xref: /linux/arch/riscv/kvm/vcpu.c (revision 572af9f284669d31d9175122bbef9bc62cea8ded)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/entry-kvm.h>
11 #include <linux/errno.h>
12 #include <linux/err.h>
13 #include <linux/kdebug.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sched/signal.h>
18 #include <linux/fs.h>
19 #include <linux/kvm_host.h>
20 #include <asm/cacheflush.h>
21 #include <asm/kvm_nacl.h>
22 #include <asm/kvm_vcpu_vector.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26 
27 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
28 	KVM_GENERIC_VCPU_STATS(),
29 	STATS_DESC_COUNTER(VCPU, ecall_exit_stat),
30 	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
31 	STATS_DESC_COUNTER(VCPU, wrs_exit_stat),
32 	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
33 	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
34 	STATS_DESC_COUNTER(VCPU, csr_exit_user),
35 	STATS_DESC_COUNTER(VCPU, csr_exit_kernel),
36 	STATS_DESC_COUNTER(VCPU, signal_exits),
37 	STATS_DESC_COUNTER(VCPU, exits)
38 };
39 
40 const struct kvm_stats_header kvm_vcpu_stats_header = {
41 	.name_size = KVM_STATS_NAME_SIZE,
42 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
43 	.id_offset = sizeof(struct kvm_stats_header),
44 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
45 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
46 		       sizeof(kvm_vcpu_stats_desc),
47 };
48 
49 static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu)
50 {
51 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
52 	struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
53 	struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
54 	struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context;
55 	bool loaded;
56 
57 	/**
58 	 * The preemption should be disabled here because it races with
59 	 * kvm_sched_out/kvm_sched_in(called from preempt notifiers) which
60 	 * also calls vcpu_load/put.
61 	 */
62 	get_cpu();
63 	loaded = (vcpu->cpu != -1);
64 	if (loaded)
65 		kvm_arch_vcpu_put(vcpu);
66 
67 	vcpu->arch.last_exit_cpu = -1;
68 
69 	memcpy(csr, reset_csr, sizeof(*csr));
70 
71 	spin_lock(&vcpu->arch.reset_cntx_lock);
72 	memcpy(cntx, reset_cntx, sizeof(*cntx));
73 	spin_unlock(&vcpu->arch.reset_cntx_lock);
74 
75 	kvm_riscv_vcpu_fp_reset(vcpu);
76 
77 	kvm_riscv_vcpu_vector_reset(vcpu);
78 
79 	kvm_riscv_vcpu_timer_reset(vcpu);
80 
81 	kvm_riscv_vcpu_aia_reset(vcpu);
82 
83 	bitmap_zero(vcpu->arch.irqs_pending, KVM_RISCV_VCPU_NR_IRQS);
84 	bitmap_zero(vcpu->arch.irqs_pending_mask, KVM_RISCV_VCPU_NR_IRQS);
85 
86 	kvm_riscv_vcpu_pmu_reset(vcpu);
87 
88 	vcpu->arch.hfence_head = 0;
89 	vcpu->arch.hfence_tail = 0;
90 	memset(vcpu->arch.hfence_queue, 0, sizeof(vcpu->arch.hfence_queue));
91 
92 	kvm_riscv_vcpu_sbi_sta_reset(vcpu);
93 
94 	/* Reset the guest CSRs for hotplug usecase */
95 	if (loaded)
96 		kvm_arch_vcpu_load(vcpu, smp_processor_id());
97 	put_cpu();
98 }
99 
100 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
101 {
102 	return 0;
103 }
104 
105 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
106 {
107 	int rc;
108 	struct kvm_cpu_context *cntx;
109 	struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
110 
111 	spin_lock_init(&vcpu->arch.mp_state_lock);
112 
113 	/* Mark this VCPU never ran */
114 	vcpu->arch.ran_atleast_once = false;
115 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
116 	bitmap_zero(vcpu->arch.isa, RISCV_ISA_EXT_MAX);
117 
118 	/* Setup ISA features available to VCPU */
119 	kvm_riscv_vcpu_setup_isa(vcpu);
120 
121 	/* Setup vendor, arch, and implementation details */
122 	vcpu->arch.mvendorid = sbi_get_mvendorid();
123 	vcpu->arch.marchid = sbi_get_marchid();
124 	vcpu->arch.mimpid = sbi_get_mimpid();
125 
126 	/* Setup VCPU hfence queue */
127 	spin_lock_init(&vcpu->arch.hfence_lock);
128 
129 	/* Setup reset state of shadow SSTATUS and HSTATUS CSRs */
130 	spin_lock_init(&vcpu->arch.reset_cntx_lock);
131 
132 	spin_lock(&vcpu->arch.reset_cntx_lock);
133 	cntx = &vcpu->arch.guest_reset_context;
134 	cntx->sstatus = SR_SPP | SR_SPIE;
135 	cntx->hstatus = 0;
136 	cntx->hstatus |= HSTATUS_VTW;
137 	cntx->hstatus |= HSTATUS_SPVP;
138 	cntx->hstatus |= HSTATUS_SPV;
139 	spin_unlock(&vcpu->arch.reset_cntx_lock);
140 
141 	if (kvm_riscv_vcpu_alloc_vector_context(vcpu, cntx))
142 		return -ENOMEM;
143 
144 	/* By default, make CY, TM, and IR counters accessible in VU mode */
145 	reset_csr->scounteren = 0x7;
146 
147 	/* Setup VCPU timer */
148 	kvm_riscv_vcpu_timer_init(vcpu);
149 
150 	/* setup performance monitoring */
151 	kvm_riscv_vcpu_pmu_init(vcpu);
152 
153 	/* Setup VCPU AIA */
154 	rc = kvm_riscv_vcpu_aia_init(vcpu);
155 	if (rc)
156 		return rc;
157 
158 	/*
159 	 * Setup SBI extensions
160 	 * NOTE: This must be the last thing to be initialized.
161 	 */
162 	kvm_riscv_vcpu_sbi_init(vcpu);
163 
164 	/* Reset VCPU */
165 	kvm_riscv_reset_vcpu(vcpu);
166 
167 	return 0;
168 }
169 
170 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
171 {
172 	/**
173 	 * vcpu with id 0 is the designated boot cpu.
174 	 * Keep all vcpus with non-zero id in power-off state so that
175 	 * they can be brought up using SBI HSM extension.
176 	 */
177 	if (vcpu->vcpu_idx != 0)
178 		kvm_riscv_vcpu_power_off(vcpu);
179 }
180 
181 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
182 {
183 	/* Cleanup VCPU AIA context */
184 	kvm_riscv_vcpu_aia_deinit(vcpu);
185 
186 	/* Cleanup VCPU timer */
187 	kvm_riscv_vcpu_timer_deinit(vcpu);
188 
189 	kvm_riscv_vcpu_pmu_deinit(vcpu);
190 
191 	/* Free unused pages pre-allocated for G-stage page table mappings */
192 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
193 
194 	/* Free vector context space for host and guest kernel */
195 	kvm_riscv_vcpu_free_vector_context(vcpu);
196 }
197 
198 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
199 {
200 	return kvm_riscv_vcpu_timer_pending(vcpu);
201 }
202 
203 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
204 {
205 	kvm_riscv_aia_wakeon_hgei(vcpu, true);
206 }
207 
208 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
209 {
210 	kvm_riscv_aia_wakeon_hgei(vcpu, false);
211 }
212 
213 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
214 {
215 	return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) &&
216 		!kvm_riscv_vcpu_stopped(vcpu) && !vcpu->arch.pause);
217 }
218 
219 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
220 {
221 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
222 }
223 
224 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
225 {
226 	return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false;
227 }
228 
229 #ifdef CONFIG_GUEST_PERF_EVENTS
230 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
231 {
232 	return vcpu->arch.guest_context.sepc;
233 }
234 #endif
235 
236 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
237 {
238 	return VM_FAULT_SIGBUS;
239 }
240 
241 long kvm_arch_vcpu_async_ioctl(struct file *filp,
242 			       unsigned int ioctl, unsigned long arg)
243 {
244 	struct kvm_vcpu *vcpu = filp->private_data;
245 	void __user *argp = (void __user *)arg;
246 
247 	if (ioctl == KVM_INTERRUPT) {
248 		struct kvm_interrupt irq;
249 
250 		if (copy_from_user(&irq, argp, sizeof(irq)))
251 			return -EFAULT;
252 
253 		if (irq.irq == KVM_INTERRUPT_SET)
254 			return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT);
255 		else
256 			return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT);
257 	}
258 
259 	return -ENOIOCTLCMD;
260 }
261 
262 long kvm_arch_vcpu_ioctl(struct file *filp,
263 			 unsigned int ioctl, unsigned long arg)
264 {
265 	struct kvm_vcpu *vcpu = filp->private_data;
266 	void __user *argp = (void __user *)arg;
267 	long r = -EINVAL;
268 
269 	switch (ioctl) {
270 	case KVM_SET_ONE_REG:
271 	case KVM_GET_ONE_REG: {
272 		struct kvm_one_reg reg;
273 
274 		r = -EFAULT;
275 		if (copy_from_user(&reg, argp, sizeof(reg)))
276 			break;
277 
278 		if (ioctl == KVM_SET_ONE_REG)
279 			r = kvm_riscv_vcpu_set_reg(vcpu, &reg);
280 		else
281 			r = kvm_riscv_vcpu_get_reg(vcpu, &reg);
282 		break;
283 	}
284 	case KVM_GET_REG_LIST: {
285 		struct kvm_reg_list __user *user_list = argp;
286 		struct kvm_reg_list reg_list;
287 		unsigned int n;
288 
289 		r = -EFAULT;
290 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
291 			break;
292 		n = reg_list.n;
293 		reg_list.n = kvm_riscv_vcpu_num_regs(vcpu);
294 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
295 			break;
296 		r = -E2BIG;
297 		if (n < reg_list.n)
298 			break;
299 		r = kvm_riscv_vcpu_copy_reg_indices(vcpu, user_list->reg);
300 		break;
301 	}
302 	default:
303 		break;
304 	}
305 
306 	return r;
307 }
308 
309 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
310 				  struct kvm_sregs *sregs)
311 {
312 	return -EINVAL;
313 }
314 
315 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
316 				  struct kvm_sregs *sregs)
317 {
318 	return -EINVAL;
319 }
320 
321 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
322 {
323 	return -EINVAL;
324 }
325 
326 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
327 {
328 	return -EINVAL;
329 }
330 
331 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
332 				  struct kvm_translation *tr)
333 {
334 	return -EINVAL;
335 }
336 
337 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
338 {
339 	return -EINVAL;
340 }
341 
342 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
343 {
344 	return -EINVAL;
345 }
346 
347 void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu)
348 {
349 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
350 	unsigned long mask, val;
351 
352 	if (READ_ONCE(vcpu->arch.irqs_pending_mask[0])) {
353 		mask = xchg_acquire(&vcpu->arch.irqs_pending_mask[0], 0);
354 		val = READ_ONCE(vcpu->arch.irqs_pending[0]) & mask;
355 
356 		csr->hvip &= ~mask;
357 		csr->hvip |= val;
358 	}
359 
360 	/* Flush AIA high interrupts */
361 	kvm_riscv_vcpu_aia_flush_interrupts(vcpu);
362 }
363 
364 void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu)
365 {
366 	unsigned long hvip;
367 	struct kvm_vcpu_arch *v = &vcpu->arch;
368 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
369 
370 	/* Read current HVIP and VSIE CSRs */
371 	csr->vsie = ncsr_read(CSR_VSIE);
372 
373 	/* Sync-up HVIP.VSSIP bit changes does by Guest */
374 	hvip = ncsr_read(CSR_HVIP);
375 	if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) {
376 		if (hvip & (1UL << IRQ_VS_SOFT)) {
377 			if (!test_and_set_bit(IRQ_VS_SOFT,
378 					      v->irqs_pending_mask))
379 				set_bit(IRQ_VS_SOFT, v->irqs_pending);
380 		} else {
381 			if (!test_and_set_bit(IRQ_VS_SOFT,
382 					      v->irqs_pending_mask))
383 				clear_bit(IRQ_VS_SOFT, v->irqs_pending);
384 		}
385 	}
386 
387 	/* Sync up the HVIP.LCOFIP bit changes (only clear) by the guest */
388 	if ((csr->hvip ^ hvip) & (1UL << IRQ_PMU_OVF)) {
389 		if (!(hvip & (1UL << IRQ_PMU_OVF)) &&
390 		    !test_and_set_bit(IRQ_PMU_OVF, v->irqs_pending_mask))
391 			clear_bit(IRQ_PMU_OVF, v->irqs_pending);
392 	}
393 
394 	/* Sync-up AIA high interrupts */
395 	kvm_riscv_vcpu_aia_sync_interrupts(vcpu);
396 
397 	/* Sync-up timer CSRs */
398 	kvm_riscv_vcpu_timer_sync(vcpu);
399 }
400 
401 int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
402 {
403 	/*
404 	 * We only allow VS-mode software, timer, and external
405 	 * interrupts when irq is one of the local interrupts
406 	 * defined by RISC-V privilege specification.
407 	 */
408 	if (irq < IRQ_LOCAL_MAX &&
409 	    irq != IRQ_VS_SOFT &&
410 	    irq != IRQ_VS_TIMER &&
411 	    irq != IRQ_VS_EXT &&
412 	    irq != IRQ_PMU_OVF)
413 		return -EINVAL;
414 
415 	set_bit(irq, vcpu->arch.irqs_pending);
416 	smp_mb__before_atomic();
417 	set_bit(irq, vcpu->arch.irqs_pending_mask);
418 
419 	kvm_vcpu_kick(vcpu);
420 
421 	return 0;
422 }
423 
424 int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
425 {
426 	/*
427 	 * We only allow VS-mode software, timer, counter overflow and external
428 	 * interrupts when irq is one of the local interrupts
429 	 * defined by RISC-V privilege specification.
430 	 */
431 	if (irq < IRQ_LOCAL_MAX &&
432 	    irq != IRQ_VS_SOFT &&
433 	    irq != IRQ_VS_TIMER &&
434 	    irq != IRQ_VS_EXT &&
435 	    irq != IRQ_PMU_OVF)
436 		return -EINVAL;
437 
438 	clear_bit(irq, vcpu->arch.irqs_pending);
439 	smp_mb__before_atomic();
440 	set_bit(irq, vcpu->arch.irqs_pending_mask);
441 
442 	return 0;
443 }
444 
445 bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, u64 mask)
446 {
447 	unsigned long ie;
448 
449 	ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK)
450 		<< VSIP_TO_HVIP_SHIFT) & (unsigned long)mask;
451 	ie |= vcpu->arch.guest_csr.vsie & ~IRQ_LOCAL_MASK &
452 		(unsigned long)mask;
453 	if (READ_ONCE(vcpu->arch.irqs_pending[0]) & ie)
454 		return true;
455 
456 	/* Check AIA high interrupts */
457 	return kvm_riscv_vcpu_aia_has_interrupts(vcpu, mask);
458 }
459 
460 void __kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
461 {
462 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
463 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
464 	kvm_vcpu_kick(vcpu);
465 }
466 
467 void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
468 {
469 	spin_lock(&vcpu->arch.mp_state_lock);
470 	__kvm_riscv_vcpu_power_off(vcpu);
471 	spin_unlock(&vcpu->arch.mp_state_lock);
472 }
473 
474 void __kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
475 {
476 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
477 	kvm_vcpu_wake_up(vcpu);
478 }
479 
480 void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
481 {
482 	spin_lock(&vcpu->arch.mp_state_lock);
483 	__kvm_riscv_vcpu_power_on(vcpu);
484 	spin_unlock(&vcpu->arch.mp_state_lock);
485 }
486 
487 bool kvm_riscv_vcpu_stopped(struct kvm_vcpu *vcpu)
488 {
489 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
490 }
491 
492 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
493 				    struct kvm_mp_state *mp_state)
494 {
495 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
496 
497 	return 0;
498 }
499 
500 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
501 				    struct kvm_mp_state *mp_state)
502 {
503 	int ret = 0;
504 
505 	spin_lock(&vcpu->arch.mp_state_lock);
506 
507 	switch (mp_state->mp_state) {
508 	case KVM_MP_STATE_RUNNABLE:
509 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
510 		break;
511 	case KVM_MP_STATE_STOPPED:
512 		__kvm_riscv_vcpu_power_off(vcpu);
513 		break;
514 	default:
515 		ret = -EINVAL;
516 	}
517 
518 	spin_unlock(&vcpu->arch.mp_state_lock);
519 
520 	return ret;
521 }
522 
523 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
524 					struct kvm_guest_debug *dbg)
525 {
526 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
527 		vcpu->guest_debug = dbg->control;
528 		vcpu->arch.cfg.hedeleg &= ~BIT(EXC_BREAKPOINT);
529 	} else {
530 		vcpu->guest_debug = 0;
531 		vcpu->arch.cfg.hedeleg |= BIT(EXC_BREAKPOINT);
532 	}
533 
534 	return 0;
535 }
536 
537 static void kvm_riscv_vcpu_setup_config(struct kvm_vcpu *vcpu)
538 {
539 	const unsigned long *isa = vcpu->arch.isa;
540 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
541 
542 	if (riscv_isa_extension_available(isa, SVPBMT))
543 		cfg->henvcfg |= ENVCFG_PBMTE;
544 
545 	if (riscv_isa_extension_available(isa, SSTC))
546 		cfg->henvcfg |= ENVCFG_STCE;
547 
548 	if (riscv_isa_extension_available(isa, ZICBOM))
549 		cfg->henvcfg |= (ENVCFG_CBIE | ENVCFG_CBCFE);
550 
551 	if (riscv_isa_extension_available(isa, ZICBOZ))
552 		cfg->henvcfg |= ENVCFG_CBZE;
553 
554 	if (riscv_isa_extension_available(isa, SVADU) &&
555 	    !riscv_isa_extension_available(isa, SVADE))
556 		cfg->henvcfg |= ENVCFG_ADUE;
557 
558 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
559 		cfg->hstateen0 |= SMSTATEEN0_HSENVCFG;
560 		if (riscv_isa_extension_available(isa, SSAIA))
561 			cfg->hstateen0 |= SMSTATEEN0_AIA_IMSIC |
562 					  SMSTATEEN0_AIA |
563 					  SMSTATEEN0_AIA_ISEL;
564 		if (riscv_isa_extension_available(isa, SMSTATEEN))
565 			cfg->hstateen0 |= SMSTATEEN0_SSTATEEN0;
566 	}
567 
568 	cfg->hedeleg = KVM_HEDELEG_DEFAULT;
569 	if (vcpu->guest_debug)
570 		cfg->hedeleg &= ~BIT(EXC_BREAKPOINT);
571 }
572 
573 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
574 {
575 	void *nsh;
576 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
577 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
578 
579 	if (kvm_riscv_nacl_sync_csr_available()) {
580 		nsh = nacl_shmem();
581 		nacl_csr_write(nsh, CSR_VSSTATUS, csr->vsstatus);
582 		nacl_csr_write(nsh, CSR_VSIE, csr->vsie);
583 		nacl_csr_write(nsh, CSR_VSTVEC, csr->vstvec);
584 		nacl_csr_write(nsh, CSR_VSSCRATCH, csr->vsscratch);
585 		nacl_csr_write(nsh, CSR_VSEPC, csr->vsepc);
586 		nacl_csr_write(nsh, CSR_VSCAUSE, csr->vscause);
587 		nacl_csr_write(nsh, CSR_VSTVAL, csr->vstval);
588 		nacl_csr_write(nsh, CSR_HEDELEG, cfg->hedeleg);
589 		nacl_csr_write(nsh, CSR_HVIP, csr->hvip);
590 		nacl_csr_write(nsh, CSR_VSATP, csr->vsatp);
591 		nacl_csr_write(nsh, CSR_HENVCFG, cfg->henvcfg);
592 		if (IS_ENABLED(CONFIG_32BIT))
593 			nacl_csr_write(nsh, CSR_HENVCFGH, cfg->henvcfg >> 32);
594 		if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
595 			nacl_csr_write(nsh, CSR_HSTATEEN0, cfg->hstateen0);
596 			if (IS_ENABLED(CONFIG_32BIT))
597 				nacl_csr_write(nsh, CSR_HSTATEEN0H, cfg->hstateen0 >> 32);
598 		}
599 	} else {
600 		csr_write(CSR_VSSTATUS, csr->vsstatus);
601 		csr_write(CSR_VSIE, csr->vsie);
602 		csr_write(CSR_VSTVEC, csr->vstvec);
603 		csr_write(CSR_VSSCRATCH, csr->vsscratch);
604 		csr_write(CSR_VSEPC, csr->vsepc);
605 		csr_write(CSR_VSCAUSE, csr->vscause);
606 		csr_write(CSR_VSTVAL, csr->vstval);
607 		csr_write(CSR_HEDELEG, cfg->hedeleg);
608 		csr_write(CSR_HVIP, csr->hvip);
609 		csr_write(CSR_VSATP, csr->vsatp);
610 		csr_write(CSR_HENVCFG, cfg->henvcfg);
611 		if (IS_ENABLED(CONFIG_32BIT))
612 			csr_write(CSR_HENVCFGH, cfg->henvcfg >> 32);
613 		if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
614 			csr_write(CSR_HSTATEEN0, cfg->hstateen0);
615 			if (IS_ENABLED(CONFIG_32BIT))
616 				csr_write(CSR_HSTATEEN0H, cfg->hstateen0 >> 32);
617 		}
618 	}
619 
620 	kvm_riscv_gstage_update_hgatp(vcpu);
621 
622 	kvm_riscv_vcpu_timer_restore(vcpu);
623 
624 	kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context);
625 	kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context,
626 					vcpu->arch.isa);
627 	kvm_riscv_vcpu_host_vector_save(&vcpu->arch.host_context);
628 	kvm_riscv_vcpu_guest_vector_restore(&vcpu->arch.guest_context,
629 					    vcpu->arch.isa);
630 
631 	kvm_riscv_vcpu_aia_load(vcpu, cpu);
632 
633 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
634 
635 	vcpu->cpu = cpu;
636 }
637 
638 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
639 {
640 	void *nsh;
641 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
642 
643 	vcpu->cpu = -1;
644 
645 	kvm_riscv_vcpu_aia_put(vcpu);
646 
647 	kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context,
648 				     vcpu->arch.isa);
649 	kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context);
650 
651 	kvm_riscv_vcpu_timer_save(vcpu);
652 	kvm_riscv_vcpu_guest_vector_save(&vcpu->arch.guest_context,
653 					 vcpu->arch.isa);
654 	kvm_riscv_vcpu_host_vector_restore(&vcpu->arch.host_context);
655 
656 	if (kvm_riscv_nacl_available()) {
657 		nsh = nacl_shmem();
658 		csr->vsstatus = nacl_csr_read(nsh, CSR_VSSTATUS);
659 		csr->vsie = nacl_csr_read(nsh, CSR_VSIE);
660 		csr->vstvec = nacl_csr_read(nsh, CSR_VSTVEC);
661 		csr->vsscratch = nacl_csr_read(nsh, CSR_VSSCRATCH);
662 		csr->vsepc = nacl_csr_read(nsh, CSR_VSEPC);
663 		csr->vscause = nacl_csr_read(nsh, CSR_VSCAUSE);
664 		csr->vstval = nacl_csr_read(nsh, CSR_VSTVAL);
665 		csr->hvip = nacl_csr_read(nsh, CSR_HVIP);
666 		csr->vsatp = nacl_csr_read(nsh, CSR_VSATP);
667 	} else {
668 		csr->vsstatus = csr_read(CSR_VSSTATUS);
669 		csr->vsie = csr_read(CSR_VSIE);
670 		csr->vstvec = csr_read(CSR_VSTVEC);
671 		csr->vsscratch = csr_read(CSR_VSSCRATCH);
672 		csr->vsepc = csr_read(CSR_VSEPC);
673 		csr->vscause = csr_read(CSR_VSCAUSE);
674 		csr->vstval = csr_read(CSR_VSTVAL);
675 		csr->hvip = csr_read(CSR_HVIP);
676 		csr->vsatp = csr_read(CSR_VSATP);
677 	}
678 }
679 
680 static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu)
681 {
682 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
683 
684 	if (kvm_request_pending(vcpu)) {
685 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) {
686 			kvm_vcpu_srcu_read_unlock(vcpu);
687 			rcuwait_wait_event(wait,
688 				(!kvm_riscv_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
689 				TASK_INTERRUPTIBLE);
690 			kvm_vcpu_srcu_read_lock(vcpu);
691 
692 			if (kvm_riscv_vcpu_stopped(vcpu) || vcpu->arch.pause) {
693 				/*
694 				 * Awaken to handle a signal, request to
695 				 * sleep again later.
696 				 */
697 				kvm_make_request(KVM_REQ_SLEEP, vcpu);
698 			}
699 		}
700 
701 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
702 			kvm_riscv_reset_vcpu(vcpu);
703 
704 		if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu))
705 			kvm_riscv_gstage_update_hgatp(vcpu);
706 
707 		if (kvm_check_request(KVM_REQ_FENCE_I, vcpu))
708 			kvm_riscv_fence_i_process(vcpu);
709 
710 		/*
711 		 * The generic KVM_REQ_TLB_FLUSH is same as
712 		 * KVM_REQ_HFENCE_GVMA_VMID_ALL
713 		 */
714 		if (kvm_check_request(KVM_REQ_HFENCE_GVMA_VMID_ALL, vcpu))
715 			kvm_riscv_hfence_gvma_vmid_all_process(vcpu);
716 
717 		if (kvm_check_request(KVM_REQ_HFENCE_VVMA_ALL, vcpu))
718 			kvm_riscv_hfence_vvma_all_process(vcpu);
719 
720 		if (kvm_check_request(KVM_REQ_HFENCE, vcpu))
721 			kvm_riscv_hfence_process(vcpu);
722 
723 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
724 			kvm_riscv_vcpu_record_steal_time(vcpu);
725 	}
726 }
727 
728 static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu)
729 {
730 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
731 
732 	ncsr_write(CSR_HVIP, csr->hvip);
733 	kvm_riscv_vcpu_aia_update_hvip(vcpu);
734 }
735 
736 static __always_inline void kvm_riscv_vcpu_swap_in_guest_state(struct kvm_vcpu *vcpu)
737 {
738 	struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr;
739 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
740 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
741 
742 	vcpu->arch.host_scounteren = csr_swap(CSR_SCOUNTEREN, csr->scounteren);
743 	vcpu->arch.host_senvcfg = csr_swap(CSR_SENVCFG, csr->senvcfg);
744 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) &&
745 	    (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0))
746 		vcpu->arch.host_sstateen0 = csr_swap(CSR_SSTATEEN0,
747 						     smcsr->sstateen0);
748 }
749 
750 static __always_inline void kvm_riscv_vcpu_swap_in_host_state(struct kvm_vcpu *vcpu)
751 {
752 	struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr;
753 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
754 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
755 
756 	csr->scounteren = csr_swap(CSR_SCOUNTEREN, vcpu->arch.host_scounteren);
757 	csr->senvcfg = csr_swap(CSR_SENVCFG, vcpu->arch.host_senvcfg);
758 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) &&
759 	    (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0))
760 		smcsr->sstateen0 = csr_swap(CSR_SSTATEEN0,
761 					    vcpu->arch.host_sstateen0);
762 }
763 
764 /*
765  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
766  * the vCPU is running.
767  *
768  * This must be noinstr as instrumentation may make use of RCU, and this is not
769  * safe during the EQS.
770  */
771 static void noinstr kvm_riscv_vcpu_enter_exit(struct kvm_vcpu *vcpu,
772 					      struct kvm_cpu_trap *trap)
773 {
774 	void *nsh;
775 	struct kvm_cpu_context *gcntx = &vcpu->arch.guest_context;
776 	struct kvm_cpu_context *hcntx = &vcpu->arch.host_context;
777 
778 	/*
779 	 * We save trap CSRs (such as SEPC, SCAUSE, STVAL, HTVAL, and
780 	 * HTINST) here because we do local_irq_enable() after this
781 	 * function in kvm_arch_vcpu_ioctl_run() which can result in
782 	 * an interrupt immediately after local_irq_enable() and can
783 	 * potentially change trap CSRs.
784 	 */
785 
786 	kvm_riscv_vcpu_swap_in_guest_state(vcpu);
787 	guest_state_enter_irqoff();
788 
789 	if (kvm_riscv_nacl_sync_sret_available()) {
790 		nsh = nacl_shmem();
791 
792 		if (kvm_riscv_nacl_autoswap_csr_available()) {
793 			hcntx->hstatus =
794 				nacl_csr_read(nsh, CSR_HSTATUS);
795 			nacl_scratch_write_long(nsh,
796 						SBI_NACL_SHMEM_AUTOSWAP_OFFSET +
797 						SBI_NACL_SHMEM_AUTOSWAP_HSTATUS,
798 						gcntx->hstatus);
799 			nacl_scratch_write_long(nsh,
800 						SBI_NACL_SHMEM_AUTOSWAP_OFFSET,
801 						SBI_NACL_SHMEM_AUTOSWAP_FLAG_HSTATUS);
802 		} else if (kvm_riscv_nacl_sync_csr_available()) {
803 			hcntx->hstatus = nacl_csr_swap(nsh,
804 						       CSR_HSTATUS, gcntx->hstatus);
805 		} else {
806 			hcntx->hstatus = csr_swap(CSR_HSTATUS, gcntx->hstatus);
807 		}
808 
809 		nacl_scratch_write_longs(nsh,
810 					 SBI_NACL_SHMEM_SRET_OFFSET +
811 					 SBI_NACL_SHMEM_SRET_X(1),
812 					 &gcntx->ra,
813 					 SBI_NACL_SHMEM_SRET_X_LAST);
814 
815 		__kvm_riscv_nacl_switch_to(&vcpu->arch, SBI_EXT_NACL,
816 					   SBI_EXT_NACL_SYNC_SRET);
817 
818 		if (kvm_riscv_nacl_autoswap_csr_available()) {
819 			nacl_scratch_write_long(nsh,
820 						SBI_NACL_SHMEM_AUTOSWAP_OFFSET,
821 						0);
822 			gcntx->hstatus = nacl_scratch_read_long(nsh,
823 								SBI_NACL_SHMEM_AUTOSWAP_OFFSET +
824 								SBI_NACL_SHMEM_AUTOSWAP_HSTATUS);
825 		} else {
826 			gcntx->hstatus = csr_swap(CSR_HSTATUS, hcntx->hstatus);
827 		}
828 
829 		trap->htval = nacl_csr_read(nsh, CSR_HTVAL);
830 		trap->htinst = nacl_csr_read(nsh, CSR_HTINST);
831 	} else {
832 		hcntx->hstatus = csr_swap(CSR_HSTATUS, gcntx->hstatus);
833 
834 		__kvm_riscv_switch_to(&vcpu->arch);
835 
836 		gcntx->hstatus = csr_swap(CSR_HSTATUS, hcntx->hstatus);
837 
838 		trap->htval = csr_read(CSR_HTVAL);
839 		trap->htinst = csr_read(CSR_HTINST);
840 	}
841 
842 	trap->sepc = gcntx->sepc;
843 	trap->scause = csr_read(CSR_SCAUSE);
844 	trap->stval = csr_read(CSR_STVAL);
845 
846 	vcpu->arch.last_exit_cpu = vcpu->cpu;
847 	guest_state_exit_irqoff();
848 	kvm_riscv_vcpu_swap_in_host_state(vcpu);
849 }
850 
851 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
852 {
853 	int ret;
854 	struct kvm_cpu_trap trap;
855 	struct kvm_run *run = vcpu->run;
856 
857 	if (!vcpu->arch.ran_atleast_once)
858 		kvm_riscv_vcpu_setup_config(vcpu);
859 
860 	/* Mark this VCPU ran at least once */
861 	vcpu->arch.ran_atleast_once = true;
862 
863 	kvm_vcpu_srcu_read_lock(vcpu);
864 
865 	switch (run->exit_reason) {
866 	case KVM_EXIT_MMIO:
867 		/* Process MMIO value returned from user-space */
868 		ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run);
869 		break;
870 	case KVM_EXIT_RISCV_SBI:
871 		/* Process SBI value returned from user-space */
872 		ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run);
873 		break;
874 	case KVM_EXIT_RISCV_CSR:
875 		/* Process CSR value returned from user-space */
876 		ret = kvm_riscv_vcpu_csr_return(vcpu, vcpu->run);
877 		break;
878 	default:
879 		ret = 0;
880 		break;
881 	}
882 	if (ret) {
883 		kvm_vcpu_srcu_read_unlock(vcpu);
884 		return ret;
885 	}
886 
887 	if (!vcpu->wants_to_run) {
888 		kvm_vcpu_srcu_read_unlock(vcpu);
889 		return -EINTR;
890 	}
891 
892 	vcpu_load(vcpu);
893 
894 	kvm_sigset_activate(vcpu);
895 
896 	ret = 1;
897 	run->exit_reason = KVM_EXIT_UNKNOWN;
898 	while (ret > 0) {
899 		/* Check conditions before entering the guest */
900 		ret = xfer_to_guest_mode_handle_work(vcpu);
901 		if (ret)
902 			continue;
903 		ret = 1;
904 
905 		kvm_riscv_gstage_vmid_update(vcpu);
906 
907 		kvm_riscv_check_vcpu_requests(vcpu);
908 
909 		preempt_disable();
910 
911 		/* Update AIA HW state before entering guest */
912 		ret = kvm_riscv_vcpu_aia_update(vcpu);
913 		if (ret <= 0) {
914 			preempt_enable();
915 			continue;
916 		}
917 
918 		local_irq_disable();
919 
920 		/*
921 		 * Ensure we set mode to IN_GUEST_MODE after we disable
922 		 * interrupts and before the final VCPU requests check.
923 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
924 		 * Documentation/virt/kvm/vcpu-requests.rst
925 		 */
926 		vcpu->mode = IN_GUEST_MODE;
927 
928 		kvm_vcpu_srcu_read_unlock(vcpu);
929 		smp_mb__after_srcu_read_unlock();
930 
931 		/*
932 		 * We might have got VCPU interrupts updated asynchronously
933 		 * so update it in HW.
934 		 */
935 		kvm_riscv_vcpu_flush_interrupts(vcpu);
936 
937 		/* Update HVIP CSR for current CPU */
938 		kvm_riscv_update_hvip(vcpu);
939 
940 		if (kvm_riscv_gstage_vmid_ver_changed(&vcpu->kvm->arch.vmid) ||
941 		    kvm_request_pending(vcpu) ||
942 		    xfer_to_guest_mode_work_pending()) {
943 			vcpu->mode = OUTSIDE_GUEST_MODE;
944 			local_irq_enable();
945 			preempt_enable();
946 			kvm_vcpu_srcu_read_lock(vcpu);
947 			continue;
948 		}
949 
950 		/*
951 		 * Cleanup stale TLB enteries
952 		 *
953 		 * Note: This should be done after G-stage VMID has been
954 		 * updated using kvm_riscv_gstage_vmid_ver_changed()
955 		 */
956 		kvm_riscv_local_tlb_sanitize(vcpu);
957 
958 		trace_kvm_entry(vcpu);
959 
960 		guest_timing_enter_irqoff();
961 
962 		kvm_riscv_vcpu_enter_exit(vcpu, &trap);
963 
964 		vcpu->mode = OUTSIDE_GUEST_MODE;
965 		vcpu->stat.exits++;
966 
967 		/* Syncup interrupts state with HW */
968 		kvm_riscv_vcpu_sync_interrupts(vcpu);
969 
970 		/*
971 		 * We must ensure that any pending interrupts are taken before
972 		 * we exit guest timing so that timer ticks are accounted as
973 		 * guest time. Transiently unmask interrupts so that any
974 		 * pending interrupts are taken.
975 		 *
976 		 * There's no barrier which ensures that pending interrupts are
977 		 * recognised, so we just hope that the CPU takes any pending
978 		 * interrupts between the enable and disable.
979 		 */
980 		local_irq_enable();
981 		local_irq_disable();
982 
983 		guest_timing_exit_irqoff();
984 
985 		local_irq_enable();
986 
987 		trace_kvm_exit(&trap);
988 
989 		preempt_enable();
990 
991 		kvm_vcpu_srcu_read_lock(vcpu);
992 
993 		ret = kvm_riscv_vcpu_exit(vcpu, run, &trap);
994 	}
995 
996 	kvm_sigset_deactivate(vcpu);
997 
998 	vcpu_put(vcpu);
999 
1000 	kvm_vcpu_srcu_read_unlock(vcpu);
1001 
1002 	return ret;
1003 }
1004