1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 Western Digital Corporation or its affiliates. 4 */ 5 #include <linux/kernel.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/module.h> 9 #include <linux/perf_event.h> 10 #include <linux/irq.h> 11 #include <linux/stringify.h> 12 13 #include <asm/processor.h> 14 #include <asm/ptrace.h> 15 #include <asm/csr.h> 16 #include <asm/entry-common.h> 17 #include <asm/hwprobe.h> 18 #include <asm/cpufeature.h> 19 20 #define INSN_MATCH_LB 0x3 21 #define INSN_MASK_LB 0x707f 22 #define INSN_MATCH_LH 0x1003 23 #define INSN_MASK_LH 0x707f 24 #define INSN_MATCH_LW 0x2003 25 #define INSN_MASK_LW 0x707f 26 #define INSN_MATCH_LD 0x3003 27 #define INSN_MASK_LD 0x707f 28 #define INSN_MATCH_LBU 0x4003 29 #define INSN_MASK_LBU 0x707f 30 #define INSN_MATCH_LHU 0x5003 31 #define INSN_MASK_LHU 0x707f 32 #define INSN_MATCH_LWU 0x6003 33 #define INSN_MASK_LWU 0x707f 34 #define INSN_MATCH_SB 0x23 35 #define INSN_MASK_SB 0x707f 36 #define INSN_MATCH_SH 0x1023 37 #define INSN_MASK_SH 0x707f 38 #define INSN_MATCH_SW 0x2023 39 #define INSN_MASK_SW 0x707f 40 #define INSN_MATCH_SD 0x3023 41 #define INSN_MASK_SD 0x707f 42 43 #define INSN_MATCH_FLW 0x2007 44 #define INSN_MASK_FLW 0x707f 45 #define INSN_MATCH_FLD 0x3007 46 #define INSN_MASK_FLD 0x707f 47 #define INSN_MATCH_FLQ 0x4007 48 #define INSN_MASK_FLQ 0x707f 49 #define INSN_MATCH_FSW 0x2027 50 #define INSN_MASK_FSW 0x707f 51 #define INSN_MATCH_FSD 0x3027 52 #define INSN_MASK_FSD 0x707f 53 #define INSN_MATCH_FSQ 0x4027 54 #define INSN_MASK_FSQ 0x707f 55 56 #define INSN_MATCH_C_LD 0x6000 57 #define INSN_MASK_C_LD 0xe003 58 #define INSN_MATCH_C_SD 0xe000 59 #define INSN_MASK_C_SD 0xe003 60 #define INSN_MATCH_C_LW 0x4000 61 #define INSN_MASK_C_LW 0xe003 62 #define INSN_MATCH_C_SW 0xc000 63 #define INSN_MASK_C_SW 0xe003 64 #define INSN_MATCH_C_LDSP 0x6002 65 #define INSN_MASK_C_LDSP 0xe003 66 #define INSN_MATCH_C_SDSP 0xe002 67 #define INSN_MASK_C_SDSP 0xe003 68 #define INSN_MATCH_C_LWSP 0x4002 69 #define INSN_MASK_C_LWSP 0xe003 70 #define INSN_MATCH_C_SWSP 0xc002 71 #define INSN_MASK_C_SWSP 0xe003 72 73 #define INSN_MATCH_C_FLD 0x2000 74 #define INSN_MASK_C_FLD 0xe003 75 #define INSN_MATCH_C_FLW 0x6000 76 #define INSN_MASK_C_FLW 0xe003 77 #define INSN_MATCH_C_FSD 0xa000 78 #define INSN_MASK_C_FSD 0xe003 79 #define INSN_MATCH_C_FSW 0xe000 80 #define INSN_MASK_C_FSW 0xe003 81 #define INSN_MATCH_C_FLDSP 0x2002 82 #define INSN_MASK_C_FLDSP 0xe003 83 #define INSN_MATCH_C_FSDSP 0xa002 84 #define INSN_MASK_C_FSDSP 0xe003 85 #define INSN_MATCH_C_FLWSP 0x6002 86 #define INSN_MASK_C_FLWSP 0xe003 87 #define INSN_MATCH_C_FSWSP 0xe002 88 #define INSN_MASK_C_FSWSP 0xe003 89 90 #define INSN_LEN(insn) ((((insn) & 0x3) < 0x3) ? 2 : 4) 91 92 #if defined(CONFIG_64BIT) 93 #define LOG_REGBYTES 3 94 #define XLEN 64 95 #else 96 #define LOG_REGBYTES 2 97 #define XLEN 32 98 #endif 99 #define REGBYTES (1 << LOG_REGBYTES) 100 #define XLEN_MINUS_16 ((XLEN) - 16) 101 102 #define SH_RD 7 103 #define SH_RS1 15 104 #define SH_RS2 20 105 #define SH_RS2C 2 106 107 #define RV_X(x, s, n) (((x) >> (s)) & ((1 << (n)) - 1)) 108 #define RVC_LW_IMM(x) ((RV_X(x, 6, 1) << 2) | \ 109 (RV_X(x, 10, 3) << 3) | \ 110 (RV_X(x, 5, 1) << 6)) 111 #define RVC_LD_IMM(x) ((RV_X(x, 10, 3) << 3) | \ 112 (RV_X(x, 5, 2) << 6)) 113 #define RVC_LWSP_IMM(x) ((RV_X(x, 4, 3) << 2) | \ 114 (RV_X(x, 12, 1) << 5) | \ 115 (RV_X(x, 2, 2) << 6)) 116 #define RVC_LDSP_IMM(x) ((RV_X(x, 5, 2) << 3) | \ 117 (RV_X(x, 12, 1) << 5) | \ 118 (RV_X(x, 2, 3) << 6)) 119 #define RVC_SWSP_IMM(x) ((RV_X(x, 9, 4) << 2) | \ 120 (RV_X(x, 7, 2) << 6)) 121 #define RVC_SDSP_IMM(x) ((RV_X(x, 10, 3) << 3) | \ 122 (RV_X(x, 7, 3) << 6)) 123 #define RVC_RS1S(insn) (8 + RV_X(insn, SH_RD, 3)) 124 #define RVC_RS2S(insn) (8 + RV_X(insn, SH_RS2C, 3)) 125 #define RVC_RS2(insn) RV_X(insn, SH_RS2C, 5) 126 127 #define SHIFT_RIGHT(x, y) \ 128 ((y) < 0 ? ((x) << -(y)) : ((x) >> (y))) 129 130 #define REG_MASK \ 131 ((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES)) 132 133 #define REG_OFFSET(insn, pos) \ 134 (SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK) 135 136 #define REG_PTR(insn, pos, regs) \ 137 (ulong *)((ulong)(regs) + REG_OFFSET(insn, pos)) 138 139 #define GET_RM(insn) (((insn) >> 12) & 7) 140 141 #define GET_RS1(insn, regs) (*REG_PTR(insn, SH_RS1, regs)) 142 #define GET_RS2(insn, regs) (*REG_PTR(insn, SH_RS2, regs)) 143 #define GET_RS1S(insn, regs) (*REG_PTR(RVC_RS1S(insn), 0, regs)) 144 #define GET_RS2S(insn, regs) (*REG_PTR(RVC_RS2S(insn), 0, regs)) 145 #define GET_RS2C(insn, regs) (*REG_PTR(insn, SH_RS2C, regs)) 146 #define GET_SP(regs) (*REG_PTR(2, 0, regs)) 147 #define SET_RD(insn, regs, val) (*REG_PTR(insn, SH_RD, regs) = (val)) 148 #define IMM_I(insn) ((s32)(insn) >> 20) 149 #define IMM_S(insn) (((s32)(insn) >> 25 << 5) | \ 150 (s32)(((insn) >> 7) & 0x1f)) 151 #define MASK_FUNCT3 0x7000 152 153 #define GET_PRECISION(insn) (((insn) >> 25) & 3) 154 #define GET_RM(insn) (((insn) >> 12) & 7) 155 #define PRECISION_S 0 156 #define PRECISION_D 1 157 158 #ifdef CONFIG_FPU 159 160 #define FP_GET_RD(insn) (insn >> 7 & 0x1F) 161 162 extern void put_f32_reg(unsigned long fp_reg, unsigned long value); 163 164 static int set_f32_rd(unsigned long insn, struct pt_regs *regs, 165 unsigned long val) 166 { 167 unsigned long fp_reg = FP_GET_RD(insn); 168 169 put_f32_reg(fp_reg, val); 170 regs->status |= SR_FS_DIRTY; 171 172 return 0; 173 } 174 175 extern void put_f64_reg(unsigned long fp_reg, unsigned long value); 176 177 static int set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val) 178 { 179 unsigned long fp_reg = FP_GET_RD(insn); 180 unsigned long value; 181 182 #if __riscv_xlen == 32 183 value = (unsigned long) &val; 184 #else 185 value = val; 186 #endif 187 put_f64_reg(fp_reg, value); 188 regs->status |= SR_FS_DIRTY; 189 190 return 0; 191 } 192 193 #if __riscv_xlen == 32 194 extern void get_f64_reg(unsigned long fp_reg, u64 *value); 195 196 static u64 get_f64_rs(unsigned long insn, u8 fp_reg_offset, 197 struct pt_regs *regs) 198 { 199 unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F; 200 u64 val; 201 202 get_f64_reg(fp_reg, &val); 203 regs->status |= SR_FS_DIRTY; 204 205 return val; 206 } 207 #else 208 209 extern unsigned long get_f64_reg(unsigned long fp_reg); 210 211 static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset, 212 struct pt_regs *regs) 213 { 214 unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F; 215 unsigned long val; 216 217 val = get_f64_reg(fp_reg); 218 regs->status |= SR_FS_DIRTY; 219 220 return val; 221 } 222 223 #endif 224 225 extern unsigned long get_f32_reg(unsigned long fp_reg); 226 227 static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset, 228 struct pt_regs *regs) 229 { 230 unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F; 231 unsigned long val; 232 233 val = get_f32_reg(fp_reg); 234 regs->status |= SR_FS_DIRTY; 235 236 return val; 237 } 238 239 #else /* CONFIG_FPU */ 240 static void set_f32_rd(unsigned long insn, struct pt_regs *regs, 241 unsigned long val) {} 242 243 static void set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val) {} 244 245 static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset, 246 struct pt_regs *regs) 247 { 248 return 0; 249 } 250 251 static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset, 252 struct pt_regs *regs) 253 { 254 return 0; 255 } 256 257 #endif 258 259 #define GET_F64_RS2(insn, regs) (get_f64_rs(insn, 20, regs)) 260 #define GET_F64_RS2C(insn, regs) (get_f64_rs(insn, 2, regs)) 261 #define GET_F64_RS2S(insn, regs) (get_f64_rs(RVC_RS2S(insn), 0, regs)) 262 263 #define GET_F32_RS2(insn, regs) (get_f32_rs(insn, 20, regs)) 264 #define GET_F32_RS2C(insn, regs) (get_f32_rs(insn, 2, regs)) 265 #define GET_F32_RS2S(insn, regs) (get_f32_rs(RVC_RS2S(insn), 0, regs)) 266 267 #define __read_insn(regs, insn, insn_addr, type) \ 268 ({ \ 269 int __ret; \ 270 \ 271 if (user_mode(regs)) { \ 272 __ret = __get_user(insn, (type __user *) insn_addr); \ 273 } else { \ 274 insn = *(type *)insn_addr; \ 275 __ret = 0; \ 276 } \ 277 \ 278 __ret; \ 279 }) 280 281 static inline int get_insn(struct pt_regs *regs, ulong epc, ulong *r_insn) 282 { 283 ulong insn = 0; 284 285 if (epc & 0x2) { 286 ulong tmp = 0; 287 288 if (__read_insn(regs, insn, epc, u16)) 289 return -EFAULT; 290 /* __get_user() uses regular "lw" which sign extend the loaded 291 * value make sure to clear higher order bits in case we "or" it 292 * below with the upper 16 bits half. 293 */ 294 insn &= GENMASK(15, 0); 295 if ((insn & __INSN_LENGTH_MASK) != __INSN_LENGTH_32) { 296 *r_insn = insn; 297 return 0; 298 } 299 epc += sizeof(u16); 300 if (__read_insn(regs, tmp, epc, u16)) 301 return -EFAULT; 302 *r_insn = (tmp << 16) | insn; 303 304 return 0; 305 } else { 306 if (__read_insn(regs, insn, epc, u32)) 307 return -EFAULT; 308 if ((insn & __INSN_LENGTH_MASK) == __INSN_LENGTH_32) { 309 *r_insn = insn; 310 return 0; 311 } 312 insn &= GENMASK(15, 0); 313 *r_insn = insn; 314 315 return 0; 316 } 317 } 318 319 union reg_data { 320 u8 data_bytes[8]; 321 ulong data_ulong; 322 u64 data_u64; 323 }; 324 325 static bool unaligned_ctl __read_mostly; 326 327 /* sysctl hooks */ 328 int unaligned_enabled __read_mostly = 1; /* Enabled by default */ 329 330 int handle_misaligned_load(struct pt_regs *regs) 331 { 332 union reg_data val; 333 unsigned long epc = regs->epc; 334 unsigned long insn; 335 unsigned long addr = regs->badaddr; 336 int fp = 0, shift = 0, len = 0; 337 338 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr); 339 340 #ifdef CONFIG_RISCV_PROBE_UNALIGNED_ACCESS 341 *this_cpu_ptr(&misaligned_access_speed) = RISCV_HWPROBE_MISALIGNED_SCALAR_EMULATED; 342 #endif 343 344 if (!unaligned_enabled) 345 return -1; 346 347 if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS)) 348 return -1; 349 350 if (get_insn(regs, epc, &insn)) 351 return -1; 352 353 regs->epc = 0; 354 355 if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) { 356 len = 4; 357 shift = 8 * (sizeof(unsigned long) - len); 358 #if defined(CONFIG_64BIT) 359 } else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) { 360 len = 8; 361 shift = 8 * (sizeof(unsigned long) - len); 362 } else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) { 363 len = 4; 364 #endif 365 } else if ((insn & INSN_MASK_FLD) == INSN_MATCH_FLD) { 366 fp = 1; 367 len = 8; 368 } else if ((insn & INSN_MASK_FLW) == INSN_MATCH_FLW) { 369 fp = 1; 370 len = 4; 371 } else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) { 372 len = 2; 373 shift = 8 * (sizeof(unsigned long) - len); 374 } else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) { 375 len = 2; 376 #if defined(CONFIG_64BIT) 377 } else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) { 378 len = 8; 379 shift = 8 * (sizeof(unsigned long) - len); 380 insn = RVC_RS2S(insn) << SH_RD; 381 } else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP && 382 ((insn >> SH_RD) & 0x1f)) { 383 len = 8; 384 shift = 8 * (sizeof(unsigned long) - len); 385 #endif 386 } else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) { 387 len = 4; 388 shift = 8 * (sizeof(unsigned long) - len); 389 insn = RVC_RS2S(insn) << SH_RD; 390 } else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP && 391 ((insn >> SH_RD) & 0x1f)) { 392 len = 4; 393 shift = 8 * (sizeof(unsigned long) - len); 394 } else if ((insn & INSN_MASK_C_FLD) == INSN_MATCH_C_FLD) { 395 fp = 1; 396 len = 8; 397 insn = RVC_RS2S(insn) << SH_RD; 398 } else if ((insn & INSN_MASK_C_FLDSP) == INSN_MATCH_C_FLDSP) { 399 fp = 1; 400 len = 8; 401 #if defined(CONFIG_32BIT) 402 } else if ((insn & INSN_MASK_C_FLW) == INSN_MATCH_C_FLW) { 403 fp = 1; 404 len = 4; 405 insn = RVC_RS2S(insn) << SH_RD; 406 } else if ((insn & INSN_MASK_C_FLWSP) == INSN_MATCH_C_FLWSP) { 407 fp = 1; 408 len = 4; 409 #endif 410 } else { 411 regs->epc = epc; 412 return -1; 413 } 414 415 if (!IS_ENABLED(CONFIG_FPU) && fp) 416 return -EOPNOTSUPP; 417 418 val.data_u64 = 0; 419 if (user_mode(regs)) { 420 if (copy_from_user(&val, (u8 __user *)addr, len)) 421 return -1; 422 } else { 423 memcpy(&val, (u8 *)addr, len); 424 } 425 426 if (!fp) 427 SET_RD(insn, regs, val.data_ulong << shift >> shift); 428 else if (len == 8) 429 set_f64_rd(insn, regs, val.data_u64); 430 else 431 set_f32_rd(insn, regs, val.data_ulong); 432 433 regs->epc = epc + INSN_LEN(insn); 434 435 return 0; 436 } 437 438 int handle_misaligned_store(struct pt_regs *regs) 439 { 440 union reg_data val; 441 unsigned long epc = regs->epc; 442 unsigned long insn; 443 unsigned long addr = regs->badaddr; 444 int len = 0, fp = 0; 445 446 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr); 447 448 if (!unaligned_enabled) 449 return -1; 450 451 if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS)) 452 return -1; 453 454 if (get_insn(regs, epc, &insn)) 455 return -1; 456 457 regs->epc = 0; 458 459 val.data_ulong = GET_RS2(insn, regs); 460 461 if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) { 462 len = 4; 463 #if defined(CONFIG_64BIT) 464 } else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) { 465 len = 8; 466 #endif 467 } else if ((insn & INSN_MASK_FSD) == INSN_MATCH_FSD) { 468 fp = 1; 469 len = 8; 470 val.data_u64 = GET_F64_RS2(insn, regs); 471 } else if ((insn & INSN_MASK_FSW) == INSN_MATCH_FSW) { 472 fp = 1; 473 len = 4; 474 val.data_ulong = GET_F32_RS2(insn, regs); 475 } else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) { 476 len = 2; 477 #if defined(CONFIG_64BIT) 478 } else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) { 479 len = 8; 480 val.data_ulong = GET_RS2S(insn, regs); 481 } else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP) { 482 len = 8; 483 val.data_ulong = GET_RS2C(insn, regs); 484 #endif 485 } else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) { 486 len = 4; 487 val.data_ulong = GET_RS2S(insn, regs); 488 } else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP) { 489 len = 4; 490 val.data_ulong = GET_RS2C(insn, regs); 491 } else if ((insn & INSN_MASK_C_FSD) == INSN_MATCH_C_FSD) { 492 fp = 1; 493 len = 8; 494 val.data_u64 = GET_F64_RS2S(insn, regs); 495 } else if ((insn & INSN_MASK_C_FSDSP) == INSN_MATCH_C_FSDSP) { 496 fp = 1; 497 len = 8; 498 val.data_u64 = GET_F64_RS2C(insn, regs); 499 #if !defined(CONFIG_64BIT) 500 } else if ((insn & INSN_MASK_C_FSW) == INSN_MATCH_C_FSW) { 501 fp = 1; 502 len = 4; 503 val.data_ulong = GET_F32_RS2S(insn, regs); 504 } else if ((insn & INSN_MASK_C_FSWSP) == INSN_MATCH_C_FSWSP) { 505 fp = 1; 506 len = 4; 507 val.data_ulong = GET_F32_RS2C(insn, regs); 508 #endif 509 } else { 510 regs->epc = epc; 511 return -1; 512 } 513 514 if (!IS_ENABLED(CONFIG_FPU) && fp) 515 return -EOPNOTSUPP; 516 517 if (user_mode(regs)) { 518 if (copy_to_user((u8 __user *)addr, &val, len)) 519 return -1; 520 } else { 521 memcpy((u8 *)addr, &val, len); 522 } 523 524 regs->epc = epc + INSN_LEN(insn); 525 526 return 0; 527 } 528 529 static bool check_unaligned_access_emulated(int cpu) 530 { 531 long *mas_ptr = per_cpu_ptr(&misaligned_access_speed, cpu); 532 unsigned long tmp_var, tmp_val; 533 bool misaligned_emu_detected; 534 535 *mas_ptr = RISCV_HWPROBE_MISALIGNED_SCALAR_UNKNOWN; 536 537 __asm__ __volatile__ ( 538 " "REG_L" %[tmp], 1(%[ptr])\n" 539 : [tmp] "=r" (tmp_val) : [ptr] "r" (&tmp_var) : "memory"); 540 541 misaligned_emu_detected = (*mas_ptr == RISCV_HWPROBE_MISALIGNED_SCALAR_EMULATED); 542 /* 543 * If unaligned_ctl is already set, this means that we detected that all 544 * CPUS uses emulated misaligned access at boot time. If that changed 545 * when hotplugging the new cpu, this is something we don't handle. 546 */ 547 if (unlikely(unaligned_ctl && !misaligned_emu_detected)) { 548 pr_crit("CPU misaligned accesses non homogeneous (expected all emulated)\n"); 549 while (true) 550 cpu_relax(); 551 } 552 553 return misaligned_emu_detected; 554 } 555 556 bool check_unaligned_access_emulated_all_cpus(void) 557 { 558 int cpu; 559 560 /* 561 * We can only support PR_UNALIGN controls if all CPUs have misaligned 562 * accesses emulated since tasks requesting such control can run on any 563 * CPU. 564 */ 565 for_each_online_cpu(cpu) 566 if (!check_unaligned_access_emulated(cpu)) 567 return false; 568 569 unaligned_ctl = true; 570 return true; 571 } 572 573 bool unaligned_ctl_available(void) 574 { 575 return unaligned_ctl; 576 } 577