xref: /linux/arch/riscv/kvm/vcpu.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/entry-kvm.h>
11 #include <linux/errno.h>
12 #include <linux/err.h>
13 #include <linux/kdebug.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sched/signal.h>
18 #include <linux/fs.h>
19 #include <linux/kvm_host.h>
20 #include <asm/csr.h>
21 #include <asm/cacheflush.h>
22 #include <asm/kvm_vcpu_vector.h>
23 
24 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
25 	KVM_GENERIC_VCPU_STATS(),
26 	STATS_DESC_COUNTER(VCPU, ecall_exit_stat),
27 	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
28 	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
29 	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
30 	STATS_DESC_COUNTER(VCPU, csr_exit_user),
31 	STATS_DESC_COUNTER(VCPU, csr_exit_kernel),
32 	STATS_DESC_COUNTER(VCPU, signal_exits),
33 	STATS_DESC_COUNTER(VCPU, exits)
34 };
35 
36 const struct kvm_stats_header kvm_vcpu_stats_header = {
37 	.name_size = KVM_STATS_NAME_SIZE,
38 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
39 	.id_offset = sizeof(struct kvm_stats_header),
40 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
41 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
42 		       sizeof(kvm_vcpu_stats_desc),
43 };
44 
45 static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu)
46 {
47 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
48 	struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
49 	struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
50 	struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context;
51 	bool loaded;
52 
53 	/**
54 	 * The preemption should be disabled here because it races with
55 	 * kvm_sched_out/kvm_sched_in(called from preempt notifiers) which
56 	 * also calls vcpu_load/put.
57 	 */
58 	get_cpu();
59 	loaded = (vcpu->cpu != -1);
60 	if (loaded)
61 		kvm_arch_vcpu_put(vcpu);
62 
63 	vcpu->arch.last_exit_cpu = -1;
64 
65 	memcpy(csr, reset_csr, sizeof(*csr));
66 
67 	spin_lock(&vcpu->arch.reset_cntx_lock);
68 	memcpy(cntx, reset_cntx, sizeof(*cntx));
69 	spin_unlock(&vcpu->arch.reset_cntx_lock);
70 
71 	kvm_riscv_vcpu_fp_reset(vcpu);
72 
73 	kvm_riscv_vcpu_vector_reset(vcpu);
74 
75 	kvm_riscv_vcpu_timer_reset(vcpu);
76 
77 	kvm_riscv_vcpu_aia_reset(vcpu);
78 
79 	bitmap_zero(vcpu->arch.irqs_pending, KVM_RISCV_VCPU_NR_IRQS);
80 	bitmap_zero(vcpu->arch.irqs_pending_mask, KVM_RISCV_VCPU_NR_IRQS);
81 
82 	kvm_riscv_vcpu_pmu_reset(vcpu);
83 
84 	vcpu->arch.hfence_head = 0;
85 	vcpu->arch.hfence_tail = 0;
86 	memset(vcpu->arch.hfence_queue, 0, sizeof(vcpu->arch.hfence_queue));
87 
88 	kvm_riscv_vcpu_sbi_sta_reset(vcpu);
89 
90 	/* Reset the guest CSRs for hotplug usecase */
91 	if (loaded)
92 		kvm_arch_vcpu_load(vcpu, smp_processor_id());
93 	put_cpu();
94 }
95 
96 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
97 {
98 	return 0;
99 }
100 
101 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
102 {
103 	int rc;
104 	struct kvm_cpu_context *cntx;
105 	struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
106 
107 	spin_lock_init(&vcpu->arch.mp_state_lock);
108 
109 	/* Mark this VCPU never ran */
110 	vcpu->arch.ran_atleast_once = false;
111 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
112 	bitmap_zero(vcpu->arch.isa, RISCV_ISA_EXT_MAX);
113 
114 	/* Setup ISA features available to VCPU */
115 	kvm_riscv_vcpu_setup_isa(vcpu);
116 
117 	/* Setup vendor, arch, and implementation details */
118 	vcpu->arch.mvendorid = sbi_get_mvendorid();
119 	vcpu->arch.marchid = sbi_get_marchid();
120 	vcpu->arch.mimpid = sbi_get_mimpid();
121 
122 	/* Setup VCPU hfence queue */
123 	spin_lock_init(&vcpu->arch.hfence_lock);
124 
125 	/* Setup reset state of shadow SSTATUS and HSTATUS CSRs */
126 	spin_lock_init(&vcpu->arch.reset_cntx_lock);
127 
128 	spin_lock(&vcpu->arch.reset_cntx_lock);
129 	cntx = &vcpu->arch.guest_reset_context;
130 	cntx->sstatus = SR_SPP | SR_SPIE;
131 	cntx->hstatus = 0;
132 	cntx->hstatus |= HSTATUS_VTW;
133 	cntx->hstatus |= HSTATUS_SPVP;
134 	cntx->hstatus |= HSTATUS_SPV;
135 	spin_unlock(&vcpu->arch.reset_cntx_lock);
136 
137 	if (kvm_riscv_vcpu_alloc_vector_context(vcpu, cntx))
138 		return -ENOMEM;
139 
140 	/* By default, make CY, TM, and IR counters accessible in VU mode */
141 	reset_csr->scounteren = 0x7;
142 
143 	/* Setup VCPU timer */
144 	kvm_riscv_vcpu_timer_init(vcpu);
145 
146 	/* setup performance monitoring */
147 	kvm_riscv_vcpu_pmu_init(vcpu);
148 
149 	/* Setup VCPU AIA */
150 	rc = kvm_riscv_vcpu_aia_init(vcpu);
151 	if (rc)
152 		return rc;
153 
154 	/*
155 	 * Setup SBI extensions
156 	 * NOTE: This must be the last thing to be initialized.
157 	 */
158 	kvm_riscv_vcpu_sbi_init(vcpu);
159 
160 	/* Reset VCPU */
161 	kvm_riscv_reset_vcpu(vcpu);
162 
163 	return 0;
164 }
165 
166 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
167 {
168 	/**
169 	 * vcpu with id 0 is the designated boot cpu.
170 	 * Keep all vcpus with non-zero id in power-off state so that
171 	 * they can be brought up using SBI HSM extension.
172 	 */
173 	if (vcpu->vcpu_idx != 0)
174 		kvm_riscv_vcpu_power_off(vcpu);
175 }
176 
177 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
178 {
179 	/* Cleanup VCPU AIA context */
180 	kvm_riscv_vcpu_aia_deinit(vcpu);
181 
182 	/* Cleanup VCPU timer */
183 	kvm_riscv_vcpu_timer_deinit(vcpu);
184 
185 	kvm_riscv_vcpu_pmu_deinit(vcpu);
186 
187 	/* Free unused pages pre-allocated for G-stage page table mappings */
188 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
189 
190 	/* Free vector context space for host and guest kernel */
191 	kvm_riscv_vcpu_free_vector_context(vcpu);
192 }
193 
194 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
195 {
196 	return kvm_riscv_vcpu_timer_pending(vcpu);
197 }
198 
199 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
200 {
201 	kvm_riscv_aia_wakeon_hgei(vcpu, true);
202 }
203 
204 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
205 {
206 	kvm_riscv_aia_wakeon_hgei(vcpu, false);
207 }
208 
209 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
210 {
211 	return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) &&
212 		!kvm_riscv_vcpu_stopped(vcpu) && !vcpu->arch.pause);
213 }
214 
215 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
216 {
217 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
218 }
219 
220 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
221 {
222 	return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false;
223 }
224 
225 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
226 {
227 	return VM_FAULT_SIGBUS;
228 }
229 
230 long kvm_arch_vcpu_async_ioctl(struct file *filp,
231 			       unsigned int ioctl, unsigned long arg)
232 {
233 	struct kvm_vcpu *vcpu = filp->private_data;
234 	void __user *argp = (void __user *)arg;
235 
236 	if (ioctl == KVM_INTERRUPT) {
237 		struct kvm_interrupt irq;
238 
239 		if (copy_from_user(&irq, argp, sizeof(irq)))
240 			return -EFAULT;
241 
242 		if (irq.irq == KVM_INTERRUPT_SET)
243 			return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT);
244 		else
245 			return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT);
246 	}
247 
248 	return -ENOIOCTLCMD;
249 }
250 
251 long kvm_arch_vcpu_ioctl(struct file *filp,
252 			 unsigned int ioctl, unsigned long arg)
253 {
254 	struct kvm_vcpu *vcpu = filp->private_data;
255 	void __user *argp = (void __user *)arg;
256 	long r = -EINVAL;
257 
258 	switch (ioctl) {
259 	case KVM_SET_ONE_REG:
260 	case KVM_GET_ONE_REG: {
261 		struct kvm_one_reg reg;
262 
263 		r = -EFAULT;
264 		if (copy_from_user(&reg, argp, sizeof(reg)))
265 			break;
266 
267 		if (ioctl == KVM_SET_ONE_REG)
268 			r = kvm_riscv_vcpu_set_reg(vcpu, &reg);
269 		else
270 			r = kvm_riscv_vcpu_get_reg(vcpu, &reg);
271 		break;
272 	}
273 	case KVM_GET_REG_LIST: {
274 		struct kvm_reg_list __user *user_list = argp;
275 		struct kvm_reg_list reg_list;
276 		unsigned int n;
277 
278 		r = -EFAULT;
279 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
280 			break;
281 		n = reg_list.n;
282 		reg_list.n = kvm_riscv_vcpu_num_regs(vcpu);
283 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
284 			break;
285 		r = -E2BIG;
286 		if (n < reg_list.n)
287 			break;
288 		r = kvm_riscv_vcpu_copy_reg_indices(vcpu, user_list->reg);
289 		break;
290 	}
291 	default:
292 		break;
293 	}
294 
295 	return r;
296 }
297 
298 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
299 				  struct kvm_sregs *sregs)
300 {
301 	return -EINVAL;
302 }
303 
304 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
305 				  struct kvm_sregs *sregs)
306 {
307 	return -EINVAL;
308 }
309 
310 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
311 {
312 	return -EINVAL;
313 }
314 
315 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
316 {
317 	return -EINVAL;
318 }
319 
320 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
321 				  struct kvm_translation *tr)
322 {
323 	return -EINVAL;
324 }
325 
326 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
327 {
328 	return -EINVAL;
329 }
330 
331 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
332 {
333 	return -EINVAL;
334 }
335 
336 void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu)
337 {
338 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
339 	unsigned long mask, val;
340 
341 	if (READ_ONCE(vcpu->arch.irqs_pending_mask[0])) {
342 		mask = xchg_acquire(&vcpu->arch.irqs_pending_mask[0], 0);
343 		val = READ_ONCE(vcpu->arch.irqs_pending[0]) & mask;
344 
345 		csr->hvip &= ~mask;
346 		csr->hvip |= val;
347 	}
348 
349 	/* Flush AIA high interrupts */
350 	kvm_riscv_vcpu_aia_flush_interrupts(vcpu);
351 }
352 
353 void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu)
354 {
355 	unsigned long hvip;
356 	struct kvm_vcpu_arch *v = &vcpu->arch;
357 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
358 
359 	/* Read current HVIP and VSIE CSRs */
360 	csr->vsie = csr_read(CSR_VSIE);
361 
362 	/* Sync-up HVIP.VSSIP bit changes does by Guest */
363 	hvip = csr_read(CSR_HVIP);
364 	if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) {
365 		if (hvip & (1UL << IRQ_VS_SOFT)) {
366 			if (!test_and_set_bit(IRQ_VS_SOFT,
367 					      v->irqs_pending_mask))
368 				set_bit(IRQ_VS_SOFT, v->irqs_pending);
369 		} else {
370 			if (!test_and_set_bit(IRQ_VS_SOFT,
371 					      v->irqs_pending_mask))
372 				clear_bit(IRQ_VS_SOFT, v->irqs_pending);
373 		}
374 	}
375 
376 	/* Sync up the HVIP.LCOFIP bit changes (only clear) by the guest */
377 	if ((csr->hvip ^ hvip) & (1UL << IRQ_PMU_OVF)) {
378 		if (!(hvip & (1UL << IRQ_PMU_OVF)) &&
379 		    !test_and_set_bit(IRQ_PMU_OVF, v->irqs_pending_mask))
380 			clear_bit(IRQ_PMU_OVF, v->irqs_pending);
381 	}
382 
383 	/* Sync-up AIA high interrupts */
384 	kvm_riscv_vcpu_aia_sync_interrupts(vcpu);
385 
386 	/* Sync-up timer CSRs */
387 	kvm_riscv_vcpu_timer_sync(vcpu);
388 }
389 
390 int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
391 {
392 	/*
393 	 * We only allow VS-mode software, timer, and external
394 	 * interrupts when irq is one of the local interrupts
395 	 * defined by RISC-V privilege specification.
396 	 */
397 	if (irq < IRQ_LOCAL_MAX &&
398 	    irq != IRQ_VS_SOFT &&
399 	    irq != IRQ_VS_TIMER &&
400 	    irq != IRQ_VS_EXT &&
401 	    irq != IRQ_PMU_OVF)
402 		return -EINVAL;
403 
404 	set_bit(irq, vcpu->arch.irqs_pending);
405 	smp_mb__before_atomic();
406 	set_bit(irq, vcpu->arch.irqs_pending_mask);
407 
408 	kvm_vcpu_kick(vcpu);
409 
410 	return 0;
411 }
412 
413 int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
414 {
415 	/*
416 	 * We only allow VS-mode software, timer, counter overflow and external
417 	 * interrupts when irq is one of the local interrupts
418 	 * defined by RISC-V privilege specification.
419 	 */
420 	if (irq < IRQ_LOCAL_MAX &&
421 	    irq != IRQ_VS_SOFT &&
422 	    irq != IRQ_VS_TIMER &&
423 	    irq != IRQ_VS_EXT &&
424 	    irq != IRQ_PMU_OVF)
425 		return -EINVAL;
426 
427 	clear_bit(irq, vcpu->arch.irqs_pending);
428 	smp_mb__before_atomic();
429 	set_bit(irq, vcpu->arch.irqs_pending_mask);
430 
431 	return 0;
432 }
433 
434 bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, u64 mask)
435 {
436 	unsigned long ie;
437 
438 	ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK)
439 		<< VSIP_TO_HVIP_SHIFT) & (unsigned long)mask;
440 	ie |= vcpu->arch.guest_csr.vsie & ~IRQ_LOCAL_MASK &
441 		(unsigned long)mask;
442 	if (READ_ONCE(vcpu->arch.irqs_pending[0]) & ie)
443 		return true;
444 
445 	/* Check AIA high interrupts */
446 	return kvm_riscv_vcpu_aia_has_interrupts(vcpu, mask);
447 }
448 
449 void __kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
450 {
451 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
452 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
453 	kvm_vcpu_kick(vcpu);
454 }
455 
456 void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
457 {
458 	spin_lock(&vcpu->arch.mp_state_lock);
459 	__kvm_riscv_vcpu_power_off(vcpu);
460 	spin_unlock(&vcpu->arch.mp_state_lock);
461 }
462 
463 void __kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
464 {
465 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
466 	kvm_vcpu_wake_up(vcpu);
467 }
468 
469 void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
470 {
471 	spin_lock(&vcpu->arch.mp_state_lock);
472 	__kvm_riscv_vcpu_power_on(vcpu);
473 	spin_unlock(&vcpu->arch.mp_state_lock);
474 }
475 
476 bool kvm_riscv_vcpu_stopped(struct kvm_vcpu *vcpu)
477 {
478 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
479 }
480 
481 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
482 				    struct kvm_mp_state *mp_state)
483 {
484 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
485 
486 	return 0;
487 }
488 
489 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
490 				    struct kvm_mp_state *mp_state)
491 {
492 	int ret = 0;
493 
494 	spin_lock(&vcpu->arch.mp_state_lock);
495 
496 	switch (mp_state->mp_state) {
497 	case KVM_MP_STATE_RUNNABLE:
498 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
499 		break;
500 	case KVM_MP_STATE_STOPPED:
501 		__kvm_riscv_vcpu_power_off(vcpu);
502 		break;
503 	default:
504 		ret = -EINVAL;
505 	}
506 
507 	spin_unlock(&vcpu->arch.mp_state_lock);
508 
509 	return ret;
510 }
511 
512 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
513 					struct kvm_guest_debug *dbg)
514 {
515 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
516 		vcpu->guest_debug = dbg->control;
517 		vcpu->arch.cfg.hedeleg &= ~BIT(EXC_BREAKPOINT);
518 	} else {
519 		vcpu->guest_debug = 0;
520 		vcpu->arch.cfg.hedeleg |= BIT(EXC_BREAKPOINT);
521 	}
522 
523 	return 0;
524 }
525 
526 static void kvm_riscv_vcpu_setup_config(struct kvm_vcpu *vcpu)
527 {
528 	const unsigned long *isa = vcpu->arch.isa;
529 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
530 
531 	if (riscv_isa_extension_available(isa, SVPBMT))
532 		cfg->henvcfg |= ENVCFG_PBMTE;
533 
534 	if (riscv_isa_extension_available(isa, SSTC))
535 		cfg->henvcfg |= ENVCFG_STCE;
536 
537 	if (riscv_isa_extension_available(isa, ZICBOM))
538 		cfg->henvcfg |= (ENVCFG_CBIE | ENVCFG_CBCFE);
539 
540 	if (riscv_isa_extension_available(isa, ZICBOZ))
541 		cfg->henvcfg |= ENVCFG_CBZE;
542 
543 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
544 		cfg->hstateen0 |= SMSTATEEN0_HSENVCFG;
545 		if (riscv_isa_extension_available(isa, SSAIA))
546 			cfg->hstateen0 |= SMSTATEEN0_AIA_IMSIC |
547 					  SMSTATEEN0_AIA |
548 					  SMSTATEEN0_AIA_ISEL;
549 		if (riscv_isa_extension_available(isa, SMSTATEEN))
550 			cfg->hstateen0 |= SMSTATEEN0_SSTATEEN0;
551 	}
552 
553 	cfg->hedeleg = KVM_HEDELEG_DEFAULT;
554 	if (vcpu->guest_debug)
555 		cfg->hedeleg &= ~BIT(EXC_BREAKPOINT);
556 }
557 
558 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
559 {
560 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
561 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
562 
563 	csr_write(CSR_VSSTATUS, csr->vsstatus);
564 	csr_write(CSR_VSIE, csr->vsie);
565 	csr_write(CSR_VSTVEC, csr->vstvec);
566 	csr_write(CSR_VSSCRATCH, csr->vsscratch);
567 	csr_write(CSR_VSEPC, csr->vsepc);
568 	csr_write(CSR_VSCAUSE, csr->vscause);
569 	csr_write(CSR_VSTVAL, csr->vstval);
570 	csr_write(CSR_HEDELEG, cfg->hedeleg);
571 	csr_write(CSR_HVIP, csr->hvip);
572 	csr_write(CSR_VSATP, csr->vsatp);
573 	csr_write(CSR_HENVCFG, cfg->henvcfg);
574 	if (IS_ENABLED(CONFIG_32BIT))
575 		csr_write(CSR_HENVCFGH, cfg->henvcfg >> 32);
576 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) {
577 		csr_write(CSR_HSTATEEN0, cfg->hstateen0);
578 		if (IS_ENABLED(CONFIG_32BIT))
579 			csr_write(CSR_HSTATEEN0H, cfg->hstateen0 >> 32);
580 	}
581 
582 	kvm_riscv_gstage_update_hgatp(vcpu);
583 
584 	kvm_riscv_vcpu_timer_restore(vcpu);
585 
586 	kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context);
587 	kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context,
588 					vcpu->arch.isa);
589 	kvm_riscv_vcpu_host_vector_save(&vcpu->arch.host_context);
590 	kvm_riscv_vcpu_guest_vector_restore(&vcpu->arch.guest_context,
591 					    vcpu->arch.isa);
592 
593 	kvm_riscv_vcpu_aia_load(vcpu, cpu);
594 
595 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
596 
597 	vcpu->cpu = cpu;
598 }
599 
600 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
601 {
602 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
603 
604 	vcpu->cpu = -1;
605 
606 	kvm_riscv_vcpu_aia_put(vcpu);
607 
608 	kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context,
609 				     vcpu->arch.isa);
610 	kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context);
611 
612 	kvm_riscv_vcpu_timer_save(vcpu);
613 	kvm_riscv_vcpu_guest_vector_save(&vcpu->arch.guest_context,
614 					 vcpu->arch.isa);
615 	kvm_riscv_vcpu_host_vector_restore(&vcpu->arch.host_context);
616 
617 	csr->vsstatus = csr_read(CSR_VSSTATUS);
618 	csr->vsie = csr_read(CSR_VSIE);
619 	csr->vstvec = csr_read(CSR_VSTVEC);
620 	csr->vsscratch = csr_read(CSR_VSSCRATCH);
621 	csr->vsepc = csr_read(CSR_VSEPC);
622 	csr->vscause = csr_read(CSR_VSCAUSE);
623 	csr->vstval = csr_read(CSR_VSTVAL);
624 	csr->hvip = csr_read(CSR_HVIP);
625 	csr->vsatp = csr_read(CSR_VSATP);
626 }
627 
628 static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu)
629 {
630 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
631 
632 	if (kvm_request_pending(vcpu)) {
633 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) {
634 			kvm_vcpu_srcu_read_unlock(vcpu);
635 			rcuwait_wait_event(wait,
636 				(!kvm_riscv_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
637 				TASK_INTERRUPTIBLE);
638 			kvm_vcpu_srcu_read_lock(vcpu);
639 
640 			if (kvm_riscv_vcpu_stopped(vcpu) || vcpu->arch.pause) {
641 				/*
642 				 * Awaken to handle a signal, request to
643 				 * sleep again later.
644 				 */
645 				kvm_make_request(KVM_REQ_SLEEP, vcpu);
646 			}
647 		}
648 
649 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
650 			kvm_riscv_reset_vcpu(vcpu);
651 
652 		if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu))
653 			kvm_riscv_gstage_update_hgatp(vcpu);
654 
655 		if (kvm_check_request(KVM_REQ_FENCE_I, vcpu))
656 			kvm_riscv_fence_i_process(vcpu);
657 
658 		/*
659 		 * The generic KVM_REQ_TLB_FLUSH is same as
660 		 * KVM_REQ_HFENCE_GVMA_VMID_ALL
661 		 */
662 		if (kvm_check_request(KVM_REQ_HFENCE_GVMA_VMID_ALL, vcpu))
663 			kvm_riscv_hfence_gvma_vmid_all_process(vcpu);
664 
665 		if (kvm_check_request(KVM_REQ_HFENCE_VVMA_ALL, vcpu))
666 			kvm_riscv_hfence_vvma_all_process(vcpu);
667 
668 		if (kvm_check_request(KVM_REQ_HFENCE, vcpu))
669 			kvm_riscv_hfence_process(vcpu);
670 
671 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
672 			kvm_riscv_vcpu_record_steal_time(vcpu);
673 	}
674 }
675 
676 static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu)
677 {
678 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
679 
680 	csr_write(CSR_HVIP, csr->hvip);
681 	kvm_riscv_vcpu_aia_update_hvip(vcpu);
682 }
683 
684 static __always_inline void kvm_riscv_vcpu_swap_in_guest_state(struct kvm_vcpu *vcpu)
685 {
686 	struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr;
687 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
688 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
689 
690 	vcpu->arch.host_senvcfg = csr_swap(CSR_SENVCFG, csr->senvcfg);
691 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) &&
692 	    (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0))
693 		vcpu->arch.host_sstateen0 = csr_swap(CSR_SSTATEEN0,
694 						     smcsr->sstateen0);
695 }
696 
697 static __always_inline void kvm_riscv_vcpu_swap_in_host_state(struct kvm_vcpu *vcpu)
698 {
699 	struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr;
700 	struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
701 	struct kvm_vcpu_config *cfg = &vcpu->arch.cfg;
702 
703 	csr->senvcfg = csr_swap(CSR_SENVCFG, vcpu->arch.host_senvcfg);
704 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) &&
705 	    (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0))
706 		smcsr->sstateen0 = csr_swap(CSR_SSTATEEN0,
707 					    vcpu->arch.host_sstateen0);
708 }
709 
710 /*
711  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
712  * the vCPU is running.
713  *
714  * This must be noinstr as instrumentation may make use of RCU, and this is not
715  * safe during the EQS.
716  */
717 static void noinstr kvm_riscv_vcpu_enter_exit(struct kvm_vcpu *vcpu)
718 {
719 	kvm_riscv_vcpu_swap_in_guest_state(vcpu);
720 	guest_state_enter_irqoff();
721 	__kvm_riscv_switch_to(&vcpu->arch);
722 	vcpu->arch.last_exit_cpu = vcpu->cpu;
723 	guest_state_exit_irqoff();
724 	kvm_riscv_vcpu_swap_in_host_state(vcpu);
725 }
726 
727 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
728 {
729 	int ret;
730 	struct kvm_cpu_trap trap;
731 	struct kvm_run *run = vcpu->run;
732 
733 	if (!vcpu->arch.ran_atleast_once)
734 		kvm_riscv_vcpu_setup_config(vcpu);
735 
736 	/* Mark this VCPU ran at least once */
737 	vcpu->arch.ran_atleast_once = true;
738 
739 	kvm_vcpu_srcu_read_lock(vcpu);
740 
741 	switch (run->exit_reason) {
742 	case KVM_EXIT_MMIO:
743 		/* Process MMIO value returned from user-space */
744 		ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run);
745 		break;
746 	case KVM_EXIT_RISCV_SBI:
747 		/* Process SBI value returned from user-space */
748 		ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run);
749 		break;
750 	case KVM_EXIT_RISCV_CSR:
751 		/* Process CSR value returned from user-space */
752 		ret = kvm_riscv_vcpu_csr_return(vcpu, vcpu->run);
753 		break;
754 	default:
755 		ret = 0;
756 		break;
757 	}
758 	if (ret) {
759 		kvm_vcpu_srcu_read_unlock(vcpu);
760 		return ret;
761 	}
762 
763 	if (run->immediate_exit) {
764 		kvm_vcpu_srcu_read_unlock(vcpu);
765 		return -EINTR;
766 	}
767 
768 	vcpu_load(vcpu);
769 
770 	kvm_sigset_activate(vcpu);
771 
772 	ret = 1;
773 	run->exit_reason = KVM_EXIT_UNKNOWN;
774 	while (ret > 0) {
775 		/* Check conditions before entering the guest */
776 		ret = xfer_to_guest_mode_handle_work(vcpu);
777 		if (ret)
778 			continue;
779 		ret = 1;
780 
781 		kvm_riscv_gstage_vmid_update(vcpu);
782 
783 		kvm_riscv_check_vcpu_requests(vcpu);
784 
785 		preempt_disable();
786 
787 		/* Update AIA HW state before entering guest */
788 		ret = kvm_riscv_vcpu_aia_update(vcpu);
789 		if (ret <= 0) {
790 			preempt_enable();
791 			continue;
792 		}
793 
794 		local_irq_disable();
795 
796 		/*
797 		 * Ensure we set mode to IN_GUEST_MODE after we disable
798 		 * interrupts and before the final VCPU requests check.
799 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
800 		 * Documentation/virt/kvm/vcpu-requests.rst
801 		 */
802 		vcpu->mode = IN_GUEST_MODE;
803 
804 		kvm_vcpu_srcu_read_unlock(vcpu);
805 		smp_mb__after_srcu_read_unlock();
806 
807 		/*
808 		 * We might have got VCPU interrupts updated asynchronously
809 		 * so update it in HW.
810 		 */
811 		kvm_riscv_vcpu_flush_interrupts(vcpu);
812 
813 		/* Update HVIP CSR for current CPU */
814 		kvm_riscv_update_hvip(vcpu);
815 
816 		if (kvm_riscv_gstage_vmid_ver_changed(&vcpu->kvm->arch.vmid) ||
817 		    kvm_request_pending(vcpu) ||
818 		    xfer_to_guest_mode_work_pending()) {
819 			vcpu->mode = OUTSIDE_GUEST_MODE;
820 			local_irq_enable();
821 			preempt_enable();
822 			kvm_vcpu_srcu_read_lock(vcpu);
823 			continue;
824 		}
825 
826 		/*
827 		 * Cleanup stale TLB enteries
828 		 *
829 		 * Note: This should be done after G-stage VMID has been
830 		 * updated using kvm_riscv_gstage_vmid_ver_changed()
831 		 */
832 		kvm_riscv_local_tlb_sanitize(vcpu);
833 
834 		guest_timing_enter_irqoff();
835 
836 		kvm_riscv_vcpu_enter_exit(vcpu);
837 
838 		vcpu->mode = OUTSIDE_GUEST_MODE;
839 		vcpu->stat.exits++;
840 
841 		/*
842 		 * Save SCAUSE, STVAL, HTVAL, and HTINST because we might
843 		 * get an interrupt between __kvm_riscv_switch_to() and
844 		 * local_irq_enable() which can potentially change CSRs.
845 		 */
846 		trap.sepc = vcpu->arch.guest_context.sepc;
847 		trap.scause = csr_read(CSR_SCAUSE);
848 		trap.stval = csr_read(CSR_STVAL);
849 		trap.htval = csr_read(CSR_HTVAL);
850 		trap.htinst = csr_read(CSR_HTINST);
851 
852 		/* Syncup interrupts state with HW */
853 		kvm_riscv_vcpu_sync_interrupts(vcpu);
854 
855 		/*
856 		 * We must ensure that any pending interrupts are taken before
857 		 * we exit guest timing so that timer ticks are accounted as
858 		 * guest time. Transiently unmask interrupts so that any
859 		 * pending interrupts are taken.
860 		 *
861 		 * There's no barrier which ensures that pending interrupts are
862 		 * recognised, so we just hope that the CPU takes any pending
863 		 * interrupts between the enable and disable.
864 		 */
865 		local_irq_enable();
866 		local_irq_disable();
867 
868 		guest_timing_exit_irqoff();
869 
870 		local_irq_enable();
871 
872 		preempt_enable();
873 
874 		kvm_vcpu_srcu_read_lock(vcpu);
875 
876 		ret = kvm_riscv_vcpu_exit(vcpu, run, &trap);
877 	}
878 
879 	kvm_sigset_deactivate(vcpu);
880 
881 	vcpu_put(vcpu);
882 
883 	kvm_vcpu_srcu_read_unlock(vcpu);
884 
885 	return ret;
886 }
887