return kvm_riscv_vcpu_get_reg_fp(vcpu, reg, 371 KVM_REG_RISCV_FP_F); 372 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D) 373 return kvm_riscv_vcpu_get_reg_fp(vcpu, reg, 374 KVM_REG_RISCV_FP_D); 375 376 return -EINVAL; 377 } 378 379 long kvm_arch_vcpu_async_ioctl(struct file *filp, 380 unsigned int ioctl, unsigned long arg) 381 { 382 struct kvm_vcpu *vcpu = filp->private_data; 383 void __user *argp = (void __user *)arg; 384 385 if (ioctl == KVM_INTERRUPT) { 386 struct kvm_interrupt irq; 387 388 if (copy_from_user(&irq, argp, sizeof(irq))) 389 return -EFAULT; 390 391 if (irq.irq == KVM_INTERRUPT_SET) 392 return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT); 393 else 394 return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT); 395 } 396 397 return -ENOIOCTLCMD; 398 } 399 400 long kvm_arch_vcpu_ioctl(struct file *filp, 401 unsigned int ioctl, unsigned long arg) 402 { 403 struct kvm_vcpu *vcpu = filp->private_data; 404 void __user *argp = (void __user *)arg; 405 long r = -EINVAL; 406 407 switch (ioctl) { 408 case KVM_SET_ONE_REG: 409 case KVM_GET_ONE_REG: { 410 struct kvm_one_reg reg; 411 412 r = -EFAULT; 413 if (copy_from_user(®, argp, sizeof(reg))) 414 break; 415 416 if (ioctl == KVM_SET_ONE_REG) 417 r = kvm_riscv_vcpu_set_reg(vcpu, ®); 418 else 419 r = kvm_riscv_vcpu_get_reg(vcpu, ®); 420 break; 421 } 422 default: 423 break; 424 } 425 426 return r; 427 } 428 429 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 430 struct kvm_sregs *sregs) 431 { 432 return -EINVAL; 433 } 434 435 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 436 struct kvm_sregs *sregs) 437 { 438 return -EINVAL; 439 } 440 441 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 442 { 443 return -EINVAL; 444 } 445 446 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 447 { 448 return -EINVAL; 449 } 450 451 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 452 struct kvm_translation *tr) 453 { 454 return -EINVAL; 455 } 456 457 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 458 { 459 return -EINVAL; 460 } 461 462 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 463 { 464 return -EINVAL; 465 } 466 467 void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu) 468 { 469 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 470 unsigned long mask, val; 471 472 if (READ_ONCE(vcpu->arch.irqs_pending_mask)) { 473 mask = xchg_acquire(&vcpu->arch.irqs_pending_mask, 0); 474 val = READ_ONCE(vcpu->arch.irqs_pending) & mask; 475 476 csr->hvip &= ~mask; 477 csr->hvip |= val; 478 } 479 } 480 481 void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu) 482 { 483 unsigned long hvip; 484 struct kvm_vcpu_arch *v = &vcpu->arch; 485 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 486 487 /* Read current HVIP and VSIE CSRs */ 488 csr->vsie = csr_read(CSR_VSIE); 489 490 /* Sync-up HVIP.VSSIP bit changes does by Guest */ 491 hvip = csr_read(CSR_HVIP); 492 if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) { 493 if (hvip & (1UL << IRQ_VS_SOFT)) { 494 if (!test_and_set_bit(IRQ_VS_SOFT, 495 &v->irqs_pending_mask)) 496 set_bit(IRQ_VS_SOFT, &v->irqs_pending); 497 } else { 498 if (!test_and_set_bit(IRQ_VS_SOFT, 499 &v->irqs_pending_mask)) 500 clear_bit(IRQ_VS_SOFT, &v->irqs_pending); 501 } 502 } 503 } 504 505 int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq) 506 { 507 if (irq != IRQ_VS_SOFT && 508 irq != IRQ_VS_TIMER && 509 irq != IRQ_VS_EXT) 510 return -EINVAL; 511 512 set_bit(irq, &vcpu->arch.irqs_pending); 513 smp_mb__before_atomic(); 514 set_bit(irq, &vcpu->arch.irqs_pending_mask); 515 516 kvm_vcpu_kick(vcpu); 517 518 return 0; 519 } 520 521 int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq) 522 { 523 if (irq != IRQ_VS_SOFT && 524 irq != IRQ_VS_TIMER && 525 irq != IRQ_VS_EXT) 526 return -EINVAL; 527 528 clear_bit(irq, &vcpu->arch.irqs_pending); 529 smp_mb__before_atomic(); 530 set_bit(irq, &vcpu->arch.irqs_pending_mask); 531 532 return 0; 533 } 534 535 bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, unsigned long mask) 536 { 537 unsigned long ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK) 538 << VSIP_TO_HVIP_SHIFT) & mask; 539 540 return (READ_ONCE(vcpu->arch.irqs_pending) & ie) ? true : false; 541 } 542 543 void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu) 544 { 545 vcpu->arch.power_off = true; 546 kvm_make_request(KVM_REQ_SLEEP, vcpu); 547 kvm_vcpu_kick(vcpu); 548 } 549 550 void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu) 551 { 552 vcpu->arch.power_off = false; 553 kvm_vcpu_wake_up(vcpu); 554 } 555 556 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 557 struct kvm_mp_state *mp_state) 558 { 559 if (vcpu->arch.power_off) 560 mp_state->mp_state = KVM_MP_STATE_STOPPED; 561 else 562 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 563 564 return 0; 565 } 566 567 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 568 struct kvm_mp_state *mp_state) 569 { 570 int ret = 0; 571 572 switch (mp_state->mp_state) { 573 case KVM_MP_STATE_RUNNABLE: 574 vcpu->arch.power_off = false; 575 break; 576 case KVM_MP_STATE_STOPPED: 577 kvm_riscv_vcpu_power_off(vcpu); 578 break; 579 default: 580 ret = -EINVAL; 581 } 582 583 return ret; 584 } 585 586 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 587 struct kvm_guest_debug *dbg) 588 { 589 /* TODO; To be implemented later. */ 590 return -EINVAL; 591 } 592 593 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 594 { 595 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 596 597 csr_write(CSR_VSSTATUS, csr->vsstatus); 598 csr_write(CSR_VSIE, csr->vsie); 599 csr_write(CSR_VSTVEC, csr->vstvec); 600 csr_write(CSR_VSSCRATCH, csr->vsscratch); 601 csr_write(CSR_VSEPC, csr->vsepc); 602 csr_write(CSR_VSCAUSE, csr->vscause); 603 csr_write(CSR_VSTVAL, csr->vstval); 604 csr_write(CSR_HVIP, csr->hvip); 605 csr_write(CSR_VSATP, csr->vsatp); 606 607 kvm_riscv_stage2_update_hgatp(vcpu); 608 609 kvm_riscv_vcpu_timer_restore(vcpu); 610 611 kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context); 612 kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context, 613 vcpu->arch.isa); 614 615 vcpu->cpu = cpu; 616 } 617 618 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 619 { 620 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 621 622 vcpu->cpu = -1; 623 624 kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context, 625 vcpu->arch.isa); 626 kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context); 627 628 csr_write(CSR_HGATP, 0); 629 630 csr->vsstatus = csr_read(CSR_VSSTATUS); 631 csr->vsie = csr_read(CSR_VSIE); 632 csr->vstvec = csr_read(CSR_VSTVEC); 633 csr->vsscratch = csr_read(CSR_VSSCRATCH); 634 csr->vsepc = csr_read(CSR_VSEPC); 635 csr->vscause = csr_read(CSR_VSCAUSE); 636 csr->vstval = csr_read(CSR_VSTVAL); 637 csr->hvip = csr_read(CSR_HVIP); 638 csr->vsatp = csr_read(CSR_VSATP); 639 } 640 641 static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu) 642 { 643 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 644 645 if (kvm_request_pending(vcpu)) { 646 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) { 647 rcuwait_wait_event(wait, 648 (!vcpu->arch.power_off) && (!vcpu->arch.pause), 649 TASK_INTERRUPTIBLE); 650 651 if (vcpu->arch.power_off || vcpu->arch.pause) { 652 /* 653 * Awaken to handle a signal, request to 654 * sleep again later. 655 */ 656 kvm_make_request(KVM_REQ_SLEEP, vcpu); 657 } 658 } 659 660 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 661 kvm_riscv_reset_vcpu(vcpu); 662 663 if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu)) 664 kvm_riscv_stage2_update_hgatp(vcpu); 665 666 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 667 __kvm_riscv_hfence_gvma_all(); 668 } 669 } 670 671 static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu) 672 { 673 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 674 675 csr_write(CSR_HVIP, csr->hvip); 676 } 677 678 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 679 { 680 int ret; 681 struct kvm_cpu_trap trap; 682 struct kvm_run *run = vcpu->run; 683 684 /* Mark this VCPU ran at least once */ 685 vcpu->arch.ran_atleast_once = true; 686 687 vcpu->arch.srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 688 689 /* Process MMIO value returned from user-space */ 690 if (run->exit_reason == KVM_EXIT_MMIO) { 691 ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run); 692 if (ret) { 693 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx); 694 return ret; 695 } 696 } 697 698 /* Process SBI value returned from user-space */ 699 if (run->exit_reason == KVM_EXIT_RISCV_SBI) { 700 ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run); 701 if (ret) { 702 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx); 703 return ret; 704 } 705 } 706 707 if (run->immediate_exit) { 708 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx); 709 return -EINTR; 710 } 711 712 vcpu_load(vcpu); 713 714 kvm_sigset_activate(vcpu); 715 716 ret = 1; 717 run->exit_reason = KVM_EXIT_UNKNOWN; 718 while (ret > 0) { 719 /* Check conditions before entering the guest */ 720 cond_resched(); 721 722 kvm_riscv_stage2_vmid_update(vcpu); 723 724 kvm_riscv_check_vcpu_requests(vcpu); 725 726 preempt_disable(); 727 728 local_irq_disable(); 729 730 /* 731 * Exit if we have a signal pending so that we can deliver 732 * the signal to user space. 733 */ 734 if (signal_pending(current)) { 735 ret = -EINTR; 736 run->exit_reason = KVM_EXIT_INTR; 737 } 738 739 /* 740 * Ensure we set mode to IN_GUEST_MODE after we disable 741 * interrupts and before the final VCPU requests check. 742 * See the comment in kvm_vcpu_exiting_guest_mode() and 743 * Documentation/virtual/kvm/vcpu-requests.rst 744 */ 745 vcpu->mode = IN_GUEST_MODE; 746 747 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx); 748 smp_mb__after_srcu_read_unlock(); 749 750 /* 751 * We might have got VCPU interrupts updated asynchronously 752 * so update it in HW. 753 */ 754 kvm_riscv_vcpu_flush_interrupts(vcpu); 755 756 /* Update HVIP CSR for current CPU */ 757 kvm_riscv_update_hvip(vcpu); 758 759 if (ret <= 0 || 760 kvm_riscv_stage2_vmid_ver_changed(&vcpu->kvm->arch.vmid) || 761 kvm_request_pending(vcpu)) { 762 vcpu->mode = OUTSIDE_GUEST_MODE; 763 local_irq_enable(); 764 preempt_enable(); 765 vcpu->arch.srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 766 continue; 767 } 768 769 guest_enter_irqoff(); 770 771 __kvm_riscv_switch_to(&vcpu->arch); 772 773 vcpu->mode = OUTSIDE_GUEST_MODE; 774 vcpu->stat.exits++; 775 776 /* 777 * Save SCAUSE, STVAL, HTVAL, and HTINST because we might 778 * get an interrupt between __kvm_riscv_switch_to() and 779 * local_irq_enable() which can potentially change CSRs. 780 */ 781 trap.sepc = vcpu->arch.guest_context.sepc; 782 trap.scause = csr_read(CSR_SCAUSE); 783 trap.stval = csr_read(CSR_STVAL); 784 trap.htval = csr_read(CSR_HTVAL); 785 trap.htinst = csr_read(CSR_HTINST); 786 787 /* Syncup interrupts state with HW */ 788 kvm_riscv_vcpu_sync_interrupts(vcpu); 789 790 /* 791 * We may have taken a host interrupt in VS/VU-mode (i.e. 792 * while executing the guest). This interrupt is still 793 * pending, as we haven't serviced it yet! 794 * 795 * We're now back in HS-mode with interrupts disabled 796 * so enabling the interrupts now will have the effect 797 * of taking the interrupt again, in HS-mode this time. 798 */ 799 local_irq_enable(); 800 801 /* 802 * We do local_irq_enable() before calling guest_exit() so 803 * that if a timer interrupt hits while running the guest 804 * we account that tick as being spent in the guest. We 805 * enable preemption after calling guest_exit() so that if 806 * we get preempted we make sure ticks after that is not 807 * counted as guest time. 808 */ 809 guest_exit(); 810 811 preempt_enable(); 812 813 vcpu->arch.srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 814 815 ret = kvm_riscv_vcpu_exit(vcpu, run, &trap); 816 } 817 818 kvm_sigset_deactivate(vcpu); 819 820 vcpu_put(vcpu); 821 822 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx); 823 824 return ret; 825 } 826