xref: /linux/arch/riscv/kvm/tlb.c (revision b92dd11725a7c57f55e148c7d3ce58a86f480575)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2022 Ventana Micro Systems Inc.
4  */
5 
6 #include <linux/bitmap.h>
7 #include <linux/cpumask.h>
8 #include <linux/errno.h>
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/smp.h>
12 #include <linux/kvm_host.h>
13 #include <asm/cacheflush.h>
14 #include <asm/csr.h>
15 #include <asm/hwcap.h>
16 #include <asm/insn-def.h>
17 
18 #define has_svinval()	\
19 	static_branch_unlikely(&riscv_isa_ext_keys[RISCV_ISA_EXT_KEY_SVINVAL])
20 
21 void kvm_riscv_local_hfence_gvma_vmid_gpa(unsigned long vmid,
22 					  gpa_t gpa, gpa_t gpsz,
23 					  unsigned long order)
24 {
25 	gpa_t pos;
26 
27 	if (PTRS_PER_PTE < (gpsz >> order)) {
28 		kvm_riscv_local_hfence_gvma_vmid_all(vmid);
29 		return;
30 	}
31 
32 	if (has_svinval()) {
33 		asm volatile (SFENCE_W_INVAL() ::: "memory");
34 		for (pos = gpa; pos < (gpa + gpsz); pos += BIT(order))
35 			asm volatile (HINVAL_GVMA(%0, %1)
36 			: : "r" (pos >> 2), "r" (vmid) : "memory");
37 		asm volatile (SFENCE_INVAL_IR() ::: "memory");
38 	} else {
39 		for (pos = gpa; pos < (gpa + gpsz); pos += BIT(order))
40 			asm volatile (HFENCE_GVMA(%0, %1)
41 			: : "r" (pos >> 2), "r" (vmid) : "memory");
42 	}
43 }
44 
45 void kvm_riscv_local_hfence_gvma_vmid_all(unsigned long vmid)
46 {
47 	asm volatile(HFENCE_GVMA(zero, %0) : : "r" (vmid) : "memory");
48 }
49 
50 void kvm_riscv_local_hfence_gvma_gpa(gpa_t gpa, gpa_t gpsz,
51 				     unsigned long order)
52 {
53 	gpa_t pos;
54 
55 	if (PTRS_PER_PTE < (gpsz >> order)) {
56 		kvm_riscv_local_hfence_gvma_all();
57 		return;
58 	}
59 
60 	if (has_svinval()) {
61 		asm volatile (SFENCE_W_INVAL() ::: "memory");
62 		for (pos = gpa; pos < (gpa + gpsz); pos += BIT(order))
63 			asm volatile(HINVAL_GVMA(%0, zero)
64 			: : "r" (pos >> 2) : "memory");
65 		asm volatile (SFENCE_INVAL_IR() ::: "memory");
66 	} else {
67 		for (pos = gpa; pos < (gpa + gpsz); pos += BIT(order))
68 			asm volatile(HFENCE_GVMA(%0, zero)
69 			: : "r" (pos >> 2) : "memory");
70 	}
71 }
72 
73 void kvm_riscv_local_hfence_gvma_all(void)
74 {
75 	asm volatile(HFENCE_GVMA(zero, zero) : : : "memory");
76 }
77 
78 void kvm_riscv_local_hfence_vvma_asid_gva(unsigned long vmid,
79 					  unsigned long asid,
80 					  unsigned long gva,
81 					  unsigned long gvsz,
82 					  unsigned long order)
83 {
84 	unsigned long pos, hgatp;
85 
86 	if (PTRS_PER_PTE < (gvsz >> order)) {
87 		kvm_riscv_local_hfence_vvma_asid_all(vmid, asid);
88 		return;
89 	}
90 
91 	hgatp = csr_swap(CSR_HGATP, vmid << HGATP_VMID_SHIFT);
92 
93 	if (has_svinval()) {
94 		asm volatile (SFENCE_W_INVAL() ::: "memory");
95 		for (pos = gva; pos < (gva + gvsz); pos += BIT(order))
96 			asm volatile(HINVAL_VVMA(%0, %1)
97 			: : "r" (pos), "r" (asid) : "memory");
98 		asm volatile (SFENCE_INVAL_IR() ::: "memory");
99 	} else {
100 		for (pos = gva; pos < (gva + gvsz); pos += BIT(order))
101 			asm volatile(HFENCE_VVMA(%0, %1)
102 			: : "r" (pos), "r" (asid) : "memory");
103 	}
104 
105 	csr_write(CSR_HGATP, hgatp);
106 }
107 
108 void kvm_riscv_local_hfence_vvma_asid_all(unsigned long vmid,
109 					  unsigned long asid)
110 {
111 	unsigned long hgatp;
112 
113 	hgatp = csr_swap(CSR_HGATP, vmid << HGATP_VMID_SHIFT);
114 
115 	asm volatile(HFENCE_VVMA(zero, %0) : : "r" (asid) : "memory");
116 
117 	csr_write(CSR_HGATP, hgatp);
118 }
119 
120 void kvm_riscv_local_hfence_vvma_gva(unsigned long vmid,
121 				     unsigned long gva, unsigned long gvsz,
122 				     unsigned long order)
123 {
124 	unsigned long pos, hgatp;
125 
126 	if (PTRS_PER_PTE < (gvsz >> order)) {
127 		kvm_riscv_local_hfence_vvma_all(vmid);
128 		return;
129 	}
130 
131 	hgatp = csr_swap(CSR_HGATP, vmid << HGATP_VMID_SHIFT);
132 
133 	if (has_svinval()) {
134 		asm volatile (SFENCE_W_INVAL() ::: "memory");
135 		for (pos = gva; pos < (gva + gvsz); pos += BIT(order))
136 			asm volatile(HINVAL_VVMA(%0, zero)
137 			: : "r" (pos) : "memory");
138 		asm volatile (SFENCE_INVAL_IR() ::: "memory");
139 	} else {
140 		for (pos = gva; pos < (gva + gvsz); pos += BIT(order))
141 			asm volatile(HFENCE_VVMA(%0, zero)
142 			: : "r" (pos) : "memory");
143 	}
144 
145 	csr_write(CSR_HGATP, hgatp);
146 }
147 
148 void kvm_riscv_local_hfence_vvma_all(unsigned long vmid)
149 {
150 	unsigned long hgatp;
151 
152 	hgatp = csr_swap(CSR_HGATP, vmid << HGATP_VMID_SHIFT);
153 
154 	asm volatile(HFENCE_VVMA(zero, zero) : : : "memory");
155 
156 	csr_write(CSR_HGATP, hgatp);
157 }
158 
159 void kvm_riscv_local_tlb_sanitize(struct kvm_vcpu *vcpu)
160 {
161 	unsigned long vmid;
162 
163 	if (!kvm_riscv_gstage_vmid_bits() ||
164 	    vcpu->arch.last_exit_cpu == vcpu->cpu)
165 		return;
166 
167 	/*
168 	 * On RISC-V platforms with hardware VMID support, we share same
169 	 * VMID for all VCPUs of a particular Guest/VM. This means we might
170 	 * have stale G-stage TLB entries on the current Host CPU due to
171 	 * some other VCPU of the same Guest which ran previously on the
172 	 * current Host CPU.
173 	 *
174 	 * To cleanup stale TLB entries, we simply flush all G-stage TLB
175 	 * entries by VMID whenever underlying Host CPU changes for a VCPU.
176 	 */
177 
178 	vmid = READ_ONCE(vcpu->kvm->arch.vmid.vmid);
179 	kvm_riscv_local_hfence_gvma_vmid_all(vmid);
180 }
181 
182 void kvm_riscv_fence_i_process(struct kvm_vcpu *vcpu)
183 {
184 	local_flush_icache_all();
185 }
186 
187 void kvm_riscv_hfence_gvma_vmid_all_process(struct kvm_vcpu *vcpu)
188 {
189 	struct kvm_vmid *vmid;
190 
191 	vmid = &vcpu->kvm->arch.vmid;
192 	kvm_riscv_local_hfence_gvma_vmid_all(READ_ONCE(vmid->vmid));
193 }
194 
195 void kvm_riscv_hfence_vvma_all_process(struct kvm_vcpu *vcpu)
196 {
197 	struct kvm_vmid *vmid;
198 
199 	vmid = &vcpu->kvm->arch.vmid;
200 	kvm_riscv_local_hfence_vvma_all(READ_ONCE(vmid->vmid));
201 }
202 
203 static bool vcpu_hfence_dequeue(struct kvm_vcpu *vcpu,
204 				struct kvm_riscv_hfence *out_data)
205 {
206 	bool ret = false;
207 	struct kvm_vcpu_arch *varch = &vcpu->arch;
208 
209 	spin_lock(&varch->hfence_lock);
210 
211 	if (varch->hfence_queue[varch->hfence_head].type) {
212 		memcpy(out_data, &varch->hfence_queue[varch->hfence_head],
213 		       sizeof(*out_data));
214 		varch->hfence_queue[varch->hfence_head].type = 0;
215 
216 		varch->hfence_head++;
217 		if (varch->hfence_head == KVM_RISCV_VCPU_MAX_HFENCE)
218 			varch->hfence_head = 0;
219 
220 		ret = true;
221 	}
222 
223 	spin_unlock(&varch->hfence_lock);
224 
225 	return ret;
226 }
227 
228 static bool vcpu_hfence_enqueue(struct kvm_vcpu *vcpu,
229 				const struct kvm_riscv_hfence *data)
230 {
231 	bool ret = false;
232 	struct kvm_vcpu_arch *varch = &vcpu->arch;
233 
234 	spin_lock(&varch->hfence_lock);
235 
236 	if (!varch->hfence_queue[varch->hfence_tail].type) {
237 		memcpy(&varch->hfence_queue[varch->hfence_tail],
238 		       data, sizeof(*data));
239 
240 		varch->hfence_tail++;
241 		if (varch->hfence_tail == KVM_RISCV_VCPU_MAX_HFENCE)
242 			varch->hfence_tail = 0;
243 
244 		ret = true;
245 	}
246 
247 	spin_unlock(&varch->hfence_lock);
248 
249 	return ret;
250 }
251 
252 void kvm_riscv_hfence_process(struct kvm_vcpu *vcpu)
253 {
254 	struct kvm_riscv_hfence d = { 0 };
255 	struct kvm_vmid *v = &vcpu->kvm->arch.vmid;
256 
257 	while (vcpu_hfence_dequeue(vcpu, &d)) {
258 		switch (d.type) {
259 		case KVM_RISCV_HFENCE_UNKNOWN:
260 			break;
261 		case KVM_RISCV_HFENCE_GVMA_VMID_GPA:
262 			kvm_riscv_local_hfence_gvma_vmid_gpa(
263 						READ_ONCE(v->vmid),
264 						d.addr, d.size, d.order);
265 			break;
266 		case KVM_RISCV_HFENCE_VVMA_ASID_GVA:
267 			kvm_riscv_local_hfence_vvma_asid_gva(
268 						READ_ONCE(v->vmid), d.asid,
269 						d.addr, d.size, d.order);
270 			break;
271 		case KVM_RISCV_HFENCE_VVMA_ASID_ALL:
272 			kvm_riscv_local_hfence_vvma_asid_all(
273 						READ_ONCE(v->vmid), d.asid);
274 			break;
275 		case KVM_RISCV_HFENCE_VVMA_GVA:
276 			kvm_riscv_local_hfence_vvma_gva(
277 						READ_ONCE(v->vmid),
278 						d.addr, d.size, d.order);
279 			break;
280 		default:
281 			break;
282 		}
283 	}
284 }
285 
286 static void make_xfence_request(struct kvm *kvm,
287 				unsigned long hbase, unsigned long hmask,
288 				unsigned int req, unsigned int fallback_req,
289 				const struct kvm_riscv_hfence *data)
290 {
291 	unsigned long i;
292 	struct kvm_vcpu *vcpu;
293 	unsigned int actual_req = req;
294 	DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
295 
296 	bitmap_clear(vcpu_mask, 0, KVM_MAX_VCPUS);
297 	kvm_for_each_vcpu(i, vcpu, kvm) {
298 		if (hbase != -1UL) {
299 			if (vcpu->vcpu_id < hbase)
300 				continue;
301 			if (!(hmask & (1UL << (vcpu->vcpu_id - hbase))))
302 				continue;
303 		}
304 
305 		bitmap_set(vcpu_mask, i, 1);
306 
307 		if (!data || !data->type)
308 			continue;
309 
310 		/*
311 		 * Enqueue hfence data to VCPU hfence queue. If we don't
312 		 * have space in the VCPU hfence queue then fallback to
313 		 * a more conservative hfence request.
314 		 */
315 		if (!vcpu_hfence_enqueue(vcpu, data))
316 			actual_req = fallback_req;
317 	}
318 
319 	kvm_make_vcpus_request_mask(kvm, actual_req, vcpu_mask);
320 }
321 
322 void kvm_riscv_fence_i(struct kvm *kvm,
323 		       unsigned long hbase, unsigned long hmask)
324 {
325 	make_xfence_request(kvm, hbase, hmask, KVM_REQ_FENCE_I,
326 			    KVM_REQ_FENCE_I, NULL);
327 }
328 
329 void kvm_riscv_hfence_gvma_vmid_gpa(struct kvm *kvm,
330 				    unsigned long hbase, unsigned long hmask,
331 				    gpa_t gpa, gpa_t gpsz,
332 				    unsigned long order)
333 {
334 	struct kvm_riscv_hfence data;
335 
336 	data.type = KVM_RISCV_HFENCE_GVMA_VMID_GPA;
337 	data.asid = 0;
338 	data.addr = gpa;
339 	data.size = gpsz;
340 	data.order = order;
341 	make_xfence_request(kvm, hbase, hmask, KVM_REQ_HFENCE,
342 			    KVM_REQ_HFENCE_GVMA_VMID_ALL, &data);
343 }
344 
345 void kvm_riscv_hfence_gvma_vmid_all(struct kvm *kvm,
346 				    unsigned long hbase, unsigned long hmask)
347 {
348 	make_xfence_request(kvm, hbase, hmask, KVM_REQ_HFENCE_GVMA_VMID_ALL,
349 			    KVM_REQ_HFENCE_GVMA_VMID_ALL, NULL);
350 }
351 
352 void kvm_riscv_hfence_vvma_asid_gva(struct kvm *kvm,
353 				    unsigned long hbase, unsigned long hmask,
354 				    unsigned long gva, unsigned long gvsz,
355 				    unsigned long order, unsigned long asid)
356 {
357 	struct kvm_riscv_hfence data;
358 
359 	data.type = KVM_RISCV_HFENCE_VVMA_ASID_GVA;
360 	data.asid = asid;
361 	data.addr = gva;
362 	data.size = gvsz;
363 	data.order = order;
364 	make_xfence_request(kvm, hbase, hmask, KVM_REQ_HFENCE,
365 			    KVM_REQ_HFENCE_VVMA_ALL, &data);
366 }
367 
368 void kvm_riscv_hfence_vvma_asid_all(struct kvm *kvm,
369 				    unsigned long hbase, unsigned long hmask,
370 				    unsigned long asid)
371 {
372 	struct kvm_riscv_hfence data;
373 
374 	data.type = KVM_RISCV_HFENCE_VVMA_ASID_ALL;
375 	data.asid = asid;
376 	data.addr = data.size = data.order = 0;
377 	make_xfence_request(kvm, hbase, hmask, KVM_REQ_HFENCE,
378 			    KVM_REQ_HFENCE_VVMA_ALL, &data);
379 }
380 
381 void kvm_riscv_hfence_vvma_gva(struct kvm *kvm,
382 			       unsigned long hbase, unsigned long hmask,
383 			       unsigned long gva, unsigned long gvsz,
384 			       unsigned long order)
385 {
386 	struct kvm_riscv_hfence data;
387 
388 	data.type = KVM_RISCV_HFENCE_VVMA_GVA;
389 	data.asid = 0;
390 	data.addr = gva;
391 	data.size = gvsz;
392 	data.order = order;
393 	make_xfence_request(kvm, hbase, hmask, KVM_REQ_HFENCE,
394 			    KVM_REQ_HFENCE_VVMA_ALL, &data);
395 }
396 
397 void kvm_riscv_hfence_vvma_all(struct kvm *kvm,
398 			       unsigned long hbase, unsigned long hmask)
399 {
400 	make_xfence_request(kvm, hbase, hmask, KVM_REQ_HFENCE_VVMA_ALL,
401 			    KVM_REQ_HFENCE_VVMA_ALL, NULL);
402 }
403