1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2017 SiFive 4 */ 5 6 #include <linux/acpi.h> 7 #include <linux/cpu.h> 8 #include <linux/of.h> 9 #include <asm/cacheinfo.h> 10 11 static struct riscv_cacheinfo_ops *rv_cache_ops; 12 13 void riscv_set_cacheinfo_ops(struct riscv_cacheinfo_ops *ops) 14 { 15 rv_cache_ops = ops; 16 } 17 EXPORT_SYMBOL_GPL(riscv_set_cacheinfo_ops); 18 19 const struct attribute_group * 20 cache_get_priv_group(struct cacheinfo *this_leaf) 21 { 22 if (rv_cache_ops && rv_cache_ops->get_priv_group) 23 return rv_cache_ops->get_priv_group(this_leaf); 24 return NULL; 25 } 26 27 static struct cacheinfo *get_cacheinfo(u32 level, enum cache_type type) 28 { 29 /* 30 * Using raw_smp_processor_id() elides a preemptability check, but this 31 * is really indicative of a larger problem: the cacheinfo UABI assumes 32 * that cores have a homonogenous view of the cache hierarchy. That 33 * happens to be the case for the current set of RISC-V systems, but 34 * likely won't be true in general. Since there's no way to provide 35 * correct information for these systems via the current UABI we're 36 * just eliding the check for now. 37 */ 38 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(raw_smp_processor_id()); 39 struct cacheinfo *this_leaf; 40 int index; 41 42 for (index = 0; index < this_cpu_ci->num_leaves; index++) { 43 this_leaf = this_cpu_ci->info_list + index; 44 if (this_leaf->level == level && this_leaf->type == type) 45 return this_leaf; 46 } 47 48 return NULL; 49 } 50 51 uintptr_t get_cache_size(u32 level, enum cache_type type) 52 { 53 struct cacheinfo *this_leaf = get_cacheinfo(level, type); 54 55 return this_leaf ? this_leaf->size : 0; 56 } 57 58 uintptr_t get_cache_geometry(u32 level, enum cache_type type) 59 { 60 struct cacheinfo *this_leaf = get_cacheinfo(level, type); 61 62 return this_leaf ? (this_leaf->ways_of_associativity << 16 | 63 this_leaf->coherency_line_size) : 64 0; 65 } 66 67 static void ci_leaf_init(struct cacheinfo *this_leaf, 68 enum cache_type type, unsigned int level) 69 { 70 this_leaf->level = level; 71 this_leaf->type = type; 72 } 73 74 int init_cache_level(unsigned int cpu) 75 { 76 return init_of_cache_level(cpu); 77 } 78 79 int populate_cache_leaves(unsigned int cpu) 80 { 81 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 82 struct cacheinfo *this_leaf = this_cpu_ci->info_list; 83 struct device_node *np, *prev; 84 int levels = 1, level = 1; 85 86 if (!acpi_disabled) { 87 int ret, fw_levels, split_levels; 88 89 ret = acpi_get_cache_info(cpu, &fw_levels, &split_levels); 90 if (ret) 91 return ret; 92 93 BUG_ON((split_levels > fw_levels) || 94 (split_levels + fw_levels > this_cpu_ci->num_leaves)); 95 96 for (; level <= this_cpu_ci->num_levels; level++) { 97 if (level <= split_levels) { 98 ci_leaf_init(this_leaf++, CACHE_TYPE_DATA, level); 99 ci_leaf_init(this_leaf++, CACHE_TYPE_INST, level); 100 } else { 101 ci_leaf_init(this_leaf++, CACHE_TYPE_UNIFIED, level); 102 } 103 } 104 return 0; 105 } 106 107 np = of_cpu_device_node_get(cpu); 108 if (!np) 109 return -ENOENT; 110 111 if (of_property_read_bool(np, "cache-size")) 112 ci_leaf_init(this_leaf++, CACHE_TYPE_UNIFIED, level); 113 if (of_property_read_bool(np, "i-cache-size")) 114 ci_leaf_init(this_leaf++, CACHE_TYPE_INST, level); 115 if (of_property_read_bool(np, "d-cache-size")) 116 ci_leaf_init(this_leaf++, CACHE_TYPE_DATA, level); 117 118 prev = np; 119 while ((np = of_find_next_cache_node(np))) { 120 of_node_put(prev); 121 prev = np; 122 if (!of_device_is_compatible(np, "cache")) 123 break; 124 if (of_property_read_u32(np, "cache-level", &level)) 125 break; 126 if (level <= levels) 127 break; 128 if (of_property_read_bool(np, "cache-size")) 129 ci_leaf_init(this_leaf++, CACHE_TYPE_UNIFIED, level); 130 if (of_property_read_bool(np, "i-cache-size")) 131 ci_leaf_init(this_leaf++, CACHE_TYPE_INST, level); 132 if (of_property_read_bool(np, "d-cache-size")) 133 ci_leaf_init(this_leaf++, CACHE_TYPE_DATA, level); 134 levels = level; 135 } 136 of_node_put(np); 137 138 return 0; 139 } 140