xref: /linux/arch/riscv/kernel/elf_kexec.c (revision 156010ed9c2ac1e9df6c11b1f688cf8a6e0152e6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Load ELF vmlinux file for the kexec_file_load syscall.
4  *
5  * Copyright (C) 2021 Huawei Technologies Co, Ltd.
6  *
7  * Author: Liao Chang (liaochang1@huawei.com)
8  *
9  * Based on kexec-tools' kexec-elf-riscv.c, heavily modified
10  * for kernel.
11  */
12 
13 #define pr_fmt(fmt)	"kexec_image: " fmt
14 
15 #include <linux/elf.h>
16 #include <linux/kexec.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/libfdt.h>
20 #include <linux/types.h>
21 #include <linux/memblock.h>
22 #include <asm/setup.h>
23 
24 int arch_kimage_file_post_load_cleanup(struct kimage *image)
25 {
26 	kvfree(image->arch.fdt);
27 	image->arch.fdt = NULL;
28 
29 	vfree(image->elf_headers);
30 	image->elf_headers = NULL;
31 	image->elf_headers_sz = 0;
32 
33 	return kexec_image_post_load_cleanup_default(image);
34 }
35 
36 static int riscv_kexec_elf_load(struct kimage *image, struct elfhdr *ehdr,
37 				struct kexec_elf_info *elf_info, unsigned long old_pbase,
38 				unsigned long new_pbase)
39 {
40 	int i;
41 	int ret = 0;
42 	size_t size;
43 	struct kexec_buf kbuf;
44 	const struct elf_phdr *phdr;
45 
46 	kbuf.image = image;
47 
48 	for (i = 0; i < ehdr->e_phnum; i++) {
49 		phdr = &elf_info->proghdrs[i];
50 		if (phdr->p_type != PT_LOAD)
51 			continue;
52 
53 		size = phdr->p_filesz;
54 		if (size > phdr->p_memsz)
55 			size = phdr->p_memsz;
56 
57 		kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
58 		kbuf.bufsz = size;
59 		kbuf.buf_align = phdr->p_align;
60 		kbuf.mem = phdr->p_paddr - old_pbase + new_pbase;
61 		kbuf.memsz = phdr->p_memsz;
62 		kbuf.top_down = false;
63 		ret = kexec_add_buffer(&kbuf);
64 		if (ret)
65 			break;
66 	}
67 
68 	return ret;
69 }
70 
71 /*
72  * Go through the available phsyical memory regions and find one that hold
73  * an image of the specified size.
74  */
75 static int elf_find_pbase(struct kimage *image, unsigned long kernel_len,
76 			  struct elfhdr *ehdr, struct kexec_elf_info *elf_info,
77 			  unsigned long *old_pbase, unsigned long *new_pbase)
78 {
79 	int i;
80 	int ret;
81 	struct kexec_buf kbuf;
82 	const struct elf_phdr *phdr;
83 	unsigned long lowest_paddr = ULONG_MAX;
84 	unsigned long lowest_vaddr = ULONG_MAX;
85 
86 	for (i = 0; i < ehdr->e_phnum; i++) {
87 		phdr = &elf_info->proghdrs[i];
88 		if (phdr->p_type != PT_LOAD)
89 			continue;
90 
91 		if (lowest_paddr > phdr->p_paddr)
92 			lowest_paddr = phdr->p_paddr;
93 
94 		if (lowest_vaddr > phdr->p_vaddr)
95 			lowest_vaddr = phdr->p_vaddr;
96 	}
97 
98 	kbuf.image = image;
99 	kbuf.buf_min = lowest_paddr;
100 	kbuf.buf_max = ULONG_MAX;
101 	kbuf.buf_align = PAGE_SIZE;
102 	kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
103 	kbuf.memsz = ALIGN(kernel_len, PAGE_SIZE);
104 	kbuf.top_down = false;
105 	ret = arch_kexec_locate_mem_hole(&kbuf);
106 	if (!ret) {
107 		*old_pbase = lowest_paddr;
108 		*new_pbase = kbuf.mem;
109 		image->start = ehdr->e_entry - lowest_vaddr + kbuf.mem;
110 	}
111 	return ret;
112 }
113 
114 static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
115 {
116 	unsigned int *nr_ranges = arg;
117 
118 	(*nr_ranges)++;
119 	return 0;
120 }
121 
122 static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
123 {
124 	struct crash_mem *cmem = arg;
125 
126 	cmem->ranges[cmem->nr_ranges].start = res->start;
127 	cmem->ranges[cmem->nr_ranges].end = res->end;
128 	cmem->nr_ranges++;
129 
130 	return 0;
131 }
132 
133 static int prepare_elf_headers(void **addr, unsigned long *sz)
134 {
135 	struct crash_mem *cmem;
136 	unsigned int nr_ranges;
137 	int ret;
138 
139 	nr_ranges = 1; /* For exclusion of crashkernel region */
140 	walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback);
141 
142 	cmem = kmalloc(struct_size(cmem, ranges, nr_ranges), GFP_KERNEL);
143 	if (!cmem)
144 		return -ENOMEM;
145 
146 	cmem->max_nr_ranges = nr_ranges;
147 	cmem->nr_ranges = 0;
148 	ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback);
149 	if (ret)
150 		goto out;
151 
152 	/* Exclude crashkernel region */
153 	ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
154 	if (!ret)
155 		ret = crash_prepare_elf64_headers(cmem, true, addr, sz);
156 
157 out:
158 	kfree(cmem);
159 	return ret;
160 }
161 
162 static char *setup_kdump_cmdline(struct kimage *image, char *cmdline,
163 				 unsigned long cmdline_len)
164 {
165 	int elfcorehdr_strlen;
166 	char *cmdline_ptr;
167 
168 	cmdline_ptr = kzalloc(COMMAND_LINE_SIZE, GFP_KERNEL);
169 	if (!cmdline_ptr)
170 		return NULL;
171 
172 	elfcorehdr_strlen = sprintf(cmdline_ptr, "elfcorehdr=0x%lx ",
173 		image->elf_load_addr);
174 
175 	if (elfcorehdr_strlen + cmdline_len > COMMAND_LINE_SIZE) {
176 		pr_err("Appending elfcorehdr=<addr> exceeds cmdline size\n");
177 		kfree(cmdline_ptr);
178 		return NULL;
179 	}
180 
181 	memcpy(cmdline_ptr + elfcorehdr_strlen, cmdline, cmdline_len);
182 	/* Ensure it's nul terminated */
183 	cmdline_ptr[COMMAND_LINE_SIZE - 1] = '\0';
184 	return cmdline_ptr;
185 }
186 
187 static void *elf_kexec_load(struct kimage *image, char *kernel_buf,
188 			    unsigned long kernel_len, char *initrd,
189 			    unsigned long initrd_len, char *cmdline,
190 			    unsigned long cmdline_len)
191 {
192 	int ret;
193 	unsigned long old_kernel_pbase = ULONG_MAX;
194 	unsigned long new_kernel_pbase = 0UL;
195 	unsigned long initrd_pbase = 0UL;
196 	unsigned long headers_sz;
197 	unsigned long kernel_start;
198 	void *fdt, *headers;
199 	struct elfhdr ehdr;
200 	struct kexec_buf kbuf;
201 	struct kexec_elf_info elf_info;
202 	char *modified_cmdline = NULL;
203 
204 	ret = kexec_build_elf_info(kernel_buf, kernel_len, &ehdr, &elf_info);
205 	if (ret)
206 		return ERR_PTR(ret);
207 
208 	ret = elf_find_pbase(image, kernel_len, &ehdr, &elf_info,
209 			     &old_kernel_pbase, &new_kernel_pbase);
210 	if (ret)
211 		goto out;
212 	kernel_start = image->start;
213 	pr_notice("The entry point of kernel at 0x%lx\n", image->start);
214 
215 	/* Add the kernel binary to the image */
216 	ret = riscv_kexec_elf_load(image, &ehdr, &elf_info,
217 				   old_kernel_pbase, new_kernel_pbase);
218 	if (ret)
219 		goto out;
220 
221 	kbuf.image = image;
222 	kbuf.buf_min = new_kernel_pbase + kernel_len;
223 	kbuf.buf_max = ULONG_MAX;
224 
225 	/* Add elfcorehdr */
226 	if (image->type == KEXEC_TYPE_CRASH) {
227 		ret = prepare_elf_headers(&headers, &headers_sz);
228 		if (ret) {
229 			pr_err("Preparing elf core header failed\n");
230 			goto out;
231 		}
232 
233 		kbuf.buffer = headers;
234 		kbuf.bufsz = headers_sz;
235 		kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
236 		kbuf.memsz = headers_sz;
237 		kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
238 		kbuf.top_down = true;
239 
240 		ret = kexec_add_buffer(&kbuf);
241 		if (ret) {
242 			vfree(headers);
243 			goto out;
244 		}
245 		image->elf_headers = headers;
246 		image->elf_load_addr = kbuf.mem;
247 		image->elf_headers_sz = headers_sz;
248 
249 		pr_debug("Loaded elf core header at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
250 			 image->elf_load_addr, kbuf.bufsz, kbuf.memsz);
251 
252 		/* Setup cmdline for kdump kernel case */
253 		modified_cmdline = setup_kdump_cmdline(image, cmdline,
254 						       cmdline_len);
255 		if (!modified_cmdline) {
256 			pr_err("Setting up cmdline for kdump kernel failed\n");
257 			ret = -EINVAL;
258 			goto out;
259 		}
260 		cmdline = modified_cmdline;
261 	}
262 
263 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
264 	/* Add purgatory to the image */
265 	kbuf.top_down = true;
266 	kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
267 	ret = kexec_load_purgatory(image, &kbuf);
268 	if (ret) {
269 		pr_err("Error loading purgatory ret=%d\n", ret);
270 		goto out;
271 	}
272 	ret = kexec_purgatory_get_set_symbol(image, "riscv_kernel_entry",
273 					     &kernel_start,
274 					     sizeof(kernel_start), 0);
275 	if (ret)
276 		pr_err("Error update purgatory ret=%d\n", ret);
277 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
278 
279 	/* Add the initrd to the image */
280 	if (initrd != NULL) {
281 		kbuf.buffer = initrd;
282 		kbuf.bufsz = kbuf.memsz = initrd_len;
283 		kbuf.buf_align = PAGE_SIZE;
284 		kbuf.top_down = false;
285 		kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
286 		ret = kexec_add_buffer(&kbuf);
287 		if (ret)
288 			goto out;
289 		initrd_pbase = kbuf.mem;
290 		pr_notice("Loaded initrd at 0x%lx\n", initrd_pbase);
291 	}
292 
293 	/* Add the DTB to the image */
294 	fdt = of_kexec_alloc_and_setup_fdt(image, initrd_pbase,
295 					   initrd_len, cmdline, 0);
296 	if (!fdt) {
297 		pr_err("Error setting up the new device tree.\n");
298 		ret = -EINVAL;
299 		goto out;
300 	}
301 
302 	fdt_pack(fdt);
303 	kbuf.buffer = fdt;
304 	kbuf.bufsz = kbuf.memsz = fdt_totalsize(fdt);
305 	kbuf.buf_align = PAGE_SIZE;
306 	kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
307 	kbuf.top_down = true;
308 	ret = kexec_add_buffer(&kbuf);
309 	if (ret) {
310 		pr_err("Error add DTB kbuf ret=%d\n", ret);
311 		goto out_free_fdt;
312 	}
313 	/* Cache the fdt buffer address for memory cleanup */
314 	image->arch.fdt = fdt;
315 	pr_notice("Loaded device tree at 0x%lx\n", kbuf.mem);
316 	goto out;
317 
318 out_free_fdt:
319 	kvfree(fdt);
320 out:
321 	kfree(modified_cmdline);
322 	kexec_free_elf_info(&elf_info);
323 	return ret ? ERR_PTR(ret) : NULL;
324 }
325 
326 #define RV_X(x, s, n)  (((x) >> (s)) & ((1 << (n)) - 1))
327 #define RISCV_IMM_BITS 12
328 #define RISCV_IMM_REACH (1LL << RISCV_IMM_BITS)
329 #define RISCV_CONST_HIGH_PART(x) \
330 	(((x) + (RISCV_IMM_REACH >> 1)) & ~(RISCV_IMM_REACH - 1))
331 #define RISCV_CONST_LOW_PART(x) ((x) - RISCV_CONST_HIGH_PART(x))
332 
333 #define ENCODE_ITYPE_IMM(x) \
334 	(RV_X(x, 0, 12) << 20)
335 #define ENCODE_BTYPE_IMM(x) \
336 	((RV_X(x, 1, 4) << 8) | (RV_X(x, 5, 6) << 25) | \
337 	(RV_X(x, 11, 1) << 7) | (RV_X(x, 12, 1) << 31))
338 #define ENCODE_UTYPE_IMM(x) \
339 	(RV_X(x, 12, 20) << 12)
340 #define ENCODE_JTYPE_IMM(x) \
341 	((RV_X(x, 1, 10) << 21) | (RV_X(x, 11, 1) << 20) | \
342 	(RV_X(x, 12, 8) << 12) | (RV_X(x, 20, 1) << 31))
343 #define ENCODE_CBTYPE_IMM(x) \
344 	((RV_X(x, 1, 2) << 3) | (RV_X(x, 3, 2) << 10) | (RV_X(x, 5, 1) << 2) | \
345 	(RV_X(x, 6, 2) << 5) | (RV_X(x, 8, 1) << 12))
346 #define ENCODE_CJTYPE_IMM(x) \
347 	((RV_X(x, 1, 3) << 3) | (RV_X(x, 4, 1) << 11) | (RV_X(x, 5, 1) << 2) | \
348 	(RV_X(x, 6, 1) << 7) | (RV_X(x, 7, 1) << 6) | (RV_X(x, 8, 2) << 9) | \
349 	(RV_X(x, 10, 1) << 8) | (RV_X(x, 11, 1) << 12))
350 #define ENCODE_UJTYPE_IMM(x) \
351 	(ENCODE_UTYPE_IMM(RISCV_CONST_HIGH_PART(x)) | \
352 	(ENCODE_ITYPE_IMM(RISCV_CONST_LOW_PART(x)) << 32))
353 #define ENCODE_UITYPE_IMM(x) \
354 	(ENCODE_UTYPE_IMM(x) | (ENCODE_ITYPE_IMM(x) << 32))
355 
356 #define CLEAN_IMM(type, x) \
357 	((~ENCODE_##type##_IMM((uint64_t)(-1))) & (x))
358 
359 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
360 				     Elf_Shdr *section,
361 				     const Elf_Shdr *relsec,
362 				     const Elf_Shdr *symtab)
363 {
364 	const char *strtab, *name, *shstrtab;
365 	const Elf_Shdr *sechdrs;
366 	Elf64_Rela *relas;
367 	int i, r_type;
368 
369 	/* String & section header string table */
370 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
371 	strtab = (char *)pi->ehdr + sechdrs[symtab->sh_link].sh_offset;
372 	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
373 
374 	relas = (void *)pi->ehdr + relsec->sh_offset;
375 
376 	for (i = 0; i < relsec->sh_size / sizeof(*relas); i++) {
377 		const Elf_Sym *sym;	/* symbol to relocate */
378 		unsigned long addr;	/* final location after relocation */
379 		unsigned long val;	/* relocated symbol value */
380 		unsigned long sec_base;	/* relocated symbol value */
381 		void *loc;		/* tmp location to modify */
382 
383 		sym = (void *)pi->ehdr + symtab->sh_offset;
384 		sym += ELF64_R_SYM(relas[i].r_info);
385 
386 		if (sym->st_name)
387 			name = strtab + sym->st_name;
388 		else
389 			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
390 
391 		loc = pi->purgatory_buf;
392 		loc += section->sh_offset;
393 		loc += relas[i].r_offset;
394 
395 		if (sym->st_shndx == SHN_ABS)
396 			sec_base = 0;
397 		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
398 			pr_err("Invalid section %d for symbol %s\n",
399 			       sym->st_shndx, name);
400 			return -ENOEXEC;
401 		} else
402 			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
403 
404 		val = sym->st_value;
405 		val += sec_base;
406 		val += relas[i].r_addend;
407 
408 		addr = section->sh_addr + relas[i].r_offset;
409 
410 		r_type = ELF64_R_TYPE(relas[i].r_info);
411 
412 		switch (r_type) {
413 		case R_RISCV_BRANCH:
414 			*(u32 *)loc = CLEAN_IMM(BTYPE, *(u32 *)loc) |
415 				 ENCODE_BTYPE_IMM(val - addr);
416 			break;
417 		case R_RISCV_JAL:
418 			*(u32 *)loc = CLEAN_IMM(JTYPE, *(u32 *)loc) |
419 				 ENCODE_JTYPE_IMM(val - addr);
420 			break;
421 		/*
422 		 * With no R_RISCV_PCREL_LO12_S, R_RISCV_PCREL_LO12_I
423 		 * sym is expected to be next to R_RISCV_PCREL_HI20
424 		 * in purgatory relsec. Handle it like R_RISCV_CALL
425 		 * sym, instead of searching the whole relsec.
426 		 */
427 		case R_RISCV_PCREL_HI20:
428 		case R_RISCV_CALL:
429 			*(u64 *)loc = CLEAN_IMM(UITYPE, *(u64 *)loc) |
430 				 ENCODE_UJTYPE_IMM(val - addr);
431 			break;
432 		case R_RISCV_RVC_BRANCH:
433 			*(u32 *)loc = CLEAN_IMM(CBTYPE, *(u32 *)loc) |
434 				 ENCODE_CBTYPE_IMM(val - addr);
435 			break;
436 		case R_RISCV_RVC_JUMP:
437 			*(u32 *)loc = CLEAN_IMM(CJTYPE, *(u32 *)loc) |
438 				 ENCODE_CJTYPE_IMM(val - addr);
439 			break;
440 		case R_RISCV_ADD32:
441 			*(u32 *)loc += val;
442 			break;
443 		case R_RISCV_SUB32:
444 			*(u32 *)loc -= val;
445 			break;
446 		/* It has been applied by R_RISCV_PCREL_HI20 sym */
447 		case R_RISCV_PCREL_LO12_I:
448 		case R_RISCV_ALIGN:
449 		case R_RISCV_RELAX:
450 			break;
451 		default:
452 			pr_err("Unknown rela relocation: %d\n", r_type);
453 			return -ENOEXEC;
454 		}
455 	}
456 	return 0;
457 }
458 
459 const struct kexec_file_ops elf_kexec_ops = {
460 	.probe = kexec_elf_probe,
461 	.load  = elf_kexec_load,
462 };
463