1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 Western Digital Corporation or its affiliates. 4 */ 5 #include <linux/kernel.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/module.h> 9 #include <linux/perf_event.h> 10 #include <linux/irq.h> 11 #include <linux/stringify.h> 12 13 #include <asm/processor.h> 14 #include <asm/ptrace.h> 15 #include <asm/csr.h> 16 #include <asm/entry-common.h> 17 #include <asm/hwprobe.h> 18 #include <asm/cpufeature.h> 19 20 #define INSN_MATCH_LB 0x3 21 #define INSN_MASK_LB 0x707f 22 #define INSN_MATCH_LH 0x1003 23 #define INSN_MASK_LH 0x707f 24 #define INSN_MATCH_LW 0x2003 25 #define INSN_MASK_LW 0x707f 26 #define INSN_MATCH_LD 0x3003 27 #define INSN_MASK_LD 0x707f 28 #define INSN_MATCH_LBU 0x4003 29 #define INSN_MASK_LBU 0x707f 30 #define INSN_MATCH_LHU 0x5003 31 #define INSN_MASK_LHU 0x707f 32 #define INSN_MATCH_LWU 0x6003 33 #define INSN_MASK_LWU 0x707f 34 #define INSN_MATCH_SB 0x23 35 #define INSN_MASK_SB 0x707f 36 #define INSN_MATCH_SH 0x1023 37 #define INSN_MASK_SH 0x707f 38 #define INSN_MATCH_SW 0x2023 39 #define INSN_MASK_SW 0x707f 40 #define INSN_MATCH_SD 0x3023 41 #define INSN_MASK_SD 0x707f 42 43 #define INSN_MATCH_FLW 0x2007 44 #define INSN_MASK_FLW 0x707f 45 #define INSN_MATCH_FLD 0x3007 46 #define INSN_MASK_FLD 0x707f 47 #define INSN_MATCH_FLQ 0x4007 48 #define INSN_MASK_FLQ 0x707f 49 #define INSN_MATCH_FSW 0x2027 50 #define INSN_MASK_FSW 0x707f 51 #define INSN_MATCH_FSD 0x3027 52 #define INSN_MASK_FSD 0x707f 53 #define INSN_MATCH_FSQ 0x4027 54 #define INSN_MASK_FSQ 0x707f 55 56 #define INSN_MATCH_C_LD 0x6000 57 #define INSN_MASK_C_LD 0xe003 58 #define INSN_MATCH_C_SD 0xe000 59 #define INSN_MASK_C_SD 0xe003 60 #define INSN_MATCH_C_LW 0x4000 61 #define INSN_MASK_C_LW 0xe003 62 #define INSN_MATCH_C_SW 0xc000 63 #define INSN_MASK_C_SW 0xe003 64 #define INSN_MATCH_C_LDSP 0x6002 65 #define INSN_MASK_C_LDSP 0xe003 66 #define INSN_MATCH_C_SDSP 0xe002 67 #define INSN_MASK_C_SDSP 0xe003 68 #define INSN_MATCH_C_LWSP 0x4002 69 #define INSN_MASK_C_LWSP 0xe003 70 #define INSN_MATCH_C_SWSP 0xc002 71 #define INSN_MASK_C_SWSP 0xe003 72 73 #define INSN_MATCH_C_FLD 0x2000 74 #define INSN_MASK_C_FLD 0xe003 75 #define INSN_MATCH_C_FLW 0x6000 76 #define INSN_MASK_C_FLW 0xe003 77 #define INSN_MATCH_C_FSD 0xa000 78 #define INSN_MASK_C_FSD 0xe003 79 #define INSN_MATCH_C_FSW 0xe000 80 #define INSN_MASK_C_FSW 0xe003 81 #define INSN_MATCH_C_FLDSP 0x2002 82 #define INSN_MASK_C_FLDSP 0xe003 83 #define INSN_MATCH_C_FSDSP 0xa002 84 #define INSN_MASK_C_FSDSP 0xe003 85 #define INSN_MATCH_C_FLWSP 0x6002 86 #define INSN_MASK_C_FLWSP 0xe003 87 #define INSN_MATCH_C_FSWSP 0xe002 88 #define INSN_MASK_C_FSWSP 0xe003 89 90 #define INSN_LEN(insn) ((((insn) & 0x3) < 0x3) ? 2 : 4) 91 92 #if defined(CONFIG_64BIT) 93 #define LOG_REGBYTES 3 94 #define XLEN 64 95 #else 96 #define LOG_REGBYTES 2 97 #define XLEN 32 98 #endif 99 #define REGBYTES (1 << LOG_REGBYTES) 100 #define XLEN_MINUS_16 ((XLEN) - 16) 101 102 #define SH_RD 7 103 #define SH_RS1 15 104 #define SH_RS2 20 105 #define SH_RS2C 2 106 107 #define RV_X(x, s, n) (((x) >> (s)) & ((1 << (n)) - 1)) 108 #define RVC_LW_IMM(x) ((RV_X(x, 6, 1) << 2) | \ 109 (RV_X(x, 10, 3) << 3) | \ 110 (RV_X(x, 5, 1) << 6)) 111 #define RVC_LD_IMM(x) ((RV_X(x, 10, 3) << 3) | \ 112 (RV_X(x, 5, 2) << 6)) 113 #define RVC_LWSP_IMM(x) ((RV_X(x, 4, 3) << 2) | \ 114 (RV_X(x, 12, 1) << 5) | \ 115 (RV_X(x, 2, 2) << 6)) 116 #define RVC_LDSP_IMM(x) ((RV_X(x, 5, 2) << 3) | \ 117 (RV_X(x, 12, 1) << 5) | \ 118 (RV_X(x, 2, 3) << 6)) 119 #define RVC_SWSP_IMM(x) ((RV_X(x, 9, 4) << 2) | \ 120 (RV_X(x, 7, 2) << 6)) 121 #define RVC_SDSP_IMM(x) ((RV_X(x, 10, 3) << 3) | \ 122 (RV_X(x, 7, 3) << 6)) 123 #define RVC_RS1S(insn) (8 + RV_X(insn, SH_RD, 3)) 124 #define RVC_RS2S(insn) (8 + RV_X(insn, SH_RS2C, 3)) 125 #define RVC_RS2(insn) RV_X(insn, SH_RS2C, 5) 126 127 #define SHIFT_RIGHT(x, y) \ 128 ((y) < 0 ? ((x) << -(y)) : ((x) >> (y))) 129 130 #define REG_MASK \ 131 ((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES)) 132 133 #define REG_OFFSET(insn, pos) \ 134 (SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK) 135 136 #define REG_PTR(insn, pos, regs) \ 137 (ulong *)((ulong)(regs) + REG_OFFSET(insn, pos)) 138 139 #define GET_RM(insn) (((insn) >> 12) & 7) 140 141 #define GET_RS1(insn, regs) (*REG_PTR(insn, SH_RS1, regs)) 142 #define GET_RS2(insn, regs) (*REG_PTR(insn, SH_RS2, regs)) 143 #define GET_RS1S(insn, regs) (*REG_PTR(RVC_RS1S(insn), 0, regs)) 144 #define GET_RS2S(insn, regs) (*REG_PTR(RVC_RS2S(insn), 0, regs)) 145 #define GET_RS2C(insn, regs) (*REG_PTR(insn, SH_RS2C, regs)) 146 #define GET_SP(regs) (*REG_PTR(2, 0, regs)) 147 #define SET_RD(insn, regs, val) (*REG_PTR(insn, SH_RD, regs) = (val)) 148 #define IMM_I(insn) ((s32)(insn) >> 20) 149 #define IMM_S(insn) (((s32)(insn) >> 25 << 5) | \ 150 (s32)(((insn) >> 7) & 0x1f)) 151 #define MASK_FUNCT3 0x7000 152 153 #define GET_PRECISION(insn) (((insn) >> 25) & 3) 154 #define GET_RM(insn) (((insn) >> 12) & 7) 155 #define PRECISION_S 0 156 #define PRECISION_D 1 157 158 #ifdef CONFIG_FPU 159 160 #define FP_GET_RD(insn) (insn >> 7 & 0x1F) 161 162 extern void put_f32_reg(unsigned long fp_reg, unsigned long value); 163 164 static int set_f32_rd(unsigned long insn, struct pt_regs *regs, 165 unsigned long val) 166 { 167 unsigned long fp_reg = FP_GET_RD(insn); 168 169 put_f32_reg(fp_reg, val); 170 regs->status |= SR_FS_DIRTY; 171 172 return 0; 173 } 174 175 extern void put_f64_reg(unsigned long fp_reg, unsigned long value); 176 177 static int set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val) 178 { 179 unsigned long fp_reg = FP_GET_RD(insn); 180 unsigned long value; 181 182 #if __riscv_xlen == 32 183 value = (unsigned long) &val; 184 #else 185 value = val; 186 #endif 187 put_f64_reg(fp_reg, value); 188 regs->status |= SR_FS_DIRTY; 189 190 return 0; 191 } 192 193 #if __riscv_xlen == 32 194 extern void get_f64_reg(unsigned long fp_reg, u64 *value); 195 196 static u64 get_f64_rs(unsigned long insn, u8 fp_reg_offset, 197 struct pt_regs *regs) 198 { 199 unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F; 200 u64 val; 201 202 get_f64_reg(fp_reg, &val); 203 regs->status |= SR_FS_DIRTY; 204 205 return val; 206 } 207 #else 208 209 extern unsigned long get_f64_reg(unsigned long fp_reg); 210 211 static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset, 212 struct pt_regs *regs) 213 { 214 unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F; 215 unsigned long val; 216 217 val = get_f64_reg(fp_reg); 218 regs->status |= SR_FS_DIRTY; 219 220 return val; 221 } 222 223 #endif 224 225 extern unsigned long get_f32_reg(unsigned long fp_reg); 226 227 static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset, 228 struct pt_regs *regs) 229 { 230 unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F; 231 unsigned long val; 232 233 val = get_f32_reg(fp_reg); 234 regs->status |= SR_FS_DIRTY; 235 236 return val; 237 } 238 239 #else /* CONFIG_FPU */ 240 static void set_f32_rd(unsigned long insn, struct pt_regs *regs, 241 unsigned long val) {} 242 243 static void set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val) {} 244 245 static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset, 246 struct pt_regs *regs) 247 { 248 return 0; 249 } 250 251 static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset, 252 struct pt_regs *regs) 253 { 254 return 0; 255 } 256 257 #endif 258 259 #define GET_F64_RS2(insn, regs) (get_f64_rs(insn, 20, regs)) 260 #define GET_F64_RS2C(insn, regs) (get_f64_rs(insn, 2, regs)) 261 #define GET_F64_RS2S(insn, regs) (get_f64_rs(RVC_RS2S(insn), 0, regs)) 262 263 #define GET_F32_RS2(insn, regs) (get_f32_rs(insn, 20, regs)) 264 #define GET_F32_RS2C(insn, regs) (get_f32_rs(insn, 2, regs)) 265 #define GET_F32_RS2S(insn, regs) (get_f32_rs(RVC_RS2S(insn), 0, regs)) 266 267 #ifdef CONFIG_RISCV_M_MODE 268 static inline int load_u8(struct pt_regs *regs, const u8 *addr, u8 *r_val) 269 { 270 u8 val; 271 272 asm volatile("lbu %0, %1" : "=&r" (val) : "m" (*addr)); 273 *r_val = val; 274 275 return 0; 276 } 277 278 static inline int store_u8(struct pt_regs *regs, u8 *addr, u8 val) 279 { 280 asm volatile ("sb %0, %1\n" : : "r" (val), "m" (*addr)); 281 282 return 0; 283 } 284 285 static inline int get_insn(struct pt_regs *regs, ulong mepc, ulong *r_insn) 286 { 287 register ulong __mepc asm ("a2") = mepc; 288 ulong val, rvc_mask = 3, tmp; 289 290 asm ("and %[tmp], %[addr], 2\n" 291 "bnez %[tmp], 1f\n" 292 #if defined(CONFIG_64BIT) 293 __stringify(LWU) " %[insn], (%[addr])\n" 294 #else 295 __stringify(LW) " %[insn], (%[addr])\n" 296 #endif 297 "and %[tmp], %[insn], %[rvc_mask]\n" 298 "beq %[tmp], %[rvc_mask], 2f\n" 299 "sll %[insn], %[insn], %[xlen_minus_16]\n" 300 "srl %[insn], %[insn], %[xlen_minus_16]\n" 301 "j 2f\n" 302 "1:\n" 303 "lhu %[insn], (%[addr])\n" 304 "and %[tmp], %[insn], %[rvc_mask]\n" 305 "bne %[tmp], %[rvc_mask], 2f\n" 306 "lhu %[tmp], 2(%[addr])\n" 307 "sll %[tmp], %[tmp], 16\n" 308 "add %[insn], %[insn], %[tmp]\n" 309 "2:" 310 : [insn] "=&r" (val), [tmp] "=&r" (tmp) 311 : [addr] "r" (__mepc), [rvc_mask] "r" (rvc_mask), 312 [xlen_minus_16] "i" (XLEN_MINUS_16)); 313 314 *r_insn = val; 315 316 return 0; 317 } 318 #else 319 static inline int load_u8(struct pt_regs *regs, const u8 *addr, u8 *r_val) 320 { 321 if (user_mode(regs)) { 322 return __get_user(*r_val, (u8 __user *)addr); 323 } else { 324 *r_val = *addr; 325 return 0; 326 } 327 } 328 329 static inline int store_u8(struct pt_regs *regs, u8 *addr, u8 val) 330 { 331 if (user_mode(regs)) { 332 return __put_user(val, (u8 __user *)addr); 333 } else { 334 *addr = val; 335 return 0; 336 } 337 } 338 339 #define __read_insn(regs, insn, insn_addr) \ 340 ({ \ 341 int __ret; \ 342 \ 343 if (user_mode(regs)) { \ 344 __ret = __get_user(insn, insn_addr); \ 345 } else { \ 346 insn = *(__force u16 *)insn_addr; \ 347 __ret = 0; \ 348 } \ 349 \ 350 __ret; \ 351 }) 352 353 static inline int get_insn(struct pt_regs *regs, ulong epc, ulong *r_insn) 354 { 355 ulong insn = 0; 356 357 if (epc & 0x2) { 358 ulong tmp = 0; 359 u16 __user *insn_addr = (u16 __user *)epc; 360 361 if (__read_insn(regs, insn, insn_addr)) 362 return -EFAULT; 363 /* __get_user() uses regular "lw" which sign extend the loaded 364 * value make sure to clear higher order bits in case we "or" it 365 * below with the upper 16 bits half. 366 */ 367 insn &= GENMASK(15, 0); 368 if ((insn & __INSN_LENGTH_MASK) != __INSN_LENGTH_32) { 369 *r_insn = insn; 370 return 0; 371 } 372 insn_addr++; 373 if (__read_insn(regs, tmp, insn_addr)) 374 return -EFAULT; 375 *r_insn = (tmp << 16) | insn; 376 377 return 0; 378 } else { 379 u32 __user *insn_addr = (u32 __user *)epc; 380 381 if (__read_insn(regs, insn, insn_addr)) 382 return -EFAULT; 383 if ((insn & __INSN_LENGTH_MASK) == __INSN_LENGTH_32) { 384 *r_insn = insn; 385 return 0; 386 } 387 insn &= GENMASK(15, 0); 388 *r_insn = insn; 389 390 return 0; 391 } 392 } 393 #endif 394 395 union reg_data { 396 u8 data_bytes[8]; 397 ulong data_ulong; 398 u64 data_u64; 399 }; 400 401 static bool unaligned_ctl __read_mostly; 402 403 /* sysctl hooks */ 404 int unaligned_enabled __read_mostly = 1; /* Enabled by default */ 405 406 int handle_misaligned_load(struct pt_regs *regs) 407 { 408 union reg_data val; 409 unsigned long epc = regs->epc; 410 unsigned long insn; 411 unsigned long addr = regs->badaddr; 412 int i, fp = 0, shift = 0, len = 0; 413 414 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr); 415 416 #ifdef CONFIG_RISCV_PROBE_UNALIGNED_ACCESS 417 *this_cpu_ptr(&misaligned_access_speed) = RISCV_HWPROBE_MISALIGNED_EMULATED; 418 #endif 419 420 if (!unaligned_enabled) 421 return -1; 422 423 if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS)) 424 return -1; 425 426 if (get_insn(regs, epc, &insn)) 427 return -1; 428 429 regs->epc = 0; 430 431 if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) { 432 len = 4; 433 shift = 8 * (sizeof(unsigned long) - len); 434 #if defined(CONFIG_64BIT) 435 } else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) { 436 len = 8; 437 shift = 8 * (sizeof(unsigned long) - len); 438 } else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) { 439 len = 4; 440 #endif 441 } else if ((insn & INSN_MASK_FLD) == INSN_MATCH_FLD) { 442 fp = 1; 443 len = 8; 444 } else if ((insn & INSN_MASK_FLW) == INSN_MATCH_FLW) { 445 fp = 1; 446 len = 4; 447 } else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) { 448 len = 2; 449 shift = 8 * (sizeof(unsigned long) - len); 450 } else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) { 451 len = 2; 452 #if defined(CONFIG_64BIT) 453 } else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) { 454 len = 8; 455 shift = 8 * (sizeof(unsigned long) - len); 456 insn = RVC_RS2S(insn) << SH_RD; 457 } else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP && 458 ((insn >> SH_RD) & 0x1f)) { 459 len = 8; 460 shift = 8 * (sizeof(unsigned long) - len); 461 #endif 462 } else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) { 463 len = 4; 464 shift = 8 * (sizeof(unsigned long) - len); 465 insn = RVC_RS2S(insn) << SH_RD; 466 } else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP && 467 ((insn >> SH_RD) & 0x1f)) { 468 len = 4; 469 shift = 8 * (sizeof(unsigned long) - len); 470 } else if ((insn & INSN_MASK_C_FLD) == INSN_MATCH_C_FLD) { 471 fp = 1; 472 len = 8; 473 insn = RVC_RS2S(insn) << SH_RD; 474 } else if ((insn & INSN_MASK_C_FLDSP) == INSN_MATCH_C_FLDSP) { 475 fp = 1; 476 len = 8; 477 #if defined(CONFIG_32BIT) 478 } else if ((insn & INSN_MASK_C_FLW) == INSN_MATCH_C_FLW) { 479 fp = 1; 480 len = 4; 481 insn = RVC_RS2S(insn) << SH_RD; 482 } else if ((insn & INSN_MASK_C_FLWSP) == INSN_MATCH_C_FLWSP) { 483 fp = 1; 484 len = 4; 485 #endif 486 } else { 487 regs->epc = epc; 488 return -1; 489 } 490 491 if (!IS_ENABLED(CONFIG_FPU) && fp) 492 return -EOPNOTSUPP; 493 494 val.data_u64 = 0; 495 for (i = 0; i < len; i++) { 496 if (load_u8(regs, (void *)(addr + i), &val.data_bytes[i])) 497 return -1; 498 } 499 500 if (!fp) 501 SET_RD(insn, regs, val.data_ulong << shift >> shift); 502 else if (len == 8) 503 set_f64_rd(insn, regs, val.data_u64); 504 else 505 set_f32_rd(insn, regs, val.data_ulong); 506 507 regs->epc = epc + INSN_LEN(insn); 508 509 return 0; 510 } 511 512 int handle_misaligned_store(struct pt_regs *regs) 513 { 514 union reg_data val; 515 unsigned long epc = regs->epc; 516 unsigned long insn; 517 unsigned long addr = regs->badaddr; 518 int i, len = 0, fp = 0; 519 520 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr); 521 522 if (!unaligned_enabled) 523 return -1; 524 525 if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS)) 526 return -1; 527 528 if (get_insn(regs, epc, &insn)) 529 return -1; 530 531 regs->epc = 0; 532 533 val.data_ulong = GET_RS2(insn, regs); 534 535 if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) { 536 len = 4; 537 #if defined(CONFIG_64BIT) 538 } else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) { 539 len = 8; 540 #endif 541 } else if ((insn & INSN_MASK_FSD) == INSN_MATCH_FSD) { 542 fp = 1; 543 len = 8; 544 val.data_u64 = GET_F64_RS2(insn, regs); 545 } else if ((insn & INSN_MASK_FSW) == INSN_MATCH_FSW) { 546 fp = 1; 547 len = 4; 548 val.data_ulong = GET_F32_RS2(insn, regs); 549 } else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) { 550 len = 2; 551 #if defined(CONFIG_64BIT) 552 } else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) { 553 len = 8; 554 val.data_ulong = GET_RS2S(insn, regs); 555 } else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP) { 556 len = 8; 557 val.data_ulong = GET_RS2C(insn, regs); 558 #endif 559 } else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) { 560 len = 4; 561 val.data_ulong = GET_RS2S(insn, regs); 562 } else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP) { 563 len = 4; 564 val.data_ulong = GET_RS2C(insn, regs); 565 } else if ((insn & INSN_MASK_C_FSD) == INSN_MATCH_C_FSD) { 566 fp = 1; 567 len = 8; 568 val.data_u64 = GET_F64_RS2S(insn, regs); 569 } else if ((insn & INSN_MASK_C_FSDSP) == INSN_MATCH_C_FSDSP) { 570 fp = 1; 571 len = 8; 572 val.data_u64 = GET_F64_RS2C(insn, regs); 573 #if !defined(CONFIG_64BIT) 574 } else if ((insn & INSN_MASK_C_FSW) == INSN_MATCH_C_FSW) { 575 fp = 1; 576 len = 4; 577 val.data_ulong = GET_F32_RS2S(insn, regs); 578 } else if ((insn & INSN_MASK_C_FSWSP) == INSN_MATCH_C_FSWSP) { 579 fp = 1; 580 len = 4; 581 val.data_ulong = GET_F32_RS2C(insn, regs); 582 #endif 583 } else { 584 regs->epc = epc; 585 return -1; 586 } 587 588 if (!IS_ENABLED(CONFIG_FPU) && fp) 589 return -EOPNOTSUPP; 590 591 for (i = 0; i < len; i++) { 592 if (store_u8(regs, (void *)(addr + i), val.data_bytes[i])) 593 return -1; 594 } 595 596 regs->epc = epc + INSN_LEN(insn); 597 598 return 0; 599 } 600 601 static bool check_unaligned_access_emulated(int cpu) 602 { 603 long *mas_ptr = per_cpu_ptr(&misaligned_access_speed, cpu); 604 unsigned long tmp_var, tmp_val; 605 bool misaligned_emu_detected; 606 607 *mas_ptr = RISCV_HWPROBE_MISALIGNED_UNKNOWN; 608 609 __asm__ __volatile__ ( 610 " "REG_L" %[tmp], 1(%[ptr])\n" 611 : [tmp] "=r" (tmp_val) : [ptr] "r" (&tmp_var) : "memory"); 612 613 misaligned_emu_detected = (*mas_ptr == RISCV_HWPROBE_MISALIGNED_EMULATED); 614 /* 615 * If unaligned_ctl is already set, this means that we detected that all 616 * CPUS uses emulated misaligned access at boot time. If that changed 617 * when hotplugging the new cpu, this is something we don't handle. 618 */ 619 if (unlikely(unaligned_ctl && !misaligned_emu_detected)) { 620 pr_crit("CPU misaligned accesses non homogeneous (expected all emulated)\n"); 621 while (true) 622 cpu_relax(); 623 } 624 625 return misaligned_emu_detected; 626 } 627 628 bool check_unaligned_access_emulated_all_cpus(void) 629 { 630 int cpu; 631 632 /* 633 * We can only support PR_UNALIGN controls if all CPUs have misaligned 634 * accesses emulated since tasks requesting such control can run on any 635 * CPU. 636 */ 637 for_each_online_cpu(cpu) 638 if (!check_unaligned_access_emulated(cpu)) 639 return false; 640 641 unaligned_ctl = true; 642 return true; 643 } 644 645 bool unaligned_ctl_available(void) 646 { 647 return unaligned_ctl; 648 } 649