1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 SiFive 4 */ 5 6 #include <linux/ptrace.h> 7 #include <linux/kdebug.h> 8 #include <linux/bug.h> 9 #include <linux/kgdb.h> 10 #include <linux/irqflags.h> 11 #include <linux/string.h> 12 #include <asm/cacheflush.h> 13 #include <asm/gdb_xml.h> 14 #include <asm/insn.h> 15 16 enum { 17 NOT_KGDB_BREAK = 0, 18 KGDB_SW_BREAK, 19 KGDB_COMPILED_BREAK, 20 KGDB_SW_SINGLE_STEP 21 }; 22 23 static unsigned long stepped_address; 24 static unsigned int stepped_opcode; 25 26 static int decode_register_index(unsigned long opcode, int offset) 27 { 28 return (opcode >> offset) & 0x1F; 29 } 30 31 static int decode_register_index_short(unsigned long opcode, int offset) 32 { 33 return ((opcode >> offset) & 0x7) + 8; 34 } 35 36 /* Calculate the new address for after a step */ 37 static int get_step_address(struct pt_regs *regs, unsigned long *next_addr) 38 { 39 unsigned long pc = regs->epc; 40 unsigned long *regs_ptr = (unsigned long *)regs; 41 unsigned int rs1_num, rs2_num; 42 int op_code; 43 44 if (get_kernel_nofault(op_code, (void *)pc)) 45 return -EINVAL; 46 if ((op_code & __INSN_LENGTH_MASK) != __INSN_LENGTH_GE_32) { 47 if (riscv_insn_is_c_jalr(op_code) || 48 riscv_insn_is_c_jr(op_code)) { 49 rs1_num = decode_register_index(op_code, RVC_C2_RS1_OPOFF); 50 *next_addr = regs_ptr[rs1_num]; 51 } else if (riscv_insn_is_c_j(op_code) || 52 riscv_insn_is_c_jal(op_code)) { 53 *next_addr = RVC_EXTRACT_JTYPE_IMM(op_code) + pc; 54 } else if (riscv_insn_is_c_beqz(op_code)) { 55 rs1_num = decode_register_index_short(op_code, 56 RVC_C1_RS1_OPOFF); 57 if (!rs1_num || regs_ptr[rs1_num] == 0) 58 *next_addr = RVC_EXTRACT_BTYPE_IMM(op_code) + pc; 59 else 60 *next_addr = pc + 2; 61 } else if (riscv_insn_is_c_bnez(op_code)) { 62 rs1_num = 63 decode_register_index_short(op_code, RVC_C1_RS1_OPOFF); 64 if (rs1_num && regs_ptr[rs1_num] != 0) 65 *next_addr = RVC_EXTRACT_BTYPE_IMM(op_code) + pc; 66 else 67 *next_addr = pc + 2; 68 } else { 69 *next_addr = pc + 2; 70 } 71 } else { 72 if ((op_code & __INSN_OPCODE_MASK) == __INSN_BRANCH_OPCODE) { 73 bool result = false; 74 long imm = RV_EXTRACT_BTYPE_IMM(op_code); 75 unsigned long rs1_val = 0, rs2_val = 0; 76 77 rs1_num = decode_register_index(op_code, RVG_RS1_OPOFF); 78 rs2_num = decode_register_index(op_code, RVG_RS2_OPOFF); 79 if (rs1_num) 80 rs1_val = regs_ptr[rs1_num]; 81 if (rs2_num) 82 rs2_val = regs_ptr[rs2_num]; 83 84 if (riscv_insn_is_beq(op_code)) 85 result = (rs1_val == rs2_val) ? true : false; 86 else if (riscv_insn_is_bne(op_code)) 87 result = (rs1_val != rs2_val) ? true : false; 88 else if (riscv_insn_is_blt(op_code)) 89 result = 90 ((long)rs1_val < 91 (long)rs2_val) ? true : false; 92 else if (riscv_insn_is_bge(op_code)) 93 result = 94 ((long)rs1_val >= 95 (long)rs2_val) ? true : false; 96 else if (riscv_insn_is_bltu(op_code)) 97 result = (rs1_val < rs2_val) ? true : false; 98 else if (riscv_insn_is_bgeu(op_code)) 99 result = (rs1_val >= rs2_val) ? true : false; 100 if (result) 101 *next_addr = imm + pc; 102 else 103 *next_addr = pc + 4; 104 } else if (riscv_insn_is_jal(op_code)) { 105 *next_addr = RV_EXTRACT_JTYPE_IMM(op_code) + pc; 106 } else if (riscv_insn_is_jalr(op_code)) { 107 rs1_num = decode_register_index(op_code, RVG_RS1_OPOFF); 108 if (rs1_num) 109 *next_addr = ((unsigned long *)regs)[rs1_num]; 110 *next_addr += RV_EXTRACT_ITYPE_IMM(op_code); 111 } else if (riscv_insn_is_sret(op_code)) { 112 *next_addr = pc; 113 } else { 114 *next_addr = pc + 4; 115 } 116 } 117 return 0; 118 } 119 120 static int do_single_step(struct pt_regs *regs) 121 { 122 /* Determine where the target instruction will send us to */ 123 unsigned long addr = 0; 124 int error = get_step_address(regs, &addr); 125 126 if (error) 127 return error; 128 129 /* Store the op code in the stepped address */ 130 error = get_kernel_nofault(stepped_opcode, (void *)addr); 131 if (error) 132 return error; 133 134 stepped_address = addr; 135 136 /* Replace the op code with the break instruction */ 137 error = copy_to_kernel_nofault((void *)stepped_address, 138 arch_kgdb_ops.gdb_bpt_instr, 139 BREAK_INSTR_SIZE); 140 /* Flush and return */ 141 if (!error) { 142 flush_icache_range(addr, addr + BREAK_INSTR_SIZE); 143 kgdb_single_step = 1; 144 atomic_set(&kgdb_cpu_doing_single_step, 145 raw_smp_processor_id()); 146 } else { 147 stepped_address = 0; 148 stepped_opcode = 0; 149 } 150 return error; 151 } 152 153 /* Undo a single step */ 154 static void undo_single_step(struct pt_regs *regs) 155 { 156 if (stepped_opcode != 0) { 157 copy_to_kernel_nofault((void *)stepped_address, 158 (void *)&stepped_opcode, BREAK_INSTR_SIZE); 159 flush_icache_range(stepped_address, 160 stepped_address + BREAK_INSTR_SIZE); 161 } 162 stepped_address = 0; 163 stepped_opcode = 0; 164 kgdb_single_step = 0; 165 atomic_set(&kgdb_cpu_doing_single_step, -1); 166 } 167 168 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = { 169 {DBG_REG_ZERO, GDB_SIZEOF_REG, -1}, 170 {DBG_REG_RA, GDB_SIZEOF_REG, offsetof(struct pt_regs, ra)}, 171 {DBG_REG_SP, GDB_SIZEOF_REG, offsetof(struct pt_regs, sp)}, 172 {DBG_REG_GP, GDB_SIZEOF_REG, offsetof(struct pt_regs, gp)}, 173 {DBG_REG_TP, GDB_SIZEOF_REG, offsetof(struct pt_regs, tp)}, 174 {DBG_REG_T0, GDB_SIZEOF_REG, offsetof(struct pt_regs, t0)}, 175 {DBG_REG_T1, GDB_SIZEOF_REG, offsetof(struct pt_regs, t1)}, 176 {DBG_REG_T2, GDB_SIZEOF_REG, offsetof(struct pt_regs, t2)}, 177 {DBG_REG_FP, GDB_SIZEOF_REG, offsetof(struct pt_regs, s0)}, 178 {DBG_REG_S1, GDB_SIZEOF_REG, offsetof(struct pt_regs, a1)}, 179 {DBG_REG_A0, GDB_SIZEOF_REG, offsetof(struct pt_regs, a0)}, 180 {DBG_REG_A1, GDB_SIZEOF_REG, offsetof(struct pt_regs, a1)}, 181 {DBG_REG_A2, GDB_SIZEOF_REG, offsetof(struct pt_regs, a2)}, 182 {DBG_REG_A3, GDB_SIZEOF_REG, offsetof(struct pt_regs, a3)}, 183 {DBG_REG_A4, GDB_SIZEOF_REG, offsetof(struct pt_regs, a4)}, 184 {DBG_REG_A5, GDB_SIZEOF_REG, offsetof(struct pt_regs, a5)}, 185 {DBG_REG_A6, GDB_SIZEOF_REG, offsetof(struct pt_regs, a6)}, 186 {DBG_REG_A7, GDB_SIZEOF_REG, offsetof(struct pt_regs, a7)}, 187 {DBG_REG_S2, GDB_SIZEOF_REG, offsetof(struct pt_regs, s2)}, 188 {DBG_REG_S3, GDB_SIZEOF_REG, offsetof(struct pt_regs, s3)}, 189 {DBG_REG_S4, GDB_SIZEOF_REG, offsetof(struct pt_regs, s4)}, 190 {DBG_REG_S5, GDB_SIZEOF_REG, offsetof(struct pt_regs, s5)}, 191 {DBG_REG_S6, GDB_SIZEOF_REG, offsetof(struct pt_regs, s6)}, 192 {DBG_REG_S7, GDB_SIZEOF_REG, offsetof(struct pt_regs, s7)}, 193 {DBG_REG_S8, GDB_SIZEOF_REG, offsetof(struct pt_regs, s8)}, 194 {DBG_REG_S9, GDB_SIZEOF_REG, offsetof(struct pt_regs, s9)}, 195 {DBG_REG_S10, GDB_SIZEOF_REG, offsetof(struct pt_regs, s10)}, 196 {DBG_REG_S11, GDB_SIZEOF_REG, offsetof(struct pt_regs, s11)}, 197 {DBG_REG_T3, GDB_SIZEOF_REG, offsetof(struct pt_regs, t3)}, 198 {DBG_REG_T4, GDB_SIZEOF_REG, offsetof(struct pt_regs, t4)}, 199 {DBG_REG_T5, GDB_SIZEOF_REG, offsetof(struct pt_regs, t5)}, 200 {DBG_REG_T6, GDB_SIZEOF_REG, offsetof(struct pt_regs, t6)}, 201 {DBG_REG_EPC, GDB_SIZEOF_REG, offsetof(struct pt_regs, epc)}, 202 {DBG_REG_STATUS, GDB_SIZEOF_REG, offsetof(struct pt_regs, status)}, 203 {DBG_REG_BADADDR, GDB_SIZEOF_REG, offsetof(struct pt_regs, badaddr)}, 204 {DBG_REG_CAUSE, GDB_SIZEOF_REG, offsetof(struct pt_regs, cause)}, 205 }; 206 207 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs) 208 { 209 if (regno >= DBG_MAX_REG_NUM || regno < 0) 210 return NULL; 211 212 if (dbg_reg_def[regno].offset != -1) 213 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset, 214 dbg_reg_def[regno].size); 215 else 216 memset(mem, 0, dbg_reg_def[regno].size); 217 return dbg_reg_def[regno].name; 218 } 219 220 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs) 221 { 222 if (regno >= DBG_MAX_REG_NUM || regno < 0) 223 return -EINVAL; 224 225 if (dbg_reg_def[regno].offset != -1) 226 memcpy((void *)regs + dbg_reg_def[regno].offset, mem, 227 dbg_reg_def[regno].size); 228 return 0; 229 } 230 231 void 232 sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *task) 233 { 234 /* Initialize to zero */ 235 memset((char *)gdb_regs, 0, NUMREGBYTES); 236 237 gdb_regs[DBG_REG_SP_OFF] = task->thread.sp; 238 gdb_regs[DBG_REG_FP_OFF] = task->thread.s[0]; 239 gdb_regs[DBG_REG_S1_OFF] = task->thread.s[1]; 240 gdb_regs[DBG_REG_S2_OFF] = task->thread.s[2]; 241 gdb_regs[DBG_REG_S3_OFF] = task->thread.s[3]; 242 gdb_regs[DBG_REG_S4_OFF] = task->thread.s[4]; 243 gdb_regs[DBG_REG_S5_OFF] = task->thread.s[5]; 244 gdb_regs[DBG_REG_S6_OFF] = task->thread.s[6]; 245 gdb_regs[DBG_REG_S7_OFF] = task->thread.s[7]; 246 gdb_regs[DBG_REG_S8_OFF] = task->thread.s[8]; 247 gdb_regs[DBG_REG_S9_OFF] = task->thread.s[10]; 248 gdb_regs[DBG_REG_S10_OFF] = task->thread.s[11]; 249 gdb_regs[DBG_REG_EPC_OFF] = task->thread.ra; 250 } 251 252 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc) 253 { 254 regs->epc = pc; 255 } 256 257 void kgdb_arch_handle_qxfer_pkt(char *remcom_in_buffer, 258 char *remcom_out_buffer) 259 { 260 if (!strncmp(remcom_in_buffer, gdb_xfer_read_target, 261 sizeof(gdb_xfer_read_target))) 262 strcpy(remcom_out_buffer, riscv_gdb_stub_target_desc); 263 else if (!strncmp(remcom_in_buffer, gdb_xfer_read_cpuxml, 264 sizeof(gdb_xfer_read_cpuxml))) 265 strcpy(remcom_out_buffer, riscv_gdb_stub_cpuxml); 266 } 267 268 static inline void kgdb_arch_update_addr(struct pt_regs *regs, 269 char *remcom_in_buffer) 270 { 271 unsigned long addr; 272 char *ptr; 273 274 ptr = &remcom_in_buffer[1]; 275 if (kgdb_hex2long(&ptr, &addr)) 276 regs->epc = addr; 277 } 278 279 int kgdb_arch_handle_exception(int vector, int signo, int err_code, 280 char *remcom_in_buffer, char *remcom_out_buffer, 281 struct pt_regs *regs) 282 { 283 int err = 0; 284 285 undo_single_step(regs); 286 287 switch (remcom_in_buffer[0]) { 288 case 'c': 289 case 'D': 290 case 'k': 291 if (remcom_in_buffer[0] == 'c') 292 kgdb_arch_update_addr(regs, remcom_in_buffer); 293 break; 294 case 's': 295 kgdb_arch_update_addr(regs, remcom_in_buffer); 296 err = do_single_step(regs); 297 break; 298 default: 299 err = -1; 300 } 301 return err; 302 } 303 304 static int kgdb_riscv_kgdbbreak(unsigned long addr) 305 { 306 if (stepped_address == addr) 307 return KGDB_SW_SINGLE_STEP; 308 if (atomic_read(&kgdb_setting_breakpoint)) 309 if (addr == (unsigned long)&kgdb_compiled_break) 310 return KGDB_COMPILED_BREAK; 311 312 return kgdb_has_hit_break(addr); 313 } 314 315 static int kgdb_riscv_notify(struct notifier_block *self, unsigned long cmd, 316 void *ptr) 317 { 318 struct die_args *args = (struct die_args *)ptr; 319 struct pt_regs *regs = args->regs; 320 unsigned long flags; 321 int type; 322 323 if (user_mode(regs)) 324 return NOTIFY_DONE; 325 326 type = kgdb_riscv_kgdbbreak(regs->epc); 327 if (type == NOT_KGDB_BREAK && cmd == DIE_TRAP) 328 return NOTIFY_DONE; 329 330 local_irq_save(flags); 331 332 if (kgdb_handle_exception(type == KGDB_SW_SINGLE_STEP ? 0 : 1, 333 args->signr, cmd, regs)) 334 return NOTIFY_DONE; 335 336 if (type == KGDB_COMPILED_BREAK) 337 regs->epc += 4; 338 339 local_irq_restore(flags); 340 341 return NOTIFY_STOP; 342 } 343 344 static struct notifier_block kgdb_notifier = { 345 .notifier_call = kgdb_riscv_notify, 346 }; 347 348 int kgdb_arch_init(void) 349 { 350 register_die_notifier(&kgdb_notifier); 351 352 return 0; 353 } 354 355 void kgdb_arch_exit(void) 356 { 357 unregister_die_notifier(&kgdb_notifier); 358 } 359 360 /* 361 * Global data 362 */ 363 #ifdef CONFIG_RISCV_ISA_C 364 const struct kgdb_arch arch_kgdb_ops = { 365 .gdb_bpt_instr = {0x02, 0x90}, /* c.ebreak */ 366 }; 367 #else 368 const struct kgdb_arch arch_kgdb_ops = { 369 .gdb_bpt_instr = {0x73, 0x00, 0x10, 0x00}, /* ebreak */ 370 }; 371 #endif 372