xref: /linux/arch/riscv/kvm/vcpu.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/entry-kvm.h>
11 #include <linux/errno.h>
12 #include <linux/err.h>
13 #include <linux/kdebug.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sched/signal.h>
18 #include <linux/fs.h>
19 #include <linux/kvm_host.h>
20 #include <asm/csr.h>
21 #include <asm/cacheflush.h>
22 #include <asm/kvm_vcpu_vector.h>
23 
24 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
25 	KVM_GENERIC_VCPU_STATS(),
26 	STATS_DESC_COUNTER(VCPU, ecall_exit_stat),
27 	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
28 	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
29 	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
30 	STATS_DESC_COUNTER(VCPU, csr_exit_user),
31 	STATS_DESC_COUNTER(VCPU, csr_exit_kernel),
32 	STATS_DESC_COUNTER(VCPU, signal_exits),
33 	STATS_DESC_COUNTER(VCPU, exits)
34 };
35 
36 const struct kvm_stats_header kvm_vcpu_stats_header = {
37 	.name_size = KVM_STATS_NAME_SIZE,
38 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
39 	.id_offset = sizeof(struct kvm_stats_header),
40 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
41 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
42 		       sizeof(kvm_vcpu_stats_desc),
43 };
44 
45 static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu)
46 {
47 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
48 	struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
49 	struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
50 	struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context;
51 	bool loaded;
52 
53 	/**
54 	 * The preemption should be disabled here because it races with
55 	 * kvm_sched_out/kvm_sched_in(called from preempt notifiers) which
56 	 * also calls vcpu_load/put.
57 	 */
58 	get_cpu();
59 	loaded = (vcpu->cpu != -1);
60 	if (loaded)
61 		kvm_arch_vcpu_put(vcpu);
62 
63 	vcpu->arch.last_exit_cpu = -1;
64 
65 	memcpy(csr, reset_csr, sizeof(*csr));
66 
67 	memcpy(cntx, reset_cntx, sizeof(*cntx));
68 
69 	kvm_riscv_vcpu_fp_reset(vcpu);
70 
71 	kvm_riscv_vcpu_vector_reset(vcpu);
72 
73 	kvm_riscv_vcpu_timer_reset(vcpu);
74 
75 	kvm_riscv_vcpu_aia_reset(vcpu);
76 
77 	bitmap_zero(vcpu->arch.irqs_pending, KVM_RISCV_VCPU_NR_IRQS);
78 	bitmap_zero(vcpu->arch.irqs_pending_mask, KVM_RISCV_VCPU_NR_IRQS);
79 
80 	kvm_riscv_vcpu_pmu_reset(vcpu);
81 
82 	vcpu->arch.hfence_head = 0;
83 	vcpu->arch.hfence_tail = 0;
84 	memset(vcpu->arch.hfence_queue, 0, sizeof(vcpu->arch.hfence_queue));
85 
86 	/* Reset the guest CSRs for hotplug usecase */
87 	if (loaded)
88 		kvm_arch_vcpu_load(vcpu, smp_processor_id());
89 	put_cpu();
90 }
91 
92 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
93 {
94 	return 0;
95 }
96 
97 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
98 {
99 	int rc;
100 	struct kvm_cpu_context *cntx;
101 	struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
102 
103 	/* Mark this VCPU never ran */
104 	vcpu->arch.ran_atleast_once = false;
105 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
106 	bitmap_zero(vcpu->arch.isa, RISCV_ISA_EXT_MAX);
107 
108 	/* Setup ISA features available to VCPU */
109 	kvm_riscv_vcpu_setup_isa(vcpu);
110 
111 	/* Setup vendor, arch, and implementation details */
112 	vcpu->arch.mvendorid = sbi_get_mvendorid();
113 	vcpu->arch.marchid = sbi_get_marchid();
114 	vcpu->arch.mimpid = sbi_get_mimpid();
115 
116 	/* Setup VCPU hfence queue */
117 	spin_lock_init(&vcpu->arch.hfence_lock);
118 
119 	/* Setup reset state of shadow SSTATUS and HSTATUS CSRs */
120 	cntx = &vcpu->arch.guest_reset_context;
121 	cntx->sstatus = SR_SPP | SR_SPIE;
122 	cntx->hstatus = 0;
123 	cntx->hstatus |= HSTATUS_VTW;
124 	cntx->hstatus |= HSTATUS_SPVP;
125 	cntx->hstatus |= HSTATUS_SPV;
126 
127 	if (kvm_riscv_vcpu_alloc_vector_context(vcpu, cntx))
128 		return -ENOMEM;
129 
130 	/* By default, make CY, TM, and IR counters accessible in VU mode */
131 	reset_csr->scounteren = 0x7;
132 
133 	/* Setup VCPU timer */
134 	kvm_riscv_vcpu_timer_init(vcpu);
135 
136 	/* setup performance monitoring */
137 	kvm_riscv_vcpu_pmu_init(vcpu);
138 
139 	/* Setup VCPU AIA */
140 	rc = kvm_riscv_vcpu_aia_init(vcpu);
141 	if (rc)
142 		return rc;
143 
144 	/*
145 	 * Setup SBI extensions
146 	 * NOTE: This must be the last thing to be initialized.
147 	 */
148 	kvm_riscv_vcpu_sbi_init(vcpu);
149 
150 	/* Reset VCPU */
151 	kvm_riscv_reset_vcpu(vcpu);
152 
153 	return 0;
154 }
155 
156 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
157 {
158 	/**
159 	 * vcpu with id 0 is the designated boot cpu.
160 	 * Keep all vcpus with non-zero id in power-off state so that
161 	 * they can be brought up using SBI HSM extension.
162 	 */
163 	if (vcpu->vcpu_idx != 0)
164 		kvm_riscv_vcpu_power_off(vcpu);
165 }
166 
167 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
168 {
169 	/* Cleanup VCPU AIA context */
170 	kvm_riscv_vcpu_aia_deinit(vcpu);
171 
172 	/* Cleanup VCPU timer */
173 	kvm_riscv_vcpu_timer_deinit(vcpu);
174 
175 	kvm_riscv_vcpu_pmu_deinit(vcpu);
176 
177 	/* Free unused pages pre-allocated for G-stage page table mappings */
178 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
179 
180 	/* Free vector context space for host and guest kernel */
181 	kvm_riscv_vcpu_free_vector_context(vcpu);
182 }
183 
184 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
185 {
186 	return kvm_riscv_vcpu_timer_pending(vcpu);
187 }
188 
189 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
190 {
191 	kvm_riscv_aia_wakeon_hgei(vcpu, true);
192 }
193 
194 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
195 {
196 	kvm_riscv_aia_wakeon_hgei(vcpu, false);
197 }
198 
199 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
200 {
201 	return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) &&
202 		!vcpu->arch.power_off && !vcpu->arch.pause);
203 }
204 
205 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
206 {
207 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
208 }
209 
210 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
211 {
212 	return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false;
213 }
214 
215 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
216 {
217 	return VM_FAULT_SIGBUS;
218 }
219 
220 long kvm_arch_vcpu_async_ioctl(struct file *filp,
221 			       unsigned int ioctl, unsigned long arg)
222 {
223 	struct kvm_vcpu *vcpu = filp->private_data;
224 	void __user *argp = (void __user *)arg;
225 
226 	if (ioctl == KVM_INTERRUPT) {
227 		struct kvm_interrupt irq;
228 
229 		if (copy_from_user(&irq, argp, sizeof(irq)))
230 			return -EFAULT;
231 
232 		if (irq.irq == KVM_INTERRUPT_SET)
233 			return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT);
234 		else
235 			return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT);
236 	}
237 
238 	return -ENOIOCTLCMD;
239 }
240 
241 long kvm_arch_vcpu_ioctl(struct file *filp,
242 			 unsigned int ioctl, unsigned long arg)
243 {
244 	struct kvm_vcpu *vcpu = filp->private_data;
245 	void __user *argp = (void __user *)arg;
246 	long r = -EINVAL;
247 
248 	switch (ioctl) {
249 	case KVM_SET_ONE_REG:
250 	case KVM_GET_ONE_REG: {
251 		struct kvm_one_reg reg;
252 
253 		r = -EFAULT;
254 		if (copy_from_user(&reg, argp, sizeof(reg)))
255 			break;
256 
257 		if (ioctl == KVM_SET_ONE_REG)
258 			r = kvm_riscv_vcpu_set_reg(vcpu, &reg);
259 		else
260 			r = kvm_riscv_vcpu_get_reg(vcpu, &reg);
261 		break;
262 	}
263 	case KVM_GET_REG_LIST: {
264 		struct kvm_reg_list __user *user_list = argp;
265 		struct kvm_reg_list reg_list;
266 		unsigned int n;
267 
268 		r = -EFAULT;
269 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
270 			break;
271 		n = reg_list.n;
272 		reg_list.n = kvm_riscv_vcpu_num_regs(vcpu);
273 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
274 			break;
275 		r = -E2BIG;
276 		if (n < reg_list.n)
277 			break;
278 		r = kvm_riscv_vcpu_copy_reg_indices(vcpu, user_list->reg);
279 		break;
280 	}
281 	default:
282 		break;
283 	}
284 
285 	return r;
286 }
287 
288 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
289 				  struct kvm_sregs *sregs)
290 {
291 	return -EINVAL;
292 }
293 
294 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
295 				  struct kvm_sregs *sregs)
296 {
297 	return -EINVAL;
298 }
299 
300 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
301 {
302 	return -EINVAL;
303 }
304 
305 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
306 {
307 	return -EINVAL;
308 }
309 
310 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
311 				  struct kvm_translation *tr)
312 {
313 	return -EINVAL;
314 }
315 
316 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
317 {
318 	return -EINVAL;
319 }
320 
321 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
322 {
323 	return -EINVAL;
324 }
325 
326 void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu)
327 {
328 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
329 	unsigned long mask, val;
330 
331 	if (READ_ONCE(vcpu->arch.irqs_pending_mask[0])) {
332 		mask = xchg_acquire(&vcpu->arch.irqs_pending_mask[0], 0);
333 		val = READ_ONCE(vcpu->arch.irqs_pending[0]) & mask;
334 
335 		csr->hvip &= ~mask;
336 		csr->hvip |= val;
337 	}
338 
339 	/* Flush AIA high interrupts */
340 	kvm_riscv_vcpu_aia_flush_interrupts(vcpu);
341 }
342 
343 void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu)
344 {
345 	unsigned long hvip;
346 	struct kvm_vcpu_arch *v = &vcpu->arch;
347 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
348 
349 	/* Read current HVIP and VSIE CSRs */
350 	csr->vsie = csr_read(CSR_VSIE);
351 
352 	/* Sync-up HVIP.VSSIP bit changes does by Guest */
353 	hvip = csr_read(CSR_HVIP);
354 	if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) {
355 		if (hvip & (1UL << IRQ_VS_SOFT)) {
356 			if (!test_and_set_bit(IRQ_VS_SOFT,
357 					      v->irqs_pending_mask))
358 				set_bit(IRQ_VS_SOFT, v->irqs_pending);
359 		} else {
360 			if (!test_and_set_bit(IRQ_VS_SOFT,
361 					      v->irqs_pending_mask))
362 				clear_bit(IRQ_VS_SOFT, v->irqs_pending);
363 		}
364 	}
365 
366 	/* Sync-up AIA high interrupts */
367 	kvm_riscv_vcpu_aia_sync_interrupts(vcpu);
368 
369 	/* Sync-up timer CSRs */
370 	kvm_riscv_vcpu_timer_sync(vcpu);
371 }
372 
373 int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
374 {
375 	/*
376 	 * We only allow VS-mode software, timer, and external
377 	 * interrupts when irq is one of the local interrupts
378 	 * defined by RISC-V privilege specification.
379 	 */
380 	if (irq < IRQ_LOCAL_MAX &&
381 	    irq != IRQ_VS_SOFT &&
382 	    irq != IRQ_VS_TIMER &&
383 	    irq != IRQ_VS_EXT)
384 		return -EINVAL;
385 
386 	set_bit(irq, vcpu->arch.irqs_pending);
387 	smp_mb__before_atomic();
388 	set_bit(irq, vcpu->arch.irqs_pending_mask);
389 
390 	kvm_vcpu_kick(vcpu);
391 
392 	return 0;
393 }
394 
395 int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
396 {
397 	/*
398 	 * We only allow VS-mode software, timer, and external
399 	 * interrupts when irq is one of the local interrupts
400 	 * defined by RISC-V privilege specification.
401 	 */
402 	if (irq < IRQ_LOCAL_MAX &&
403 	    irq != IRQ_VS_SOFT &&
404 	    irq != IRQ_VS_TIMER &&
405 	    irq != IRQ_VS_EXT)
406 		return -EINVAL;
407 
408 	clear_bit(irq, vcpu->arch.irqs_pending);
409 	smp_mb__before_atomic();
410 	set_bit(irq, vcpu->arch.irqs_pending_mask);
411 
412 	return 0;
413 }
414 
415 bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, u64 mask)
416 {
417 	unsigned long ie;
418 
419 	ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK)
420 		<< VSIP_TO_HVIP_SHIFT) & (unsigned long)mask;
421 	ie |= vcpu->arch.guest_csr.vsie & ~IRQ_LOCAL_MASK &
422 		(unsigned long)mask;
423 	if (READ_ONCE(vcpu->arch.irqs_pending[0]) & ie)
424 		return true;
425 
426 	/* Check AIA high interrupts */
427 	return kvm_riscv_vcpu_aia_has_interrupts(vcpu, mask);
428 }
429 
430 void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
431 {
432 	vcpu->arch.power_off = true;
433 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
434 	kvm_vcpu_kick(vcpu);
435 }
436 
437 void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
438 {
439 	vcpu->arch.power_off = false;
440 	kvm_vcpu_wake_up(vcpu);
441 }
442 
443 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
444 				    struct kvm_mp_state *mp_state)
445 {
446 	if (vcpu->arch.power_off)
447 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
448 	else
449 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
450 
451 	return 0;
452 }
453 
454 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
455 				    struct kvm_mp_state *mp_state)
456 {
457 	int ret = 0;
458 
459 	switch (mp_state->mp_state) {
460 	case KVM_MP_STATE_RUNNABLE:
461 		vcpu->arch.power_off = false;
462 		break;
463 	case KVM_MP_STATE_STOPPED:
464 		kvm_riscv_vcpu_power_off(vcpu);
465 		break;
466 	default:
467 		ret = -EINVAL;
468 	}
469 
470 	return ret;
471 }
472 
473 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
474 					struct kvm_guest_debug *dbg)
475 {
476 	/* TODO; To be implemented later. */
477 	return -EINVAL;
478 }
479 
480 static void kvm_riscv_vcpu_setup_config(struct kvm_vcpu *vcpu)
481 {
482 	const unsigned long *isa = vcpu->arch.isa;
483 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
484 
485 	if (riscv_isa_extension_available(isa, SVPBMT))
486 		cfg->henvcfg |= ENVCFG_PBMTE;
487 
488 	if (riscv_isa_extension_available(isa, SSTC))
489 		cfg->henvcfg |= ENVCFG_STCE;
490 
491 	if (riscv_isa_extension_available(isa, ZICBOM))
492 		cfg->henvcfg |= (ENVCFG_CBIE | ENVCFG_CBCFE);
493 
494 	if (riscv_isa_extension_available(isa, ZICBOZ))
495 		cfg->henvcfg |= ENVCFG_CBZE;
496 
497 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
498 		cfg->hstateen0 |= SMSTATEEN0_HSENVCFG;
499 		if (riscv_isa_extension_available(isa, SSAIA))
500 			cfg->hstateen0 |= SMSTATEEN0_AIA_IMSIC |
501 					  SMSTATEEN0_AIA |
502 					  SMSTATEEN0_AIA_ISEL;
503 		if (riscv_isa_extension_available(isa, SMSTATEEN))
504 			cfg->hstateen0 |= SMSTATEEN0_SSTATEEN0;
505 	}
506 }
507 
508 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
509 {
510 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
511 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
512 
513 	csr_write(CSR_VSSTATUS, csr->vsstatus);
514 	csr_write(CSR_VSIE, csr->vsie);
515 	csr_write(CSR_VSTVEC, csr->vstvec);
516 	csr_write(CSR_VSSCRATCH, csr->vsscratch);
517 	csr_write(CSR_VSEPC, csr->vsepc);
518 	csr_write(CSR_VSCAUSE, csr->vscause);
519 	csr_write(CSR_VSTVAL, csr->vstval);
520 	csr_write(CSR_HVIP, csr->hvip);
521 	csr_write(CSR_VSATP, csr->vsatp);
522 	csr_write(CSR_HENVCFG, cfg->henvcfg);
523 	if (IS_ENABLED(CONFIG_32BIT))
524 		csr_write(CSR_HENVCFGH, cfg->henvcfg >> 32);
525 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
526 		csr_write(CSR_HSTATEEN0, cfg->hstateen0);
527 		if (IS_ENABLED(CONFIG_32BIT))
528 			csr_write(CSR_HSTATEEN0H, cfg->hstateen0 >> 32);
529 	}
530 
531 	kvm_riscv_gstage_update_hgatp(vcpu);
532 
533 	kvm_riscv_vcpu_timer_restore(vcpu);
534 
535 	kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context);
536 	kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context,
537 					vcpu->arch.isa);
538 	kvm_riscv_vcpu_host_vector_save(&vcpu->arch.host_context);
539 	kvm_riscv_vcpu_guest_vector_restore(&vcpu->arch.guest_context,
540 					    vcpu->arch.isa);
541 
542 	kvm_riscv_vcpu_aia_load(vcpu, cpu);
543 
544 	vcpu->cpu = cpu;
545 }
546 
547 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
548 {
549 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
550 
551 	vcpu->cpu = -1;
552 
553 	kvm_riscv_vcpu_aia_put(vcpu);
554 
555 	kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context,
556 				     vcpu->arch.isa);
557 	kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context);
558 
559 	kvm_riscv_vcpu_timer_save(vcpu);
560 	kvm_riscv_vcpu_guest_vector_save(&vcpu->arch.guest_context,
561 					 vcpu->arch.isa);
562 	kvm_riscv_vcpu_host_vector_restore(&vcpu->arch.host_context);
563 
564 	csr->vsstatus = csr_read(CSR_VSSTATUS);
565 	csr->vsie = csr_read(CSR_VSIE);
566 	csr->vstvec = csr_read(CSR_VSTVEC);
567 	csr->vsscratch = csr_read(CSR_VSSCRATCH);
568 	csr->vsepc = csr_read(CSR_VSEPC);
569 	csr->vscause = csr_read(CSR_VSCAUSE);
570 	csr->vstval = csr_read(CSR_VSTVAL);
571 	csr->hvip = csr_read(CSR_HVIP);
572 	csr->vsatp = csr_read(CSR_VSATP);
573 }
574 
575 static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu)
576 {
577 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
578 
579 	if (kvm_request_pending(vcpu)) {
580 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) {
581 			kvm_vcpu_srcu_read_unlock(vcpu);
582 			rcuwait_wait_event(wait,
583 				(!vcpu->arch.power_off) && (!vcpu->arch.pause),
584 				TASK_INTERRUPTIBLE);
585 			kvm_vcpu_srcu_read_lock(vcpu);
586 
587 			if (vcpu->arch.power_off || vcpu->arch.pause) {
588 				/*
589 				 * Awaken to handle a signal, request to
590 				 * sleep again later.
591 				 */
592 				kvm_make_request(KVM_REQ_SLEEP, vcpu);
593 			}
594 		}
595 
596 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
597 			kvm_riscv_reset_vcpu(vcpu);
598 
599 		if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu))
600 			kvm_riscv_gstage_update_hgatp(vcpu);
601 
602 		if (kvm_check_request(KVM_REQ_FENCE_I, vcpu))
603 			kvm_riscv_fence_i_process(vcpu);
604 
605 		/*
606 		 * The generic KVM_REQ_TLB_FLUSH is same as
607 		 * KVM_REQ_HFENCE_GVMA_VMID_ALL
608 		 */
609 		if (kvm_check_request(KVM_REQ_HFENCE_GVMA_VMID_ALL, vcpu))
610 			kvm_riscv_hfence_gvma_vmid_all_process(vcpu);
611 
612 		if (kvm_check_request(KVM_REQ_HFENCE_VVMA_ALL, vcpu))
613 			kvm_riscv_hfence_vvma_all_process(vcpu);
614 
615 		if (kvm_check_request(KVM_REQ_HFENCE, vcpu))
616 			kvm_riscv_hfence_process(vcpu);
617 	}
618 }
619 
620 static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu)
621 {
622 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
623 
624 	csr_write(CSR_HVIP, csr->hvip);
625 	kvm_riscv_vcpu_aia_update_hvip(vcpu);
626 }
627 
628 static __always_inline void kvm_riscv_vcpu_swap_in_guest_state(struct kvm_vcpu *vcpu)
629 {
630 	struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr;
631 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
632 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
633 
634 	vcpu->arch.host_senvcfg = csr_swap(CSR_SENVCFG, csr->senvcfg);
635 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) &&
636 	    (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0))
637 		vcpu->arch.host_sstateen0 = csr_swap(CSR_SSTATEEN0,
638 						     smcsr->sstateen0);
639 }
640 
641 static __always_inline void kvm_riscv_vcpu_swap_in_host_state(struct kvm_vcpu *vcpu)
642 {
643 	struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr;
644 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
645 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
646 
647 	csr->senvcfg = csr_swap(CSR_SENVCFG, vcpu->arch.host_senvcfg);
648 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) &&
649 	    (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0))
650 		smcsr->sstateen0 = csr_swap(CSR_SSTATEEN0,
651 					    vcpu->arch.host_sstateen0);
652 }
653 
654 /*
655  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
656  * the vCPU is running.
657  *
658  * This must be noinstr as instrumentation may make use of RCU, and this is not
659  * safe during the EQS.
660  */
661 static void noinstr kvm_riscv_vcpu_enter_exit(struct kvm_vcpu *vcpu)
662 {
663 	kvm_riscv_vcpu_swap_in_guest_state(vcpu);
664 	guest_state_enter_irqoff();
665 	__kvm_riscv_switch_to(&vcpu->arch);
666 	vcpu->arch.last_exit_cpu = vcpu->cpu;
667 	guest_state_exit_irqoff();
668 	kvm_riscv_vcpu_swap_in_host_state(vcpu);
669 }
670 
671 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
672 {
673 	int ret;
674 	struct kvm_cpu_trap trap;
675 	struct kvm_run *run = vcpu->run;
676 
677 	if (!vcpu->arch.ran_atleast_once)
678 		kvm_riscv_vcpu_setup_config(vcpu);
679 
680 	/* Mark this VCPU ran at least once */
681 	vcpu->arch.ran_atleast_once = true;
682 
683 	kvm_vcpu_srcu_read_lock(vcpu);
684 
685 	switch (run->exit_reason) {
686 	case KVM_EXIT_MMIO:
687 		/* Process MMIO value returned from user-space */
688 		ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run);
689 		break;
690 	case KVM_EXIT_RISCV_SBI:
691 		/* Process SBI value returned from user-space */
692 		ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run);
693 		break;
694 	case KVM_EXIT_RISCV_CSR:
695 		/* Process CSR value returned from user-space */
696 		ret = kvm_riscv_vcpu_csr_return(vcpu, vcpu->run);
697 		break;
698 	default:
699 		ret = 0;
700 		break;
701 	}
702 	if (ret) {
703 		kvm_vcpu_srcu_read_unlock(vcpu);
704 		return ret;
705 	}
706 
707 	if (run->immediate_exit) {
708 		kvm_vcpu_srcu_read_unlock(vcpu);
709 		return -EINTR;
710 	}
711 
712 	vcpu_load(vcpu);
713 
714 	kvm_sigset_activate(vcpu);
715 
716 	ret = 1;
717 	run->exit_reason = KVM_EXIT_UNKNOWN;
718 	while (ret > 0) {
719 		/* Check conditions before entering the guest */
720 		ret = xfer_to_guest_mode_handle_work(vcpu);
721 		if (ret)
722 			continue;
723 		ret = 1;
724 
725 		kvm_riscv_gstage_vmid_update(vcpu);
726 
727 		kvm_riscv_check_vcpu_requests(vcpu);
728 
729 		preempt_disable();
730 
731 		/* Update AIA HW state before entering guest */
732 		ret = kvm_riscv_vcpu_aia_update(vcpu);
733 		if (ret <= 0) {
734 			preempt_enable();
735 			continue;
736 		}
737 
738 		local_irq_disable();
739 
740 		/*
741 		 * Ensure we set mode to IN_GUEST_MODE after we disable
742 		 * interrupts and before the final VCPU requests check.
743 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
744 		 * Documentation/virt/kvm/vcpu-requests.rst
745 		 */
746 		vcpu->mode = IN_GUEST_MODE;
747 
748 		kvm_vcpu_srcu_read_unlock(vcpu);
749 		smp_mb__after_srcu_read_unlock();
750 
751 		/*
752 		 * We might have got VCPU interrupts updated asynchronously
753 		 * so update it in HW.
754 		 */
755 		kvm_riscv_vcpu_flush_interrupts(vcpu);
756 
757 		/* Update HVIP CSR for current CPU */
758 		kvm_riscv_update_hvip(vcpu);
759 
760 		if (ret <= 0 ||
761 		    kvm_riscv_gstage_vmid_ver_changed(&vcpu->kvm->arch.vmid) ||
762 		    kvm_request_pending(vcpu) ||
763 		    xfer_to_guest_mode_work_pending()) {
764 			vcpu->mode = OUTSIDE_GUEST_MODE;
765 			local_irq_enable();
766 			preempt_enable();
767 			kvm_vcpu_srcu_read_lock(vcpu);
768 			continue;
769 		}
770 
771 		/*
772 		 * Cleanup stale TLB enteries
773 		 *
774 		 * Note: This should be done after G-stage VMID has been
775 		 * updated using kvm_riscv_gstage_vmid_ver_changed()
776 		 */
777 		kvm_riscv_local_tlb_sanitize(vcpu);
778 
779 		guest_timing_enter_irqoff();
780 
781 		kvm_riscv_vcpu_enter_exit(vcpu);
782 
783 		vcpu->mode = OUTSIDE_GUEST_MODE;
784 		vcpu->stat.exits++;
785 
786 		/*
787 		 * Save SCAUSE, STVAL, HTVAL, and HTINST because we might
788 		 * get an interrupt between __kvm_riscv_switch_to() and
789 		 * local_irq_enable() which can potentially change CSRs.
790 		 */
791 		trap.sepc = vcpu->arch.guest_context.sepc;
792 		trap.scause = csr_read(CSR_SCAUSE);
793 		trap.stval = csr_read(CSR_STVAL);
794 		trap.htval = csr_read(CSR_HTVAL);
795 		trap.htinst = csr_read(CSR_HTINST);
796 
797 		/* Syncup interrupts state with HW */
798 		kvm_riscv_vcpu_sync_interrupts(vcpu);
799 
800 		/*
801 		 * We must ensure that any pending interrupts are taken before
802 		 * we exit guest timing so that timer ticks are accounted as
803 		 * guest time. Transiently unmask interrupts so that any
804 		 * pending interrupts are taken.
805 		 *
806 		 * There's no barrier which ensures that pending interrupts are
807 		 * recognised, so we just hope that the CPU takes any pending
808 		 * interrupts between the enable and disable.
809 		 */
810 		local_irq_enable();
811 		local_irq_disable();
812 
813 		guest_timing_exit_irqoff();
814 
815 		local_irq_enable();
816 
817 		preempt_enable();
818 
819 		kvm_vcpu_srcu_read_lock(vcpu);
820 
821 		ret = kvm_riscv_vcpu_exit(vcpu, run, &trap);
822 	}
823 
824 	kvm_sigset_deactivate(vcpu);
825 
826 	vcpu_put(vcpu);
827 
828 	kvm_vcpu_srcu_read_unlock(vcpu);
829 
830 	return ret;
831 }
832