xref: /linux/arch/riscv/include/asm/pgtable.h (revision f4922b69165735e81752ee47d174f873e989a449)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5 
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8 
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11 
12 #include <asm/pgtable-bits.h>
13 
14 #ifndef CONFIG_MMU
15 #ifdef CONFIG_RELOCATABLE
16 #define KERNEL_LINK_ADDR	UL(0)
17 #else
18 #define KERNEL_LINK_ADDR	_AC(CONFIG_PHYS_RAM_BASE, UL)
19 #endif
20 #define KERN_VIRT_SIZE		(UL(-1))
21 #else
22 
23 #define ADDRESS_SPACE_END	(UL(-1))
24 
25 #ifdef CONFIG_64BIT
26 /* Leave 2GB for kernel and BPF at the end of the address space */
27 #define KERNEL_LINK_ADDR	(ADDRESS_SPACE_END - SZ_2G + 1)
28 #else
29 #define KERNEL_LINK_ADDR	PAGE_OFFSET
30 #endif
31 
32 /* Number of entries in the page global directory */
33 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
34 /* Number of entries in the page table */
35 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
36 
37 /*
38  * Half of the kernel address space (1/4 of the entries of the page global
39  * directory) is for the direct mapping.
40  */
41 #define KERN_VIRT_SIZE          ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
42 
43 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
44 #define VMALLOC_END      PAGE_OFFSET
45 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
46 
47 #define BPF_JIT_REGION_SIZE	(SZ_128M)
48 #ifdef CONFIG_64BIT
49 #define BPF_JIT_REGION_START	(BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
50 #define BPF_JIT_REGION_END	(MODULES_END)
51 #else
52 #define BPF_JIT_REGION_START	(PAGE_OFFSET - BPF_JIT_REGION_SIZE)
53 #define BPF_JIT_REGION_END	(VMALLOC_END)
54 #endif
55 
56 /* Modules always live before the kernel */
57 #ifdef CONFIG_64BIT
58 /* This is used to define the end of the KASAN shadow region */
59 #define MODULES_LOWEST_VADDR	(KERNEL_LINK_ADDR - SZ_2G)
60 #define MODULES_VADDR		(PFN_ALIGN((unsigned long)&_end) - SZ_2G)
61 #define MODULES_END		(PFN_ALIGN((unsigned long)&_start))
62 #else
63 #define MODULES_VADDR		VMALLOC_START
64 #define MODULES_END		VMALLOC_END
65 #endif
66 
67 /*
68  * Roughly size the vmemmap space to be large enough to fit enough
69  * struct pages to map half the virtual address space. Then
70  * position vmemmap directly below the VMALLOC region.
71  */
72 #define VA_BITS_SV32 32
73 #ifdef CONFIG_64BIT
74 #define VA_BITS_SV39 39
75 #define VA_BITS_SV48 48
76 #define VA_BITS_SV57 57
77 
78 #define VA_BITS		(pgtable_l5_enabled ? \
79 				VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
80 #else
81 #define VA_BITS		VA_BITS_SV32
82 #endif
83 
84 #define VMEMMAP_SHIFT \
85 	(VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
86 #define VMEMMAP_SIZE	BIT(VMEMMAP_SHIFT)
87 #define VMEMMAP_END	VMALLOC_START
88 #define VMEMMAP_START	(VMALLOC_START - VMEMMAP_SIZE)
89 
90 /*
91  * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
92  * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
93  */
94 #define vmemmap		((struct page *)VMEMMAP_START - vmemmap_start_pfn)
95 
96 #define PCI_IO_SIZE      SZ_16M
97 #define PCI_IO_END       VMEMMAP_START
98 #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
99 
100 #define FIXADDR_TOP      PCI_IO_START
101 #ifdef CONFIG_64BIT
102 #define MAX_FDT_SIZE	 PMD_SIZE
103 #define FIX_FDT_SIZE	 (MAX_FDT_SIZE + SZ_2M)
104 #define FIXADDR_SIZE     (PMD_SIZE + FIX_FDT_SIZE)
105 #else
106 #define MAX_FDT_SIZE	 PGDIR_SIZE
107 #define FIX_FDT_SIZE	 MAX_FDT_SIZE
108 #define FIXADDR_SIZE     (PGDIR_SIZE + FIX_FDT_SIZE)
109 #endif
110 #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
111 
112 #endif
113 
114 #ifndef __ASSEMBLER__
115 
116 #include <asm/page.h>
117 #include <asm/tlbflush.h>
118 #include <linux/mm_types.h>
119 #include <asm/compat.h>
120 #include <asm/cpufeature.h>
121 
122 #define __page_val_to_pfn(_val)  (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
123 
124 #ifdef CONFIG_64BIT
125 #include <asm/pgtable-64.h>
126 
127 #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
128 #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
129 #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
130 
131 #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
132 #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
133 #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
134 #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
135 #else
136 #include <asm/pgtable-32.h>
137 #endif /* CONFIG_64BIT */
138 
139 #include <linux/page_table_check.h>
140 
141 #ifdef CONFIG_XIP_KERNEL
142 #define XIP_FIXUP(addr) ({							\
143 	extern char _sdata[], _start[], _end[];					\
144 	uintptr_t __rom_start_data = CONFIG_XIP_PHYS_ADDR			\
145 				+ (uintptr_t)&_sdata - (uintptr_t)&_start;	\
146 	uintptr_t __rom_end_data = CONFIG_XIP_PHYS_ADDR				\
147 				+ (uintptr_t)&_end - (uintptr_t)&_start;	\
148 	uintptr_t __a = (uintptr_t)(addr);					\
149 	(__a >= __rom_start_data && __a < __rom_end_data) ?			\
150 		__a - __rom_start_data + CONFIG_PHYS_RAM_BASE :	__a;		\
151 	})
152 #else
153 #define XIP_FIXUP(addr)		(addr)
154 #endif /* CONFIG_XIP_KERNEL */
155 
156 struct pt_alloc_ops {
157 	pte_t *(*get_pte_virt)(phys_addr_t pa);
158 	phys_addr_t (*alloc_pte)(uintptr_t va);
159 #ifndef __PAGETABLE_PMD_FOLDED
160 	pmd_t *(*get_pmd_virt)(phys_addr_t pa);
161 	phys_addr_t (*alloc_pmd)(uintptr_t va);
162 	pud_t *(*get_pud_virt)(phys_addr_t pa);
163 	phys_addr_t (*alloc_pud)(uintptr_t va);
164 	p4d_t *(*get_p4d_virt)(phys_addr_t pa);
165 	phys_addr_t (*alloc_p4d)(uintptr_t va);
166 #endif
167 };
168 
169 extern struct pt_alloc_ops pt_ops __meminitdata;
170 
171 #ifdef CONFIG_MMU
172 /* Number of PGD entries that a user-mode program can use */
173 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
174 
175 /* Page protection bits */
176 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
177 
178 #define PAGE_NONE		__pgprot(_PAGE_PROT_NONE | _PAGE_READ)
179 #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
180 #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
181 #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
182 #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
183 #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
184 					 _PAGE_EXEC | _PAGE_WRITE)
185 
186 #define PAGE_COPY		PAGE_READ
187 #define PAGE_COPY_EXEC		PAGE_READ_EXEC
188 #define PAGE_SHARED		PAGE_WRITE
189 #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
190 
191 #define _PAGE_KERNEL		(_PAGE_READ \
192 				| _PAGE_WRITE \
193 				| _PAGE_PRESENT \
194 				| _PAGE_ACCESSED \
195 				| _PAGE_DIRTY \
196 				| _PAGE_GLOBAL)
197 
198 #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
199 #define PAGE_KERNEL_READ	__pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
200 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
201 #define PAGE_KERNEL_READ_EXEC	__pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
202 					 | _PAGE_EXEC)
203 
204 #define PAGE_TABLE		__pgprot(_PAGE_TABLE)
205 
206 #define _PAGE_KERNEL_NC ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_NOCACHE)
207 #define _PAGE_IOREMAP	((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
208 #define PAGE_KERNEL_IO		__pgprot(_PAGE_IOREMAP)
209 
210 extern pgd_t swapper_pg_dir[];
211 extern pgd_t trampoline_pg_dir[];
212 extern pgd_t early_pg_dir[];
213 
214 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
215 static inline int pmd_present(pmd_t pmd)
216 {
217 	/*
218 	 * Checking for _PAGE_LEAF is needed too because:
219 	 * When splitting a THP, split_huge_page() will temporarily clear
220 	 * the present bit, in this situation, pmd_present() and
221 	 * pmd_trans_huge() still needs to return true.
222 	 */
223 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
224 }
225 #else
226 static inline int pmd_present(pmd_t pmd)
227 {
228 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
229 }
230 #endif
231 
232 static inline int pmd_none(pmd_t pmd)
233 {
234 	return (pmd_val(pmd) == 0);
235 }
236 
237 static inline int pmd_bad(pmd_t pmd)
238 {
239 	return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
240 }
241 
242 #define pmd_leaf	pmd_leaf
243 static inline bool pmd_leaf(pmd_t pmd)
244 {
245 	return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
246 }
247 
248 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
249 {
250 	WRITE_ONCE(*pmdp, pmd);
251 }
252 
253 static inline void pmd_clear(pmd_t *pmdp)
254 {
255 	set_pmd(pmdp, __pmd(0));
256 }
257 
258 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
259 {
260 	unsigned long prot_val = pgprot_val(prot);
261 
262 	ALT_THEAD_PMA(prot_val);
263 
264 	return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
265 }
266 
267 static inline unsigned long _pgd_pfn(pgd_t pgd)
268 {
269 	return __page_val_to_pfn(pgd_val(pgd));
270 }
271 
272 static inline struct page *pmd_page(pmd_t pmd)
273 {
274 	return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
275 }
276 
277 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
278 {
279 	return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
280 }
281 
282 static inline pte_t pmd_pte(pmd_t pmd)
283 {
284 	return __pte(pmd_val(pmd));
285 }
286 
287 static inline pte_t pud_pte(pud_t pud)
288 {
289 	return __pte(pud_val(pud));
290 }
291 
292 #ifdef CONFIG_RISCV_ISA_SVNAPOT
293 
294 static __always_inline bool has_svnapot(void)
295 {
296 	return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
297 }
298 
299 static inline unsigned long pte_napot(pte_t pte)
300 {
301 	return pte_val(pte) & _PAGE_NAPOT;
302 }
303 
304 static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
305 {
306 	int pos = order - 1 + _PAGE_PFN_SHIFT;
307 	unsigned long napot_bit = BIT(pos);
308 	unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
309 
310 	return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
311 }
312 
313 #else
314 
315 static __always_inline bool has_svnapot(void) { return false; }
316 
317 static inline unsigned long pte_napot(pte_t pte)
318 {
319 	return 0;
320 }
321 
322 #endif /* CONFIG_RISCV_ISA_SVNAPOT */
323 
324 /* Yields the page frame number (PFN) of a page table entry */
325 static inline unsigned long pte_pfn(pte_t pte)
326 {
327 	unsigned long res  = __page_val_to_pfn(pte_val(pte));
328 
329 	if (has_svnapot() && pte_napot(pte))
330 		res = res & (res - 1UL);
331 
332 	return res;
333 }
334 
335 #define pte_page(x)     pfn_to_page(pte_pfn(x))
336 
337 /* Constructs a page table entry */
338 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
339 {
340 	unsigned long prot_val = pgprot_val(prot);
341 
342 	ALT_THEAD_PMA(prot_val);
343 
344 	return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
345 }
346 
347 #define pte_pgprot pte_pgprot
348 static inline pgprot_t pte_pgprot(pte_t pte)
349 {
350 	unsigned long pfn = pte_pfn(pte);
351 
352 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
353 }
354 
355 static inline int pte_present(pte_t pte)
356 {
357 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
358 }
359 
360 #define pte_accessible pte_accessible
361 static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a)
362 {
363 	if (pte_val(a) & _PAGE_PRESENT)
364 		return true;
365 
366 	if ((pte_val(a) & _PAGE_PROT_NONE) &&
367 	    atomic_read(&mm->tlb_flush_pending))
368 		return true;
369 
370 	return false;
371 }
372 
373 static inline int pte_none(pte_t pte)
374 {
375 	return (pte_val(pte) == 0);
376 }
377 
378 static inline int pte_write(pte_t pte)
379 {
380 	return pte_val(pte) & _PAGE_WRITE;
381 }
382 
383 static inline int pte_exec(pte_t pte)
384 {
385 	return pte_val(pte) & _PAGE_EXEC;
386 }
387 
388 static inline int pte_user(pte_t pte)
389 {
390 	return pte_val(pte) & _PAGE_USER;
391 }
392 
393 static inline int pte_huge(pte_t pte)
394 {
395 	return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
396 }
397 
398 static inline int pte_dirty(pte_t pte)
399 {
400 	return pte_val(pte) & _PAGE_DIRTY;
401 }
402 
403 static inline int pte_young(pte_t pte)
404 {
405 	return pte_val(pte) & _PAGE_ACCESSED;
406 }
407 
408 static inline int pte_special(pte_t pte)
409 {
410 	return pte_val(pte) & _PAGE_SPECIAL;
411 }
412 
413 /* static inline pte_t pte_rdprotect(pte_t pte) */
414 
415 static inline pte_t pte_wrprotect(pte_t pte)
416 {
417 	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
418 }
419 
420 /* static inline pte_t pte_mkread(pte_t pte) */
421 
422 static inline pte_t pte_mkwrite_novma(pte_t pte)
423 {
424 	return __pte(pte_val(pte) | _PAGE_WRITE);
425 }
426 
427 /* static inline pte_t pte_mkexec(pte_t pte) */
428 
429 static inline pte_t pte_mkdirty(pte_t pte)
430 {
431 	return __pte(pte_val(pte) | _PAGE_DIRTY);
432 }
433 
434 static inline pte_t pte_mkclean(pte_t pte)
435 {
436 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
437 }
438 
439 static inline pte_t pte_mkyoung(pte_t pte)
440 {
441 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
442 }
443 
444 static inline pte_t pte_mkold(pte_t pte)
445 {
446 	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
447 }
448 
449 static inline pte_t pte_mkspecial(pte_t pte)
450 {
451 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
452 }
453 
454 static inline pte_t pte_mkhuge(pte_t pte)
455 {
456 	return pte;
457 }
458 
459 #ifdef CONFIG_RISCV_ISA_SVNAPOT
460 #define pte_leaf_size(pte)	(pte_napot(pte) ?				\
461 					napot_cont_size(napot_cont_order(pte)) :\
462 					PAGE_SIZE)
463 #endif
464 
465 #ifdef CONFIG_NUMA_BALANCING
466 /*
467  * See the comment in include/asm-generic/pgtable.h
468  */
469 static inline int pte_protnone(pte_t pte)
470 {
471 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
472 }
473 
474 static inline int pmd_protnone(pmd_t pmd)
475 {
476 	return pte_protnone(pmd_pte(pmd));
477 }
478 #endif
479 
480 /* Modify page protection bits */
481 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
482 {
483 	unsigned long newprot_val = pgprot_val(newprot);
484 
485 	ALT_THEAD_PMA(newprot_val);
486 
487 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
488 }
489 
490 #define pgd_ERROR(e) \
491 	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
492 
493 
494 /* Commit new configuration to MMU hardware */
495 static inline void update_mmu_cache_range(struct vm_fault *vmf,
496 		struct vm_area_struct *vma, unsigned long address,
497 		pte_t *ptep, unsigned int nr)
498 {
499 	/*
500 	 * Svvptc guarantees that the new valid pte will be visible within
501 	 * a bounded timeframe, so when the uarch does not cache invalid
502 	 * entries, we don't have to do anything.
503 	 */
504 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SVVPTC))
505 		return;
506 
507 	/*
508 	 * The kernel assumes that TLBs don't cache invalid entries, but
509 	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
510 	 * cache flush; it is necessary even after writing invalid entries.
511 	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
512 	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
513 	 */
514 	while (nr--)
515 		local_flush_tlb_page(address + nr * PAGE_SIZE);
516 
517 }
518 #define update_mmu_cache(vma, addr, ptep) \
519 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
520 
521 #define update_mmu_tlb_range(vma, addr, ptep, nr) \
522 	update_mmu_cache_range(NULL, vma, addr, ptep, nr)
523 
524 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
525 		unsigned long address, pmd_t *pmdp)
526 {
527 	pte_t *ptep = (pte_t *)pmdp;
528 
529 	update_mmu_cache(vma, address, ptep);
530 }
531 
532 #define __HAVE_ARCH_PTE_SAME
533 static inline int pte_same(pte_t pte_a, pte_t pte_b)
534 {
535 	return pte_val(pte_a) == pte_val(pte_b);
536 }
537 
538 /*
539  * Certain architectures need to do special things when PTEs within
540  * a page table are directly modified.  Thus, the following hook is
541  * made available.
542  */
543 static inline void set_pte(pte_t *ptep, pte_t pteval)
544 {
545 	WRITE_ONCE(*ptep, pteval);
546 }
547 
548 void flush_icache_pte(struct mm_struct *mm, pte_t pte);
549 
550 static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval)
551 {
552 	if (pte_present(pteval) && pte_exec(pteval))
553 		flush_icache_pte(mm, pteval);
554 
555 	set_pte(ptep, pteval);
556 }
557 
558 #define PFN_PTE_SHIFT		_PAGE_PFN_SHIFT
559 
560 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
561 		pte_t *ptep, pte_t pteval, unsigned int nr)
562 {
563 	page_table_check_ptes_set(mm, ptep, pteval, nr);
564 
565 	for (;;) {
566 		__set_pte_at(mm, ptep, pteval);
567 		if (--nr == 0)
568 			break;
569 		ptep++;
570 		pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
571 	}
572 }
573 #define set_ptes set_ptes
574 
575 static inline void pte_clear(struct mm_struct *mm,
576 	unsigned long addr, pte_t *ptep)
577 {
578 	__set_pte_at(mm, ptep, __pte(0));
579 }
580 
581 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS	/* defined in mm/pgtable.c */
582 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
583 				 pte_t *ptep, pte_t entry, int dirty);
584 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG	/* defined in mm/pgtable.c */
585 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
586 				     pte_t *ptep);
587 
588 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
589 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
590 				       unsigned long address, pte_t *ptep)
591 {
592 	pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
593 
594 	page_table_check_pte_clear(mm, pte);
595 
596 	return pte;
597 }
598 
599 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
600 static inline void ptep_set_wrprotect(struct mm_struct *mm,
601 				      unsigned long address, pte_t *ptep)
602 {
603 	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
604 }
605 
606 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
607 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
608 					 unsigned long address, pte_t *ptep)
609 {
610 	/*
611 	 * This comment is borrowed from x86, but applies equally to RISC-V:
612 	 *
613 	 * Clearing the accessed bit without a TLB flush
614 	 * doesn't cause data corruption. [ It could cause incorrect
615 	 * page aging and the (mistaken) reclaim of hot pages, but the
616 	 * chance of that should be relatively low. ]
617 	 *
618 	 * So as a performance optimization don't flush the TLB when
619 	 * clearing the accessed bit, it will eventually be flushed by
620 	 * a context switch or a VM operation anyway. [ In the rare
621 	 * event of it not getting flushed for a long time the delay
622 	 * shouldn't really matter because there's no real memory
623 	 * pressure for swapout to react to. ]
624 	 */
625 	return ptep_test_and_clear_young(vma, address, ptep);
626 }
627 
628 #define pgprot_nx pgprot_nx
629 static inline pgprot_t pgprot_nx(pgprot_t _prot)
630 {
631 	return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC);
632 }
633 
634 #define pgprot_noncached pgprot_noncached
635 static inline pgprot_t pgprot_noncached(pgprot_t _prot)
636 {
637 	unsigned long prot = pgprot_val(_prot);
638 
639 	prot &= ~_PAGE_MTMASK;
640 	prot |= _PAGE_IO;
641 
642 	return __pgprot(prot);
643 }
644 
645 #define pgprot_writecombine pgprot_writecombine
646 static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
647 {
648 	unsigned long prot = pgprot_val(_prot);
649 
650 	prot &= ~_PAGE_MTMASK;
651 	prot |= _PAGE_NOCACHE;
652 
653 	return __pgprot(prot);
654 }
655 
656 #define pgprot_dmacoherent pgprot_writecombine
657 
658 /*
659  * Both Svade and Svadu control the hardware behavior when the PTE A/D bits need to be set. By
660  * default the M-mode firmware enables the hardware updating scheme when only Svadu is present in
661  * DT.
662  */
663 #define arch_has_hw_pte_young arch_has_hw_pte_young
664 static inline bool arch_has_hw_pte_young(void)
665 {
666 	return riscv_has_extension_unlikely(RISCV_ISA_EXT_SVADU);
667 }
668 
669 /*
670  * THP functions
671  */
672 static inline pmd_t pte_pmd(pte_t pte)
673 {
674 	return __pmd(pte_val(pte));
675 }
676 
677 static inline pud_t pte_pud(pte_t pte)
678 {
679 	return __pud(pte_val(pte));
680 }
681 
682 static inline pmd_t pmd_mkhuge(pmd_t pmd)
683 {
684 	return pmd;
685 }
686 
687 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
688 {
689 	return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
690 }
691 
692 #define __pmd_to_phys(pmd)  (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
693 
694 static inline unsigned long pmd_pfn(pmd_t pmd)
695 {
696 	return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
697 }
698 
699 #define __pud_to_phys(pud)  (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
700 
701 #define pud_pfn pud_pfn
702 static inline unsigned long pud_pfn(pud_t pud)
703 {
704 	return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
705 }
706 
707 #define pmd_pgprot pmd_pgprot
708 static inline pgprot_t pmd_pgprot(pmd_t pmd)
709 {
710 	return pte_pgprot(pmd_pte(pmd));
711 }
712 
713 #define pud_pgprot pud_pgprot
714 static inline pgprot_t pud_pgprot(pud_t pud)
715 {
716 	return pte_pgprot(pud_pte(pud));
717 }
718 
719 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
720 {
721 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
722 }
723 
724 #define pmd_write pmd_write
725 static inline int pmd_write(pmd_t pmd)
726 {
727 	return pte_write(pmd_pte(pmd));
728 }
729 
730 #define pud_write pud_write
731 static inline int pud_write(pud_t pud)
732 {
733 	return pte_write(pud_pte(pud));
734 }
735 
736 #define pmd_dirty pmd_dirty
737 static inline int pmd_dirty(pmd_t pmd)
738 {
739 	return pte_dirty(pmd_pte(pmd));
740 }
741 
742 #define pmd_young pmd_young
743 static inline int pmd_young(pmd_t pmd)
744 {
745 	return pte_young(pmd_pte(pmd));
746 }
747 
748 static inline int pmd_user(pmd_t pmd)
749 {
750 	return pte_user(pmd_pte(pmd));
751 }
752 
753 static inline pmd_t pmd_mkold(pmd_t pmd)
754 {
755 	return pte_pmd(pte_mkold(pmd_pte(pmd)));
756 }
757 
758 static inline pmd_t pmd_mkyoung(pmd_t pmd)
759 {
760 	return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
761 }
762 
763 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
764 {
765 	return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
766 }
767 
768 static inline pmd_t pmd_wrprotect(pmd_t pmd)
769 {
770 	return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
771 }
772 
773 static inline pmd_t pmd_mkclean(pmd_t pmd)
774 {
775 	return pte_pmd(pte_mkclean(pmd_pte(pmd)));
776 }
777 
778 static inline pmd_t pmd_mkdirty(pmd_t pmd)
779 {
780 	return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
781 }
782 
783 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
784 static inline bool pmd_special(pmd_t pmd)
785 {
786 	return pte_special(pmd_pte(pmd));
787 }
788 
789 static inline pmd_t pmd_mkspecial(pmd_t pmd)
790 {
791 	return pte_pmd(pte_mkspecial(pmd_pte(pmd)));
792 }
793 #endif
794 
795 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
796 static inline bool pud_special(pud_t pud)
797 {
798 	return pte_special(pud_pte(pud));
799 }
800 
801 static inline pud_t pud_mkspecial(pud_t pud)
802 {
803 	return pte_pud(pte_mkspecial(pud_pte(pud)));
804 }
805 #endif
806 
807 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
808 				pmd_t *pmdp, pmd_t pmd)
809 {
810 	page_table_check_pmd_set(mm, pmdp, pmd);
811 	return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd));
812 }
813 
814 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
815 				pud_t *pudp, pud_t pud)
816 {
817 	page_table_check_pud_set(mm, pudp, pud);
818 	return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud));
819 }
820 
821 #ifdef CONFIG_PAGE_TABLE_CHECK
822 static inline bool pte_user_accessible_page(pte_t pte)
823 {
824 	return pte_present(pte) && pte_user(pte);
825 }
826 
827 static inline bool pmd_user_accessible_page(pmd_t pmd)
828 {
829 	return pmd_leaf(pmd) && pmd_user(pmd);
830 }
831 
832 static inline bool pud_user_accessible_page(pud_t pud)
833 {
834 	return pud_leaf(pud) && pud_user(pud);
835 }
836 #endif
837 
838 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
839 static inline int pmd_trans_huge(pmd_t pmd)
840 {
841 	return pmd_leaf(pmd);
842 }
843 
844 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
845 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
846 					unsigned long address, pmd_t *pmdp,
847 					pmd_t entry, int dirty)
848 {
849 	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
850 }
851 
852 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
853 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
854 					unsigned long address, pmd_t *pmdp)
855 {
856 	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
857 }
858 
859 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
860 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
861 					unsigned long address, pmd_t *pmdp)
862 {
863 	pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
864 
865 	page_table_check_pmd_clear(mm, pmd);
866 
867 	return pmd;
868 }
869 
870 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
871 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
872 					unsigned long address, pmd_t *pmdp)
873 {
874 	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
875 }
876 
877 #define pmdp_establish pmdp_establish
878 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
879 				unsigned long address, pmd_t *pmdp, pmd_t pmd)
880 {
881 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
882 	return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
883 }
884 
885 #define pmdp_collapse_flush pmdp_collapse_flush
886 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
887 				 unsigned long address, pmd_t *pmdp);
888 
889 static inline pud_t pud_wrprotect(pud_t pud)
890 {
891 	return pte_pud(pte_wrprotect(pud_pte(pud)));
892 }
893 
894 static inline int pud_trans_huge(pud_t pud)
895 {
896 	return pud_leaf(pud);
897 }
898 
899 static inline int pud_dirty(pud_t pud)
900 {
901 	return pte_dirty(pud_pte(pud));
902 }
903 
904 static inline pud_t pud_mkyoung(pud_t pud)
905 {
906 	return pte_pud(pte_mkyoung(pud_pte(pud)));
907 }
908 
909 static inline pud_t pud_mkold(pud_t pud)
910 {
911 	return pte_pud(pte_mkold(pud_pte(pud)));
912 }
913 
914 static inline pud_t pud_mkdirty(pud_t pud)
915 {
916 	return pte_pud(pte_mkdirty(pud_pte(pud)));
917 }
918 
919 static inline pud_t pud_mkclean(pud_t pud)
920 {
921 	return pte_pud(pte_mkclean(pud_pte(pud)));
922 }
923 
924 static inline pud_t pud_mkwrite(pud_t pud)
925 {
926 	return pte_pud(pte_mkwrite_novma(pud_pte(pud)));
927 }
928 
929 static inline pud_t pud_mkhuge(pud_t pud)
930 {
931 	return pud;
932 }
933 
934 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
935 					unsigned long address, pud_t *pudp,
936 					pud_t entry, int dirty)
937 {
938 	return ptep_set_access_flags(vma, address, (pte_t *)pudp, pud_pte(entry), dirty);
939 }
940 
941 static inline int pudp_test_and_clear_young(struct vm_area_struct *vma,
942 					    unsigned long address, pud_t *pudp)
943 {
944 	return ptep_test_and_clear_young(vma, address, (pte_t *)pudp);
945 }
946 
947 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
948 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
949 					    unsigned long address,  pud_t *pudp)
950 {
951 #ifdef CONFIG_SMP
952 	pud_t pud = __pud(xchg(&pudp->pud, 0));
953 #else
954 	pud_t pud = *pudp;
955 
956 	pud_clear(pudp);
957 #endif
958 
959 	page_table_check_pud_clear(mm, pud);
960 
961 	return pud;
962 }
963 
964 static inline int pud_young(pud_t pud)
965 {
966 	return pte_young(pud_pte(pud));
967 }
968 
969 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
970 					unsigned long address, pud_t *pudp)
971 {
972 	pte_t *ptep = (pte_t *)pudp;
973 
974 	update_mmu_cache(vma, address, ptep);
975 }
976 
977 static inline pud_t pudp_establish(struct vm_area_struct *vma,
978 				   unsigned long address, pud_t *pudp, pud_t pud)
979 {
980 	page_table_check_pud_set(vma->vm_mm, pudp, pud);
981 	return __pud(atomic_long_xchg((atomic_long_t *)pudp, pud_val(pud)));
982 }
983 
984 static inline pud_t pud_mkinvalid(pud_t pud)
985 {
986 	return __pud(pud_val(pud) & ~(_PAGE_PRESENT | _PAGE_PROT_NONE));
987 }
988 
989 extern pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
990 			     pud_t *pudp);
991 
992 static inline pud_t pud_modify(pud_t pud, pgprot_t newprot)
993 {
994 	return pte_pud(pte_modify(pud_pte(pud), newprot));
995 }
996 
997 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
998 
999 /*
1000  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
1001  * are !pte_none() && !pte_present().
1002  *
1003  * Format of swap PTE:
1004  *	bit            0:	_PAGE_PRESENT (zero)
1005  *	bit       1 to 3:       _PAGE_LEAF (zero)
1006  *	bit            5:	_PAGE_PROT_NONE (zero)
1007  *	bit            6:	exclusive marker
1008  *	bits      7 to 11:	swap type
1009  *	bits 12 to XLEN-1:	swap offset
1010  */
1011 #define __SWP_TYPE_SHIFT	7
1012 #define __SWP_TYPE_BITS		5
1013 #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
1014 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
1015 
1016 #define MAX_SWAPFILES_CHECK()	\
1017 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1018 
1019 #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1020 #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
1021 #define __swp_entry(type, offset) ((swp_entry_t) \
1022 	{ (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
1023 	  ((offset) << __SWP_OFFSET_SHIFT) })
1024 
1025 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1026 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1027 
1028 static inline bool pte_swp_exclusive(pte_t pte)
1029 {
1030 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
1031 }
1032 
1033 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1034 {
1035 	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
1036 }
1037 
1038 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1039 {
1040 	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
1041 }
1042 
1043 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1044 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1045 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
1046 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1047 
1048 /*
1049  * In the RV64 Linux scheme, we give the user half of the virtual-address space
1050  * and give the kernel the other (upper) half.
1051  */
1052 #ifdef CONFIG_64BIT
1053 #define KERN_VIRT_START	(-(BIT(VA_BITS)) + TASK_SIZE)
1054 #else
1055 #define KERN_VIRT_START	FIXADDR_START
1056 #endif
1057 
1058 /*
1059  * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
1060  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
1061  * Task size is:
1062  * -        0x9fc00000	(~2.5GB) for RV32.
1063  * -      0x4000000000	( 256GB) for RV64 using SV39 mmu
1064  * -    0x800000000000	( 128TB) for RV64 using SV48 mmu
1065  * - 0x100000000000000	(  64PB) for RV64 using SV57 mmu
1066  *
1067  * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
1068  * Instruction Set Manual Volume II: Privileged Architecture" states that
1069  * "load and store effective addresses, which are 64bits, must have bits
1070  * 63–48 all equal to bit 47, or else a page-fault exception will occur."
1071  * Similarly for SV57, bits 63–57 must be equal to bit 56.
1072  */
1073 #ifdef CONFIG_64BIT
1074 #define TASK_SIZE_64	(PGDIR_SIZE * PTRS_PER_PGD / 2)
1075 
1076 #ifdef CONFIG_COMPAT
1077 #define TASK_SIZE_32	(_AC(0x80000000, UL) - PAGE_SIZE)
1078 #define TASK_SIZE	(is_compat_task() ? \
1079 			 TASK_SIZE_32 : TASK_SIZE_64)
1080 #else
1081 #define TASK_SIZE	TASK_SIZE_64
1082 #endif
1083 
1084 #else
1085 #define TASK_SIZE	FIXADDR_START
1086 #endif
1087 
1088 #else /* CONFIG_MMU */
1089 
1090 #define PAGE_SHARED		__pgprot(0)
1091 #define PAGE_KERNEL		__pgprot(0)
1092 #define swapper_pg_dir		NULL
1093 #define TASK_SIZE		_AC(-1, UL)
1094 #define VMALLOC_START		_AC(0, UL)
1095 #define VMALLOC_END		TASK_SIZE
1096 
1097 #endif /* !CONFIG_MMU */
1098 
1099 extern char _start[];
1100 extern void *_dtb_early_va;
1101 extern uintptr_t _dtb_early_pa;
1102 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
1103 #define dtb_early_va	(*(void **)XIP_FIXUP(&_dtb_early_va))
1104 #define dtb_early_pa	(*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
1105 #else
1106 #define dtb_early_va	_dtb_early_va
1107 #define dtb_early_pa	_dtb_early_pa
1108 #endif /* CONFIG_XIP_KERNEL */
1109 extern u64 satp_mode;
1110 
1111 void paging_init(void);
1112 void misc_mem_init(void);
1113 
1114 /*
1115  * ZERO_PAGE is a global shared page that is always zero,
1116  * used for zero-mapped memory areas, etc.
1117  */
1118 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
1119 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
1120 
1121 /*
1122  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1123  * TLB flush will be required as a result of the "set". For example, use
1124  * in scenarios where it is known ahead of time that the routine is
1125  * setting non-present entries, or re-setting an existing entry to the
1126  * same value. Otherwise, use the typical "set" helpers and flush the
1127  * TLB.
1128  */
1129 #define set_p4d_safe(p4dp, p4d) \
1130 ({ \
1131 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1132 	set_p4d(p4dp, p4d); \
1133 })
1134 
1135 #define set_pgd_safe(pgdp, pgd) \
1136 ({ \
1137 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1138 	set_pgd(pgdp, pgd); \
1139 })
1140 #endif /* !__ASSEMBLER__ */
1141 
1142 #endif /* _ASM_RISCV_PGTABLE_H */
1143