xref: /linux/arch/riscv/kvm/mmu.c (revision 260f6f4fda93c8485c8037865c941b42b9cba5d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8 
9 #include <linux/errno.h>
10 #include <linux/hugetlb.h>
11 #include <linux/module.h>
12 #include <linux/uaccess.h>
13 #include <linux/vmalloc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/sched/signal.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_nacl.h>
18 
19 static void mmu_wp_memory_region(struct kvm *kvm, int slot)
20 {
21 	struct kvm_memslots *slots = kvm_memslots(kvm);
22 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
23 	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
24 	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
25 	struct kvm_gstage gstage;
26 
27 	gstage.kvm = kvm;
28 	gstage.flags = 0;
29 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
30 	gstage.pgd = kvm->arch.pgd;
31 
32 	spin_lock(&kvm->mmu_lock);
33 	kvm_riscv_gstage_wp_range(&gstage, start, end);
34 	spin_unlock(&kvm->mmu_lock);
35 	kvm_flush_remote_tlbs_memslot(kvm, memslot);
36 }
37 
38 int kvm_riscv_mmu_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
39 			  unsigned long size, bool writable, bool in_atomic)
40 {
41 	int ret = 0;
42 	unsigned long pfn;
43 	phys_addr_t addr, end;
44 	struct kvm_mmu_memory_cache pcache = {
45 		.gfp_custom = (in_atomic) ? GFP_ATOMIC | __GFP_ACCOUNT : 0,
46 		.gfp_zero = __GFP_ZERO,
47 	};
48 	struct kvm_gstage_mapping map;
49 	struct kvm_gstage gstage;
50 
51 	gstage.kvm = kvm;
52 	gstage.flags = 0;
53 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
54 	gstage.pgd = kvm->arch.pgd;
55 
56 	end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
57 	pfn = __phys_to_pfn(hpa);
58 
59 	for (addr = gpa; addr < end; addr += PAGE_SIZE) {
60 		map.addr = addr;
61 		map.pte = pfn_pte(pfn, PAGE_KERNEL_IO);
62 		map.level = 0;
63 
64 		if (!writable)
65 			map.pte = pte_wrprotect(map.pte);
66 
67 		ret = kvm_mmu_topup_memory_cache(&pcache, kvm_riscv_gstage_pgd_levels);
68 		if (ret)
69 			goto out;
70 
71 		spin_lock(&kvm->mmu_lock);
72 		ret = kvm_riscv_gstage_set_pte(&gstage, &pcache, &map);
73 		spin_unlock(&kvm->mmu_lock);
74 		if (ret)
75 			goto out;
76 
77 		pfn++;
78 	}
79 
80 out:
81 	kvm_mmu_free_memory_cache(&pcache);
82 	return ret;
83 }
84 
85 void kvm_riscv_mmu_iounmap(struct kvm *kvm, gpa_t gpa, unsigned long size)
86 {
87 	struct kvm_gstage gstage;
88 
89 	gstage.kvm = kvm;
90 	gstage.flags = 0;
91 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
92 	gstage.pgd = kvm->arch.pgd;
93 
94 	spin_lock(&kvm->mmu_lock);
95 	kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false);
96 	spin_unlock(&kvm->mmu_lock);
97 }
98 
99 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
100 					     struct kvm_memory_slot *slot,
101 					     gfn_t gfn_offset,
102 					     unsigned long mask)
103 {
104 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
105 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
106 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
107 	struct kvm_gstage gstage;
108 
109 	gstage.kvm = kvm;
110 	gstage.flags = 0;
111 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
112 	gstage.pgd = kvm->arch.pgd;
113 
114 	kvm_riscv_gstage_wp_range(&gstage, start, end);
115 }
116 
117 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
118 {
119 }
120 
121 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
122 {
123 }
124 
125 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
126 {
127 }
128 
129 void kvm_arch_flush_shadow_all(struct kvm *kvm)
130 {
131 	kvm_riscv_mmu_free_pgd(kvm);
132 }
133 
134 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
135 				   struct kvm_memory_slot *slot)
136 {
137 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
138 	phys_addr_t size = slot->npages << PAGE_SHIFT;
139 	struct kvm_gstage gstage;
140 
141 	gstage.kvm = kvm;
142 	gstage.flags = 0;
143 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
144 	gstage.pgd = kvm->arch.pgd;
145 
146 	spin_lock(&kvm->mmu_lock);
147 	kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false);
148 	spin_unlock(&kvm->mmu_lock);
149 }
150 
151 void kvm_arch_commit_memory_region(struct kvm *kvm,
152 				struct kvm_memory_slot *old,
153 				const struct kvm_memory_slot *new,
154 				enum kvm_mr_change change)
155 {
156 	/*
157 	 * At this point memslot has been committed and there is an
158 	 * allocated dirty_bitmap[], dirty pages will be tracked while
159 	 * the memory slot is write protected.
160 	 */
161 	if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES)
162 		mmu_wp_memory_region(kvm, new->id);
163 }
164 
165 int kvm_arch_prepare_memory_region(struct kvm *kvm,
166 				const struct kvm_memory_slot *old,
167 				struct kvm_memory_slot *new,
168 				enum kvm_mr_change change)
169 {
170 	hva_t hva, reg_end, size;
171 	gpa_t base_gpa;
172 	bool writable;
173 	int ret = 0;
174 
175 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
176 			change != KVM_MR_FLAGS_ONLY)
177 		return 0;
178 
179 	/*
180 	 * Prevent userspace from creating a memory region outside of the GPA
181 	 * space addressable by the KVM guest GPA space.
182 	 */
183 	if ((new->base_gfn + new->npages) >=
184 	    (kvm_riscv_gstage_gpa_size >> PAGE_SHIFT))
185 		return -EFAULT;
186 
187 	hva = new->userspace_addr;
188 	size = new->npages << PAGE_SHIFT;
189 	reg_end = hva + size;
190 	base_gpa = new->base_gfn << PAGE_SHIFT;
191 	writable = !(new->flags & KVM_MEM_READONLY);
192 
193 	mmap_read_lock(current->mm);
194 
195 	/*
196 	 * A memory region could potentially cover multiple VMAs, and
197 	 * any holes between them, so iterate over all of them to find
198 	 * out if we can map any of them right now.
199 	 *
200 	 *     +--------------------------------------------+
201 	 * +---------------+----------------+   +----------------+
202 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
203 	 * +---------------+----------------+   +----------------+
204 	 *     |               memory region                |
205 	 *     +--------------------------------------------+
206 	 */
207 	do {
208 		struct vm_area_struct *vma;
209 		hva_t vm_start, vm_end;
210 
211 		vma = find_vma_intersection(current->mm, hva, reg_end);
212 		if (!vma)
213 			break;
214 
215 		/*
216 		 * Mapping a read-only VMA is only allowed if the
217 		 * memory region is configured as read-only.
218 		 */
219 		if (writable && !(vma->vm_flags & VM_WRITE)) {
220 			ret = -EPERM;
221 			break;
222 		}
223 
224 		/* Take the intersection of this VMA with the memory region */
225 		vm_start = max(hva, vma->vm_start);
226 		vm_end = min(reg_end, vma->vm_end);
227 
228 		if (vma->vm_flags & VM_PFNMAP) {
229 			gpa_t gpa = base_gpa + (vm_start - hva);
230 			phys_addr_t pa;
231 
232 			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
233 			pa += vm_start - vma->vm_start;
234 
235 			/* IO region dirty page logging not allowed */
236 			if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
237 				ret = -EINVAL;
238 				goto out;
239 			}
240 
241 			ret = kvm_riscv_mmu_ioremap(kvm, gpa, pa, vm_end - vm_start,
242 						    writable, false);
243 			if (ret)
244 				break;
245 		}
246 		hva = vm_end;
247 	} while (hva < reg_end);
248 
249 	if (change == KVM_MR_FLAGS_ONLY)
250 		goto out;
251 
252 	if (ret)
253 		kvm_riscv_mmu_iounmap(kvm, base_gpa, size);
254 
255 out:
256 	mmap_read_unlock(current->mm);
257 	return ret;
258 }
259 
260 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
261 {
262 	struct kvm_gstage gstage;
263 
264 	if (!kvm->arch.pgd)
265 		return false;
266 
267 	gstage.kvm = kvm;
268 	gstage.flags = 0;
269 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
270 	gstage.pgd = kvm->arch.pgd;
271 	kvm_riscv_gstage_unmap_range(&gstage, range->start << PAGE_SHIFT,
272 				     (range->end - range->start) << PAGE_SHIFT,
273 				     range->may_block);
274 	return false;
275 }
276 
277 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
278 {
279 	pte_t *ptep;
280 	u32 ptep_level = 0;
281 	u64 size = (range->end - range->start) << PAGE_SHIFT;
282 	struct kvm_gstage gstage;
283 
284 	if (!kvm->arch.pgd)
285 		return false;
286 
287 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
288 
289 	gstage.kvm = kvm;
290 	gstage.flags = 0;
291 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
292 	gstage.pgd = kvm->arch.pgd;
293 	if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT,
294 				       &ptep, &ptep_level))
295 		return false;
296 
297 	return ptep_test_and_clear_young(NULL, 0, ptep);
298 }
299 
300 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
301 {
302 	pte_t *ptep;
303 	u32 ptep_level = 0;
304 	u64 size = (range->end - range->start) << PAGE_SHIFT;
305 	struct kvm_gstage gstage;
306 
307 	if (!kvm->arch.pgd)
308 		return false;
309 
310 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
311 
312 	gstage.kvm = kvm;
313 	gstage.flags = 0;
314 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
315 	gstage.pgd = kvm->arch.pgd;
316 	if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT,
317 				       &ptep, &ptep_level))
318 		return false;
319 
320 	return pte_young(ptep_get(ptep));
321 }
322 
323 int kvm_riscv_mmu_map(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
324 		      gpa_t gpa, unsigned long hva, bool is_write,
325 		      struct kvm_gstage_mapping *out_map)
326 {
327 	int ret;
328 	kvm_pfn_t hfn;
329 	bool writable;
330 	short vma_pageshift;
331 	gfn_t gfn = gpa >> PAGE_SHIFT;
332 	struct vm_area_struct *vma;
333 	struct kvm *kvm = vcpu->kvm;
334 	struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache;
335 	bool logging = (memslot->dirty_bitmap &&
336 			!(memslot->flags & KVM_MEM_READONLY)) ? true : false;
337 	unsigned long vma_pagesize, mmu_seq;
338 	struct kvm_gstage gstage;
339 	struct page *page;
340 
341 	gstage.kvm = kvm;
342 	gstage.flags = 0;
343 	gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
344 	gstage.pgd = kvm->arch.pgd;
345 
346 	/* Setup initial state of output mapping */
347 	memset(out_map, 0, sizeof(*out_map));
348 
349 	/* We need minimum second+third level pages */
350 	ret = kvm_mmu_topup_memory_cache(pcache, kvm_riscv_gstage_pgd_levels);
351 	if (ret) {
352 		kvm_err("Failed to topup G-stage cache\n");
353 		return ret;
354 	}
355 
356 	mmap_read_lock(current->mm);
357 
358 	vma = vma_lookup(current->mm, hva);
359 	if (unlikely(!vma)) {
360 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
361 		mmap_read_unlock(current->mm);
362 		return -EFAULT;
363 	}
364 
365 	if (is_vm_hugetlb_page(vma))
366 		vma_pageshift = huge_page_shift(hstate_vma(vma));
367 	else
368 		vma_pageshift = PAGE_SHIFT;
369 	vma_pagesize = 1ULL << vma_pageshift;
370 	if (logging || (vma->vm_flags & VM_PFNMAP))
371 		vma_pagesize = PAGE_SIZE;
372 
373 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
374 		gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
375 
376 	/*
377 	 * Read mmu_invalidate_seq so that KVM can detect if the results of
378 	 * vma_lookup() or __kvm_faultin_pfn() become stale prior to acquiring
379 	 * kvm->mmu_lock.
380 	 *
381 	 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
382 	 * with the smp_wmb() in kvm_mmu_invalidate_end().
383 	 */
384 	mmu_seq = kvm->mmu_invalidate_seq;
385 	mmap_read_unlock(current->mm);
386 
387 	if (vma_pagesize != PUD_SIZE &&
388 	    vma_pagesize != PMD_SIZE &&
389 	    vma_pagesize != PAGE_SIZE) {
390 		kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
391 		return -EFAULT;
392 	}
393 
394 	hfn = __kvm_faultin_pfn(memslot, gfn, is_write ? FOLL_WRITE : 0,
395 				&writable, &page);
396 	if (hfn == KVM_PFN_ERR_HWPOISON) {
397 		send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
398 				vma_pageshift, current);
399 		return 0;
400 	}
401 	if (is_error_noslot_pfn(hfn))
402 		return -EFAULT;
403 
404 	/*
405 	 * If logging is active then we allow writable pages only
406 	 * for write faults.
407 	 */
408 	if (logging && !is_write)
409 		writable = false;
410 
411 	spin_lock(&kvm->mmu_lock);
412 
413 	if (mmu_invalidate_retry(kvm, mmu_seq))
414 		goto out_unlock;
415 
416 	if (writable) {
417 		mark_page_dirty_in_slot(kvm, memslot, gfn);
418 		ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT,
419 						vma_pagesize, false, true, out_map);
420 	} else {
421 		ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT,
422 						vma_pagesize, true, true, out_map);
423 	}
424 
425 	if (ret)
426 		kvm_err("Failed to map in G-stage\n");
427 
428 out_unlock:
429 	kvm_release_faultin_page(kvm, page, ret && ret != -EEXIST, writable);
430 	spin_unlock(&kvm->mmu_lock);
431 	return ret;
432 }
433 
434 int kvm_riscv_mmu_alloc_pgd(struct kvm *kvm)
435 {
436 	struct page *pgd_page;
437 
438 	if (kvm->arch.pgd != NULL) {
439 		kvm_err("kvm_arch already initialized?\n");
440 		return -EINVAL;
441 	}
442 
443 	pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
444 				get_order(kvm_riscv_gstage_pgd_size));
445 	if (!pgd_page)
446 		return -ENOMEM;
447 	kvm->arch.pgd = page_to_virt(pgd_page);
448 	kvm->arch.pgd_phys = page_to_phys(pgd_page);
449 
450 	return 0;
451 }
452 
453 void kvm_riscv_mmu_free_pgd(struct kvm *kvm)
454 {
455 	struct kvm_gstage gstage;
456 	void *pgd = NULL;
457 
458 	spin_lock(&kvm->mmu_lock);
459 	if (kvm->arch.pgd) {
460 		gstage.kvm = kvm;
461 		gstage.flags = 0;
462 		gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
463 		gstage.pgd = kvm->arch.pgd;
464 		kvm_riscv_gstage_unmap_range(&gstage, 0UL, kvm_riscv_gstage_gpa_size, false);
465 		pgd = READ_ONCE(kvm->arch.pgd);
466 		kvm->arch.pgd = NULL;
467 		kvm->arch.pgd_phys = 0;
468 	}
469 	spin_unlock(&kvm->mmu_lock);
470 
471 	if (pgd)
472 		free_pages((unsigned long)pgd, get_order(kvm_riscv_gstage_pgd_size));
473 }
474 
475 void kvm_riscv_mmu_update_hgatp(struct kvm_vcpu *vcpu)
476 {
477 	unsigned long hgatp = kvm_riscv_gstage_mode << HGATP_MODE_SHIFT;
478 	struct kvm_arch *k = &vcpu->kvm->arch;
479 
480 	hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & HGATP_VMID;
481 	hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
482 
483 	ncsr_write(CSR_HGATP, hgatp);
484 
485 	if (!kvm_riscv_gstage_vmid_bits())
486 		kvm_riscv_local_hfence_gvma_all();
487 }
488