1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 4 * 5 * Authors: 6 * Anup Patel <anup.patel@wdc.com> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/entry-kvm.h> 11 #include <linux/errno.h> 12 #include <linux/err.h> 13 #include <linux/kdebug.h> 14 #include <linux/module.h> 15 #include <linux/percpu.h> 16 #include <linux/vmalloc.h> 17 #include <linux/sched/signal.h> 18 #include <linux/fs.h> 19 #include <linux/kvm_host.h> 20 #include <asm/csr.h> 21 #include <asm/cacheflush.h> 22 #include <asm/kvm_vcpu_vector.h> 23 24 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 25 KVM_GENERIC_VCPU_STATS(), 26 STATS_DESC_COUNTER(VCPU, ecall_exit_stat), 27 STATS_DESC_COUNTER(VCPU, wfi_exit_stat), 28 STATS_DESC_COUNTER(VCPU, mmio_exit_user), 29 STATS_DESC_COUNTER(VCPU, mmio_exit_kernel), 30 STATS_DESC_COUNTER(VCPU, csr_exit_user), 31 STATS_DESC_COUNTER(VCPU, csr_exit_kernel), 32 STATS_DESC_COUNTER(VCPU, signal_exits), 33 STATS_DESC_COUNTER(VCPU, exits) 34 }; 35 36 const struct kvm_stats_header kvm_vcpu_stats_header = { 37 .name_size = KVM_STATS_NAME_SIZE, 38 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 39 .id_offset = sizeof(struct kvm_stats_header), 40 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 41 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 42 sizeof(kvm_vcpu_stats_desc), 43 }; 44 45 static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu) 46 { 47 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 48 struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr; 49 struct kvm_cpu_context *cntx = &vcpu->arch.guest_context; 50 struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context; 51 bool loaded; 52 53 /** 54 * The preemption should be disabled here because it races with 55 * kvm_sched_out/kvm_sched_in(called from preempt notifiers) which 56 * also calls vcpu_load/put. 57 */ 58 get_cpu(); 59 loaded = (vcpu->cpu != -1); 60 if (loaded) 61 kvm_arch_vcpu_put(vcpu); 62 63 vcpu->arch.last_exit_cpu = -1; 64 65 memcpy(csr, reset_csr, sizeof(*csr)); 66 67 memcpy(cntx, reset_cntx, sizeof(*cntx)); 68 69 kvm_riscv_vcpu_fp_reset(vcpu); 70 71 kvm_riscv_vcpu_vector_reset(vcpu); 72 73 kvm_riscv_vcpu_timer_reset(vcpu); 74 75 kvm_riscv_vcpu_aia_reset(vcpu); 76 77 bitmap_zero(vcpu->arch.irqs_pending, KVM_RISCV_VCPU_NR_IRQS); 78 bitmap_zero(vcpu->arch.irqs_pending_mask, KVM_RISCV_VCPU_NR_IRQS); 79 80 kvm_riscv_vcpu_pmu_reset(vcpu); 81 82 vcpu->arch.hfence_head = 0; 83 vcpu->arch.hfence_tail = 0; 84 memset(vcpu->arch.hfence_queue, 0, sizeof(vcpu->arch.hfence_queue)); 85 86 kvm_riscv_vcpu_sbi_sta_reset(vcpu); 87 88 /* Reset the guest CSRs for hotplug usecase */ 89 if (loaded) 90 kvm_arch_vcpu_load(vcpu, smp_processor_id()); 91 put_cpu(); 92 } 93 94 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 95 { 96 return 0; 97 } 98 99 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 100 { 101 int rc; 102 struct kvm_cpu_context *cntx; 103 struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr; 104 105 /* Mark this VCPU never ran */ 106 vcpu->arch.ran_atleast_once = false; 107 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 108 bitmap_zero(vcpu->arch.isa, RISCV_ISA_EXT_MAX); 109 110 /* Setup ISA features available to VCPU */ 111 kvm_riscv_vcpu_setup_isa(vcpu); 112 113 /* Setup vendor, arch, and implementation details */ 114 vcpu->arch.mvendorid = sbi_get_mvendorid(); 115 vcpu->arch.marchid = sbi_get_marchid(); 116 vcpu->arch.mimpid = sbi_get_mimpid(); 117 118 /* Setup VCPU hfence queue */ 119 spin_lock_init(&vcpu->arch.hfence_lock); 120 121 /* Setup reset state of shadow SSTATUS and HSTATUS CSRs */ 122 cntx = &vcpu->arch.guest_reset_context; 123 cntx->sstatus = SR_SPP | SR_SPIE; 124 cntx->hstatus = 0; 125 cntx->hstatus |= HSTATUS_VTW; 126 cntx->hstatus |= HSTATUS_SPVP; 127 cntx->hstatus |= HSTATUS_SPV; 128 129 if (kvm_riscv_vcpu_alloc_vector_context(vcpu, cntx)) 130 return -ENOMEM; 131 132 /* By default, make CY, TM, and IR counters accessible in VU mode */ 133 reset_csr->scounteren = 0x7; 134 135 /* Setup VCPU timer */ 136 kvm_riscv_vcpu_timer_init(vcpu); 137 138 /* setup performance monitoring */ 139 kvm_riscv_vcpu_pmu_init(vcpu); 140 141 /* Setup VCPU AIA */ 142 rc = kvm_riscv_vcpu_aia_init(vcpu); 143 if (rc) 144 return rc; 145 146 /* 147 * Setup SBI extensions 148 * NOTE: This must be the last thing to be initialized. 149 */ 150 kvm_riscv_vcpu_sbi_init(vcpu); 151 152 /* Reset VCPU */ 153 kvm_riscv_reset_vcpu(vcpu); 154 155 return 0; 156 } 157 158 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 159 { 160 /** 161 * vcpu with id 0 is the designated boot cpu. 162 * Keep all vcpus with non-zero id in power-off state so that 163 * they can be brought up using SBI HSM extension. 164 */ 165 if (vcpu->vcpu_idx != 0) 166 kvm_riscv_vcpu_power_off(vcpu); 167 } 168 169 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 170 { 171 /* Cleanup VCPU AIA context */ 172 kvm_riscv_vcpu_aia_deinit(vcpu); 173 174 /* Cleanup VCPU timer */ 175 kvm_riscv_vcpu_timer_deinit(vcpu); 176 177 kvm_riscv_vcpu_pmu_deinit(vcpu); 178 179 /* Free unused pages pre-allocated for G-stage page table mappings */ 180 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 181 182 /* Free vector context space for host and guest kernel */ 183 kvm_riscv_vcpu_free_vector_context(vcpu); 184 } 185 186 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 187 { 188 return kvm_riscv_vcpu_timer_pending(vcpu); 189 } 190 191 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 192 { 193 kvm_riscv_aia_wakeon_hgei(vcpu, true); 194 } 195 196 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 197 { 198 kvm_riscv_aia_wakeon_hgei(vcpu, false); 199 } 200 201 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 202 { 203 return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) && 204 !vcpu->arch.power_off && !vcpu->arch.pause); 205 } 206 207 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 208 { 209 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 210 } 211 212 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 213 { 214 return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false; 215 } 216 217 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 218 { 219 return VM_FAULT_SIGBUS; 220 } 221 222 long kvm_arch_vcpu_async_ioctl(struct file *filp, 223 unsigned int ioctl, unsigned long arg) 224 { 225 struct kvm_vcpu *vcpu = filp->private_data; 226 void __user *argp = (void __user *)arg; 227 228 if (ioctl == KVM_INTERRUPT) { 229 struct kvm_interrupt irq; 230 231 if (copy_from_user(&irq, argp, sizeof(irq))) 232 return -EFAULT; 233 234 if (irq.irq == KVM_INTERRUPT_SET) 235 return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT); 236 else 237 return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT); 238 } 239 240 return -ENOIOCTLCMD; 241 } 242 243 long kvm_arch_vcpu_ioctl(struct file *filp, 244 unsigned int ioctl, unsigned long arg) 245 { 246 struct kvm_vcpu *vcpu = filp->private_data; 247 void __user *argp = (void __user *)arg; 248 long r = -EINVAL; 249 250 switch (ioctl) { 251 case KVM_SET_ONE_REG: 252 case KVM_GET_ONE_REG: { 253 struct kvm_one_reg reg; 254 255 r = -EFAULT; 256 if (copy_from_user(®, argp, sizeof(reg))) 257 break; 258 259 if (ioctl == KVM_SET_ONE_REG) 260 r = kvm_riscv_vcpu_set_reg(vcpu, ®); 261 else 262 r = kvm_riscv_vcpu_get_reg(vcpu, ®); 263 break; 264 } 265 case KVM_GET_REG_LIST: { 266 struct kvm_reg_list __user *user_list = argp; 267 struct kvm_reg_list reg_list; 268 unsigned int n; 269 270 r = -EFAULT; 271 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 272 break; 273 n = reg_list.n; 274 reg_list.n = kvm_riscv_vcpu_num_regs(vcpu); 275 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 276 break; 277 r = -E2BIG; 278 if (n < reg_list.n) 279 break; 280 r = kvm_riscv_vcpu_copy_reg_indices(vcpu, user_list->reg); 281 break; 282 } 283 default: 284 break; 285 } 286 287 return r; 288 } 289 290 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 291 struct kvm_sregs *sregs) 292 { 293 return -EINVAL; 294 } 295 296 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 297 struct kvm_sregs *sregs) 298 { 299 return -EINVAL; 300 } 301 302 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 303 { 304 return -EINVAL; 305 } 306 307 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 308 { 309 return -EINVAL; 310 } 311 312 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 313 struct kvm_translation *tr) 314 { 315 return -EINVAL; 316 } 317 318 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 319 { 320 return -EINVAL; 321 } 322 323 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 324 { 325 return -EINVAL; 326 } 327 328 void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu) 329 { 330 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 331 unsigned long mask, val; 332 333 if (READ_ONCE(vcpu->arch.irqs_pending_mask[0])) { 334 mask = xchg_acquire(&vcpu->arch.irqs_pending_mask[0], 0); 335 val = READ_ONCE(vcpu->arch.irqs_pending[0]) & mask; 336 337 csr->hvip &= ~mask; 338 csr->hvip |= val; 339 } 340 341 /* Flush AIA high interrupts */ 342 kvm_riscv_vcpu_aia_flush_interrupts(vcpu); 343 } 344 345 void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu) 346 { 347 unsigned long hvip; 348 struct kvm_vcpu_arch *v = &vcpu->arch; 349 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 350 351 /* Read current HVIP and VSIE CSRs */ 352 csr->vsie = csr_read(CSR_VSIE); 353 354 /* Sync-up HVIP.VSSIP bit changes does by Guest */ 355 hvip = csr_read(CSR_HVIP); 356 if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) { 357 if (hvip & (1UL << IRQ_VS_SOFT)) { 358 if (!test_and_set_bit(IRQ_VS_SOFT, 359 v->irqs_pending_mask)) 360 set_bit(IRQ_VS_SOFT, v->irqs_pending); 361 } else { 362 if (!test_and_set_bit(IRQ_VS_SOFT, 363 v->irqs_pending_mask)) 364 clear_bit(IRQ_VS_SOFT, v->irqs_pending); 365 } 366 } 367 368 /* Sync-up AIA high interrupts */ 369 kvm_riscv_vcpu_aia_sync_interrupts(vcpu); 370 371 /* Sync-up timer CSRs */ 372 kvm_riscv_vcpu_timer_sync(vcpu); 373 } 374 375 int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq) 376 { 377 /* 378 * We only allow VS-mode software, timer, and external 379 * interrupts when irq is one of the local interrupts 380 * defined by RISC-V privilege specification. 381 */ 382 if (irq < IRQ_LOCAL_MAX && 383 irq != IRQ_VS_SOFT && 384 irq != IRQ_VS_TIMER && 385 irq != IRQ_VS_EXT) 386 return -EINVAL; 387 388 set_bit(irq, vcpu->arch.irqs_pending); 389 smp_mb__before_atomic(); 390 set_bit(irq, vcpu->arch.irqs_pending_mask); 391 392 kvm_vcpu_kick(vcpu); 393 394 return 0; 395 } 396 397 int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq) 398 { 399 /* 400 * We only allow VS-mode software, timer, and external 401 * interrupts when irq is one of the local interrupts 402 * defined by RISC-V privilege specification. 403 */ 404 if (irq < IRQ_LOCAL_MAX && 405 irq != IRQ_VS_SOFT && 406 irq != IRQ_VS_TIMER && 407 irq != IRQ_VS_EXT) 408 return -EINVAL; 409 410 clear_bit(irq, vcpu->arch.irqs_pending); 411 smp_mb__before_atomic(); 412 set_bit(irq, vcpu->arch.irqs_pending_mask); 413 414 return 0; 415 } 416 417 bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, u64 mask) 418 { 419 unsigned long ie; 420 421 ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK) 422 << VSIP_TO_HVIP_SHIFT) & (unsigned long)mask; 423 ie |= vcpu->arch.guest_csr.vsie & ~IRQ_LOCAL_MASK & 424 (unsigned long)mask; 425 if (READ_ONCE(vcpu->arch.irqs_pending[0]) & ie) 426 return true; 427 428 /* Check AIA high interrupts */ 429 return kvm_riscv_vcpu_aia_has_interrupts(vcpu, mask); 430 } 431 432 void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu) 433 { 434 vcpu->arch.power_off = true; 435 kvm_make_request(KVM_REQ_SLEEP, vcpu); 436 kvm_vcpu_kick(vcpu); 437 } 438 439 void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu) 440 { 441 vcpu->arch.power_off = false; 442 kvm_vcpu_wake_up(vcpu); 443 } 444 445 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 446 struct kvm_mp_state *mp_state) 447 { 448 if (vcpu->arch.power_off) 449 mp_state->mp_state = KVM_MP_STATE_STOPPED; 450 else 451 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 452 453 return 0; 454 } 455 456 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 457 struct kvm_mp_state *mp_state) 458 { 459 int ret = 0; 460 461 switch (mp_state->mp_state) { 462 case KVM_MP_STATE_RUNNABLE: 463 vcpu->arch.power_off = false; 464 break; 465 case KVM_MP_STATE_STOPPED: 466 kvm_riscv_vcpu_power_off(vcpu); 467 break; 468 default: 469 ret = -EINVAL; 470 } 471 472 return ret; 473 } 474 475 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 476 struct kvm_guest_debug *dbg) 477 { 478 /* TODO; To be implemented later. */ 479 return -EINVAL; 480 } 481 482 static void kvm_riscv_vcpu_setup_config(struct kvm_vcpu *vcpu) 483 { 484 const unsigned long *isa = vcpu->arch.isa; 485 struct kvm_vcpu_config *cfg = &vcpu->arch.cfg; 486 487 if (riscv_isa_extension_available(isa, SVPBMT)) 488 cfg->henvcfg |= ENVCFG_PBMTE; 489 490 if (riscv_isa_extension_available(isa, SSTC)) 491 cfg->henvcfg |= ENVCFG_STCE; 492 493 if (riscv_isa_extension_available(isa, ZICBOM)) 494 cfg->henvcfg |= (ENVCFG_CBIE | ENVCFG_CBCFE); 495 496 if (riscv_isa_extension_available(isa, ZICBOZ)) 497 cfg->henvcfg |= ENVCFG_CBZE; 498 499 if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) { 500 cfg->hstateen0 |= SMSTATEEN0_HSENVCFG; 501 if (riscv_isa_extension_available(isa, SSAIA)) 502 cfg->hstateen0 |= SMSTATEEN0_AIA_IMSIC | 503 SMSTATEEN0_AIA | 504 SMSTATEEN0_AIA_ISEL; 505 if (riscv_isa_extension_available(isa, SMSTATEEN)) 506 cfg->hstateen0 |= SMSTATEEN0_SSTATEEN0; 507 } 508 } 509 510 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 511 { 512 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 513 struct kvm_vcpu_config *cfg = &vcpu->arch.cfg; 514 515 csr_write(CSR_VSSTATUS, csr->vsstatus); 516 csr_write(CSR_VSIE, csr->vsie); 517 csr_write(CSR_VSTVEC, csr->vstvec); 518 csr_write(CSR_VSSCRATCH, csr->vsscratch); 519 csr_write(CSR_VSEPC, csr->vsepc); 520 csr_write(CSR_VSCAUSE, csr->vscause); 521 csr_write(CSR_VSTVAL, csr->vstval); 522 csr_write(CSR_HVIP, csr->hvip); 523 csr_write(CSR_VSATP, csr->vsatp); 524 csr_write(CSR_HENVCFG, cfg->henvcfg); 525 if (IS_ENABLED(CONFIG_32BIT)) 526 csr_write(CSR_HENVCFGH, cfg->henvcfg >> 32); 527 if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) { 528 csr_write(CSR_HSTATEEN0, cfg->hstateen0); 529 if (IS_ENABLED(CONFIG_32BIT)) 530 csr_write(CSR_HSTATEEN0H, cfg->hstateen0 >> 32); 531 } 532 533 kvm_riscv_gstage_update_hgatp(vcpu); 534 535 kvm_riscv_vcpu_timer_restore(vcpu); 536 537 kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context); 538 kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context, 539 vcpu->arch.isa); 540 kvm_riscv_vcpu_host_vector_save(&vcpu->arch.host_context); 541 kvm_riscv_vcpu_guest_vector_restore(&vcpu->arch.guest_context, 542 vcpu->arch.isa); 543 544 kvm_riscv_vcpu_aia_load(vcpu, cpu); 545 546 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 547 548 vcpu->cpu = cpu; 549 } 550 551 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 552 { 553 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 554 555 vcpu->cpu = -1; 556 557 kvm_riscv_vcpu_aia_put(vcpu); 558 559 kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context, 560 vcpu->arch.isa); 561 kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context); 562 563 kvm_riscv_vcpu_timer_save(vcpu); 564 kvm_riscv_vcpu_guest_vector_save(&vcpu->arch.guest_context, 565 vcpu->arch.isa); 566 kvm_riscv_vcpu_host_vector_restore(&vcpu->arch.host_context); 567 568 csr->vsstatus = csr_read(CSR_VSSTATUS); 569 csr->vsie = csr_read(CSR_VSIE); 570 csr->vstvec = csr_read(CSR_VSTVEC); 571 csr->vsscratch = csr_read(CSR_VSSCRATCH); 572 csr->vsepc = csr_read(CSR_VSEPC); 573 csr->vscause = csr_read(CSR_VSCAUSE); 574 csr->vstval = csr_read(CSR_VSTVAL); 575 csr->hvip = csr_read(CSR_HVIP); 576 csr->vsatp = csr_read(CSR_VSATP); 577 } 578 579 static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu) 580 { 581 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 582 583 if (kvm_request_pending(vcpu)) { 584 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) { 585 kvm_vcpu_srcu_read_unlock(vcpu); 586 rcuwait_wait_event(wait, 587 (!vcpu->arch.power_off) && (!vcpu->arch.pause), 588 TASK_INTERRUPTIBLE); 589 kvm_vcpu_srcu_read_lock(vcpu); 590 591 if (vcpu->arch.power_off || vcpu->arch.pause) { 592 /* 593 * Awaken to handle a signal, request to 594 * sleep again later. 595 */ 596 kvm_make_request(KVM_REQ_SLEEP, vcpu); 597 } 598 } 599 600 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 601 kvm_riscv_reset_vcpu(vcpu); 602 603 if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu)) 604 kvm_riscv_gstage_update_hgatp(vcpu); 605 606 if (kvm_check_request(KVM_REQ_FENCE_I, vcpu)) 607 kvm_riscv_fence_i_process(vcpu); 608 609 /* 610 * The generic KVM_REQ_TLB_FLUSH is same as 611 * KVM_REQ_HFENCE_GVMA_VMID_ALL 612 */ 613 if (kvm_check_request(KVM_REQ_HFENCE_GVMA_VMID_ALL, vcpu)) 614 kvm_riscv_hfence_gvma_vmid_all_process(vcpu); 615 616 if (kvm_check_request(KVM_REQ_HFENCE_VVMA_ALL, vcpu)) 617 kvm_riscv_hfence_vvma_all_process(vcpu); 618 619 if (kvm_check_request(KVM_REQ_HFENCE, vcpu)) 620 kvm_riscv_hfence_process(vcpu); 621 622 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 623 kvm_riscv_vcpu_record_steal_time(vcpu); 624 } 625 } 626 627 static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu) 628 { 629 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 630 631 csr_write(CSR_HVIP, csr->hvip); 632 kvm_riscv_vcpu_aia_update_hvip(vcpu); 633 } 634 635 static __always_inline void kvm_riscv_vcpu_swap_in_guest_state(struct kvm_vcpu *vcpu) 636 { 637 struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr; 638 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 639 struct kvm_vcpu_config *cfg = &vcpu->arch.cfg; 640 641 vcpu->arch.host_senvcfg = csr_swap(CSR_SENVCFG, csr->senvcfg); 642 if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) && 643 (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0)) 644 vcpu->arch.host_sstateen0 = csr_swap(CSR_SSTATEEN0, 645 smcsr->sstateen0); 646 } 647 648 static __always_inline void kvm_riscv_vcpu_swap_in_host_state(struct kvm_vcpu *vcpu) 649 { 650 struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr; 651 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; 652 struct kvm_vcpu_config *cfg = &vcpu->arch.cfg; 653 654 csr->senvcfg = csr_swap(CSR_SENVCFG, vcpu->arch.host_senvcfg); 655 if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) && 656 (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0)) 657 smcsr->sstateen0 = csr_swap(CSR_SSTATEEN0, 658 vcpu->arch.host_sstateen0); 659 } 660 661 /* 662 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 663 * the vCPU is running. 664 * 665 * This must be noinstr as instrumentation may make use of RCU, and this is not 666 * safe during the EQS. 667 */ 668 static void noinstr kvm_riscv_vcpu_enter_exit(struct kvm_vcpu *vcpu) 669 { 670 kvm_riscv_vcpu_swap_in_guest_state(vcpu); 671 guest_state_enter_irqoff(); 672 __kvm_riscv_switch_to(&vcpu->arch); 673 vcpu->arch.last_exit_cpu = vcpu->cpu; 674 guest_state_exit_irqoff(); 675 kvm_riscv_vcpu_swap_in_host_state(vcpu); 676 } 677 678 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 679 { 680 int ret; 681 struct kvm_cpu_trap trap; 682 struct kvm_run *run = vcpu->run; 683 684 if (!vcpu->arch.ran_atleast_once) 685 kvm_riscv_vcpu_setup_config(vcpu); 686 687 /* Mark this VCPU ran at least once */ 688 vcpu->arch.ran_atleast_once = true; 689 690 kvm_vcpu_srcu_read_lock(vcpu); 691 692 switch (run->exit_reason) { 693 case KVM_EXIT_MMIO: 694 /* Process MMIO value returned from user-space */ 695 ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run); 696 break; 697 case KVM_EXIT_RISCV_SBI: 698 /* Process SBI value returned from user-space */ 699 ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run); 700 break; 701 case KVM_EXIT_RISCV_CSR: 702 /* Process CSR value returned from user-space */ 703 ret = kvm_riscv_vcpu_csr_return(vcpu, vcpu->run); 704 break; 705 default: 706 ret = 0; 707 break; 708 } 709 if (ret) { 710 kvm_vcpu_srcu_read_unlock(vcpu); 711 return ret; 712 } 713 714 if (run->immediate_exit) { 715 kvm_vcpu_srcu_read_unlock(vcpu); 716 return -EINTR; 717 } 718 719 vcpu_load(vcpu); 720 721 kvm_sigset_activate(vcpu); 722 723 ret = 1; 724 run->exit_reason = KVM_EXIT_UNKNOWN; 725 while (ret > 0) { 726 /* Check conditions before entering the guest */ 727 ret = xfer_to_guest_mode_handle_work(vcpu); 728 if (ret) 729 continue; 730 ret = 1; 731 732 kvm_riscv_gstage_vmid_update(vcpu); 733 734 kvm_riscv_check_vcpu_requests(vcpu); 735 736 preempt_disable(); 737 738 /* Update AIA HW state before entering guest */ 739 ret = kvm_riscv_vcpu_aia_update(vcpu); 740 if (ret <= 0) { 741 preempt_enable(); 742 continue; 743 } 744 745 local_irq_disable(); 746 747 /* 748 * Ensure we set mode to IN_GUEST_MODE after we disable 749 * interrupts and before the final VCPU requests check. 750 * See the comment in kvm_vcpu_exiting_guest_mode() and 751 * Documentation/virt/kvm/vcpu-requests.rst 752 */ 753 vcpu->mode = IN_GUEST_MODE; 754 755 kvm_vcpu_srcu_read_unlock(vcpu); 756 smp_mb__after_srcu_read_unlock(); 757 758 /* 759 * We might have got VCPU interrupts updated asynchronously 760 * so update it in HW. 761 */ 762 kvm_riscv_vcpu_flush_interrupts(vcpu); 763 764 /* Update HVIP CSR for current CPU */ 765 kvm_riscv_update_hvip(vcpu); 766 767 if (kvm_riscv_gstage_vmid_ver_changed(&vcpu->kvm->arch.vmid) || 768 kvm_request_pending(vcpu) || 769 xfer_to_guest_mode_work_pending()) { 770 vcpu->mode = OUTSIDE_GUEST_MODE; 771 local_irq_enable(); 772 preempt_enable(); 773 kvm_vcpu_srcu_read_lock(vcpu); 774 continue; 775 } 776 777 /* 778 * Cleanup stale TLB enteries 779 * 780 * Note: This should be done after G-stage VMID has been 781 * updated using kvm_riscv_gstage_vmid_ver_changed() 782 */ 783 kvm_riscv_local_tlb_sanitize(vcpu); 784 785 guest_timing_enter_irqoff(); 786 787 kvm_riscv_vcpu_enter_exit(vcpu); 788 789 vcpu->mode = OUTSIDE_GUEST_MODE; 790 vcpu->stat.exits++; 791 792 /* 793 * Save SCAUSE, STVAL, HTVAL, and HTINST because we might 794 * get an interrupt between __kvm_riscv_switch_to() and 795 * local_irq_enable() which can potentially change CSRs. 796 */ 797 trap.sepc = vcpu->arch.guest_context.sepc; 798 trap.scause = csr_read(CSR_SCAUSE); 799 trap.stval = csr_read(CSR_STVAL); 800 trap.htval = csr_read(CSR_HTVAL); 801 trap.htinst = csr_read(CSR_HTINST); 802 803 /* Syncup interrupts state with HW */ 804 kvm_riscv_vcpu_sync_interrupts(vcpu); 805 806 /* 807 * We must ensure that any pending interrupts are taken before 808 * we exit guest timing so that timer ticks are accounted as 809 * guest time. Transiently unmask interrupts so that any 810 * pending interrupts are taken. 811 * 812 * There's no barrier which ensures that pending interrupts are 813 * recognised, so we just hope that the CPU takes any pending 814 * interrupts between the enable and disable. 815 */ 816 local_irq_enable(); 817 local_irq_disable(); 818 819 guest_timing_exit_irqoff(); 820 821 local_irq_enable(); 822 823 preempt_enable(); 824 825 kvm_vcpu_srcu_read_lock(vcpu); 826 827 ret = kvm_riscv_vcpu_exit(vcpu, run, &trap); 828 } 829 830 kvm_sigset_deactivate(vcpu); 831 832 vcpu_put(vcpu); 833 834 kvm_vcpu_srcu_read_unlock(vcpu); 835 836 return ret; 837 } 838