xref: /linux/arch/riscv/include/asm/pgtable.h (revision daa121128a2d2ac6006159e2c47676e4fcd21eab)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5 
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8 
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11 
12 #include <asm/pgtable-bits.h>
13 
14 #ifndef CONFIG_MMU
15 #define KERNEL_LINK_ADDR	PAGE_OFFSET
16 #define KERN_VIRT_SIZE		(UL(-1))
17 #else
18 
19 #define ADDRESS_SPACE_END	(UL(-1))
20 
21 #ifdef CONFIG_64BIT
22 /* Leave 2GB for kernel and BPF at the end of the address space */
23 #define KERNEL_LINK_ADDR	(ADDRESS_SPACE_END - SZ_2G + 1)
24 #else
25 #define KERNEL_LINK_ADDR	PAGE_OFFSET
26 #endif
27 
28 /* Number of entries in the page global directory */
29 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
30 /* Number of entries in the page table */
31 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
32 
33 /*
34  * Half of the kernel address space (1/4 of the entries of the page global
35  * directory) is for the direct mapping.
36  */
37 #define KERN_VIRT_SIZE          ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
38 
39 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
40 #define VMALLOC_END      PAGE_OFFSET
41 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
42 
43 #define BPF_JIT_REGION_SIZE	(SZ_128M)
44 #ifdef CONFIG_64BIT
45 #define BPF_JIT_REGION_START	(BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
46 #define BPF_JIT_REGION_END	(MODULES_END)
47 #else
48 #define BPF_JIT_REGION_START	(PAGE_OFFSET - BPF_JIT_REGION_SIZE)
49 #define BPF_JIT_REGION_END	(VMALLOC_END)
50 #endif
51 
52 /* Modules always live before the kernel */
53 #ifdef CONFIG_64BIT
54 /* This is used to define the end of the KASAN shadow region */
55 #define MODULES_LOWEST_VADDR	(KERNEL_LINK_ADDR - SZ_2G)
56 #define MODULES_VADDR		(PFN_ALIGN((unsigned long)&_end) - SZ_2G)
57 #define MODULES_END		(PFN_ALIGN((unsigned long)&_start))
58 #else
59 #define MODULES_VADDR		VMALLOC_START
60 #define MODULES_END		VMALLOC_END
61 #endif
62 
63 /*
64  * Roughly size the vmemmap space to be large enough to fit enough
65  * struct pages to map half the virtual address space. Then
66  * position vmemmap directly below the VMALLOC region.
67  */
68 #define VA_BITS_SV32 32
69 #ifdef CONFIG_64BIT
70 #define VA_BITS_SV39 39
71 #define VA_BITS_SV48 48
72 #define VA_BITS_SV57 57
73 
74 #define VA_BITS		(pgtable_l5_enabled ? \
75 				VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
76 #else
77 #define VA_BITS		VA_BITS_SV32
78 #endif
79 
80 #define VMEMMAP_SHIFT \
81 	(VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
82 #define VMEMMAP_SIZE	BIT(VMEMMAP_SHIFT)
83 #define VMEMMAP_END	VMALLOC_START
84 #define VMEMMAP_START	(VMALLOC_START - VMEMMAP_SIZE)
85 
86 /*
87  * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
88  * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
89  */
90 #define vmemmap		((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT))
91 
92 #define PCI_IO_SIZE      SZ_16M
93 #define PCI_IO_END       VMEMMAP_START
94 #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
95 
96 #define FIXADDR_TOP      PCI_IO_START
97 #ifdef CONFIG_64BIT
98 #define MAX_FDT_SIZE	 PMD_SIZE
99 #define FIX_FDT_SIZE	 (MAX_FDT_SIZE + SZ_2M)
100 #define FIXADDR_SIZE     (PMD_SIZE + FIX_FDT_SIZE)
101 #else
102 #define MAX_FDT_SIZE	 PGDIR_SIZE
103 #define FIX_FDT_SIZE	 MAX_FDT_SIZE
104 #define FIXADDR_SIZE     (PGDIR_SIZE + FIX_FDT_SIZE)
105 #endif
106 #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
107 
108 #endif
109 
110 #ifdef CONFIG_XIP_KERNEL
111 #define XIP_OFFSET		SZ_32M
112 #define XIP_OFFSET_MASK		(SZ_32M - 1)
113 #else
114 #define XIP_OFFSET		0
115 #endif
116 
117 #ifndef __ASSEMBLY__
118 
119 #include <asm/page.h>
120 #include <asm/tlbflush.h>
121 #include <linux/mm_types.h>
122 #include <asm/compat.h>
123 
124 #define __page_val_to_pfn(_val)  (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
125 
126 #ifdef CONFIG_64BIT
127 #include <asm/pgtable-64.h>
128 
129 #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
130 #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
131 #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
132 
133 #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
134 #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
135 #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
136 #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
137 #else
138 #include <asm/pgtable-32.h>
139 #endif /* CONFIG_64BIT */
140 
141 #include <linux/page_table_check.h>
142 
143 #ifdef CONFIG_XIP_KERNEL
144 #define XIP_FIXUP(addr) ({							\
145 	uintptr_t __a = (uintptr_t)(addr);					\
146 	(__a >= CONFIG_XIP_PHYS_ADDR && \
147 	 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ?	\
148 		__a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
149 		__a;								\
150 	})
151 #else
152 #define XIP_FIXUP(addr)		(addr)
153 #endif /* CONFIG_XIP_KERNEL */
154 
155 struct pt_alloc_ops {
156 	pte_t *(*get_pte_virt)(phys_addr_t pa);
157 	phys_addr_t (*alloc_pte)(uintptr_t va);
158 #ifndef __PAGETABLE_PMD_FOLDED
159 	pmd_t *(*get_pmd_virt)(phys_addr_t pa);
160 	phys_addr_t (*alloc_pmd)(uintptr_t va);
161 	pud_t *(*get_pud_virt)(phys_addr_t pa);
162 	phys_addr_t (*alloc_pud)(uintptr_t va);
163 	p4d_t *(*get_p4d_virt)(phys_addr_t pa);
164 	phys_addr_t (*alloc_p4d)(uintptr_t va);
165 #endif
166 };
167 
168 extern struct pt_alloc_ops pt_ops __initdata;
169 
170 #ifdef CONFIG_MMU
171 /* Number of PGD entries that a user-mode program can use */
172 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
173 
174 /* Page protection bits */
175 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
176 
177 #define PAGE_NONE		__pgprot(_PAGE_PROT_NONE | _PAGE_READ)
178 #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
179 #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
180 #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
181 #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
182 #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
183 					 _PAGE_EXEC | _PAGE_WRITE)
184 
185 #define PAGE_COPY		PAGE_READ
186 #define PAGE_COPY_EXEC		PAGE_READ_EXEC
187 #define PAGE_SHARED		PAGE_WRITE
188 #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
189 
190 #define _PAGE_KERNEL		(_PAGE_READ \
191 				| _PAGE_WRITE \
192 				| _PAGE_PRESENT \
193 				| _PAGE_ACCESSED \
194 				| _PAGE_DIRTY \
195 				| _PAGE_GLOBAL)
196 
197 #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
198 #define PAGE_KERNEL_READ	__pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
199 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
200 #define PAGE_KERNEL_READ_EXEC	__pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
201 					 | _PAGE_EXEC)
202 
203 #define PAGE_TABLE		__pgprot(_PAGE_TABLE)
204 
205 #define _PAGE_IOREMAP	((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
206 #define PAGE_KERNEL_IO		__pgprot(_PAGE_IOREMAP)
207 
208 extern pgd_t swapper_pg_dir[];
209 extern pgd_t trampoline_pg_dir[];
210 extern pgd_t early_pg_dir[];
211 
212 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
213 static inline int pmd_present(pmd_t pmd)
214 {
215 	/*
216 	 * Checking for _PAGE_LEAF is needed too because:
217 	 * When splitting a THP, split_huge_page() will temporarily clear
218 	 * the present bit, in this situation, pmd_present() and
219 	 * pmd_trans_huge() still needs to return true.
220 	 */
221 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
222 }
223 #else
224 static inline int pmd_present(pmd_t pmd)
225 {
226 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
227 }
228 #endif
229 
230 static inline int pmd_none(pmd_t pmd)
231 {
232 	return (pmd_val(pmd) == 0);
233 }
234 
235 static inline int pmd_bad(pmd_t pmd)
236 {
237 	return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
238 }
239 
240 #define pmd_leaf	pmd_leaf
241 static inline bool pmd_leaf(pmd_t pmd)
242 {
243 	return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
244 }
245 
246 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
247 {
248 	WRITE_ONCE(*pmdp, pmd);
249 }
250 
251 static inline void pmd_clear(pmd_t *pmdp)
252 {
253 	set_pmd(pmdp, __pmd(0));
254 }
255 
256 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
257 {
258 	unsigned long prot_val = pgprot_val(prot);
259 
260 	ALT_THEAD_PMA(prot_val);
261 
262 	return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
263 }
264 
265 static inline unsigned long _pgd_pfn(pgd_t pgd)
266 {
267 	return __page_val_to_pfn(pgd_val(pgd));
268 }
269 
270 static inline struct page *pmd_page(pmd_t pmd)
271 {
272 	return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
273 }
274 
275 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
276 {
277 	return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
278 }
279 
280 static inline pte_t pmd_pte(pmd_t pmd)
281 {
282 	return __pte(pmd_val(pmd));
283 }
284 
285 static inline pte_t pud_pte(pud_t pud)
286 {
287 	return __pte(pud_val(pud));
288 }
289 
290 #ifdef CONFIG_RISCV_ISA_SVNAPOT
291 #include <asm/cpufeature.h>
292 
293 static __always_inline bool has_svnapot(void)
294 {
295 	return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
296 }
297 
298 static inline unsigned long pte_napot(pte_t pte)
299 {
300 	return pte_val(pte) & _PAGE_NAPOT;
301 }
302 
303 static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
304 {
305 	int pos = order - 1 + _PAGE_PFN_SHIFT;
306 	unsigned long napot_bit = BIT(pos);
307 	unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
308 
309 	return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
310 }
311 
312 #else
313 
314 static __always_inline bool has_svnapot(void) { return false; }
315 
316 static inline unsigned long pte_napot(pte_t pte)
317 {
318 	return 0;
319 }
320 
321 #endif /* CONFIG_RISCV_ISA_SVNAPOT */
322 
323 /* Yields the page frame number (PFN) of a page table entry */
324 static inline unsigned long pte_pfn(pte_t pte)
325 {
326 	unsigned long res  = __page_val_to_pfn(pte_val(pte));
327 
328 	if (has_svnapot() && pte_napot(pte))
329 		res = res & (res - 1UL);
330 
331 	return res;
332 }
333 
334 #define pte_page(x)     pfn_to_page(pte_pfn(x))
335 
336 /* Constructs a page table entry */
337 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
338 {
339 	unsigned long prot_val = pgprot_val(prot);
340 
341 	ALT_THEAD_PMA(prot_val);
342 
343 	return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
344 }
345 
346 #define mk_pte(page, prot)       pfn_pte(page_to_pfn(page), prot)
347 
348 static inline int pte_present(pte_t pte)
349 {
350 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
351 }
352 
353 static inline int pte_none(pte_t pte)
354 {
355 	return (pte_val(pte) == 0);
356 }
357 
358 static inline int pte_write(pte_t pte)
359 {
360 	return pte_val(pte) & _PAGE_WRITE;
361 }
362 
363 static inline int pte_exec(pte_t pte)
364 {
365 	return pte_val(pte) & _PAGE_EXEC;
366 }
367 
368 static inline int pte_user(pte_t pte)
369 {
370 	return pte_val(pte) & _PAGE_USER;
371 }
372 
373 static inline int pte_huge(pte_t pte)
374 {
375 	return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
376 }
377 
378 static inline int pte_dirty(pte_t pte)
379 {
380 	return pte_val(pte) & _PAGE_DIRTY;
381 }
382 
383 static inline int pte_young(pte_t pte)
384 {
385 	return pte_val(pte) & _PAGE_ACCESSED;
386 }
387 
388 static inline int pte_special(pte_t pte)
389 {
390 	return pte_val(pte) & _PAGE_SPECIAL;
391 }
392 
393 /* static inline pte_t pte_rdprotect(pte_t pte) */
394 
395 static inline pte_t pte_wrprotect(pte_t pte)
396 {
397 	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
398 }
399 
400 /* static inline pte_t pte_mkread(pte_t pte) */
401 
402 static inline pte_t pte_mkwrite_novma(pte_t pte)
403 {
404 	return __pte(pte_val(pte) | _PAGE_WRITE);
405 }
406 
407 /* static inline pte_t pte_mkexec(pte_t pte) */
408 
409 static inline pte_t pte_mkdirty(pte_t pte)
410 {
411 	return __pte(pte_val(pte) | _PAGE_DIRTY);
412 }
413 
414 static inline pte_t pte_mkclean(pte_t pte)
415 {
416 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
417 }
418 
419 static inline pte_t pte_mkyoung(pte_t pte)
420 {
421 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
422 }
423 
424 static inline pte_t pte_mkold(pte_t pte)
425 {
426 	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
427 }
428 
429 static inline pte_t pte_mkspecial(pte_t pte)
430 {
431 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
432 }
433 
434 static inline pte_t pte_mkhuge(pte_t pte)
435 {
436 	return pte;
437 }
438 
439 #ifdef CONFIG_RISCV_ISA_SVNAPOT
440 #define pte_leaf_size(pte)	(pte_napot(pte) ?				\
441 					napot_cont_size(napot_cont_order(pte)) :\
442 					PAGE_SIZE)
443 #endif
444 
445 #ifdef CONFIG_NUMA_BALANCING
446 /*
447  * See the comment in include/asm-generic/pgtable.h
448  */
449 static inline int pte_protnone(pte_t pte)
450 {
451 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
452 }
453 
454 static inline int pmd_protnone(pmd_t pmd)
455 {
456 	return pte_protnone(pmd_pte(pmd));
457 }
458 #endif
459 
460 /* Modify page protection bits */
461 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
462 {
463 	unsigned long newprot_val = pgprot_val(newprot);
464 
465 	ALT_THEAD_PMA(newprot_val);
466 
467 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
468 }
469 
470 #define pgd_ERROR(e) \
471 	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
472 
473 
474 /* Commit new configuration to MMU hardware */
475 static inline void update_mmu_cache_range(struct vm_fault *vmf,
476 		struct vm_area_struct *vma, unsigned long address,
477 		pte_t *ptep, unsigned int nr)
478 {
479 	/*
480 	 * The kernel assumes that TLBs don't cache invalid entries, but
481 	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
482 	 * cache flush; it is necessary even after writing invalid entries.
483 	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
484 	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
485 	 */
486 	while (nr--)
487 		local_flush_tlb_page(address + nr * PAGE_SIZE);
488 }
489 #define update_mmu_cache(vma, addr, ptep) \
490 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
491 
492 #define __HAVE_ARCH_UPDATE_MMU_TLB
493 #define update_mmu_tlb update_mmu_cache
494 
495 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
496 		unsigned long address, pmd_t *pmdp)
497 {
498 	pte_t *ptep = (pte_t *)pmdp;
499 
500 	update_mmu_cache(vma, address, ptep);
501 }
502 
503 #define __HAVE_ARCH_PTE_SAME
504 static inline int pte_same(pte_t pte_a, pte_t pte_b)
505 {
506 	return pte_val(pte_a) == pte_val(pte_b);
507 }
508 
509 /*
510  * Certain architectures need to do special things when PTEs within
511  * a page table are directly modified.  Thus, the following hook is
512  * made available.
513  */
514 static inline void set_pte(pte_t *ptep, pte_t pteval)
515 {
516 	WRITE_ONCE(*ptep, pteval);
517 }
518 
519 void flush_icache_pte(struct mm_struct *mm, pte_t pte);
520 
521 static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval)
522 {
523 	if (pte_present(pteval) && pte_exec(pteval))
524 		flush_icache_pte(mm, pteval);
525 
526 	set_pte(ptep, pteval);
527 }
528 
529 #define PFN_PTE_SHIFT		_PAGE_PFN_SHIFT
530 
531 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
532 		pte_t *ptep, pte_t pteval, unsigned int nr)
533 {
534 	page_table_check_ptes_set(mm, ptep, pteval, nr);
535 
536 	for (;;) {
537 		__set_pte_at(mm, ptep, pteval);
538 		if (--nr == 0)
539 			break;
540 		ptep++;
541 		pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
542 	}
543 }
544 #define set_ptes set_ptes
545 
546 static inline void pte_clear(struct mm_struct *mm,
547 	unsigned long addr, pte_t *ptep)
548 {
549 	__set_pte_at(mm, ptep, __pte(0));
550 }
551 
552 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS	/* defined in mm/pgtable.c */
553 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
554 				 pte_t *ptep, pte_t entry, int dirty);
555 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG	/* defined in mm/pgtable.c */
556 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
557 				     pte_t *ptep);
558 
559 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
560 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
561 				       unsigned long address, pte_t *ptep)
562 {
563 	pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
564 
565 	page_table_check_pte_clear(mm, pte);
566 
567 	return pte;
568 }
569 
570 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
571 static inline void ptep_set_wrprotect(struct mm_struct *mm,
572 				      unsigned long address, pte_t *ptep)
573 {
574 	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
575 }
576 
577 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
578 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
579 					 unsigned long address, pte_t *ptep)
580 {
581 	/*
582 	 * This comment is borrowed from x86, but applies equally to RISC-V:
583 	 *
584 	 * Clearing the accessed bit without a TLB flush
585 	 * doesn't cause data corruption. [ It could cause incorrect
586 	 * page aging and the (mistaken) reclaim of hot pages, but the
587 	 * chance of that should be relatively low. ]
588 	 *
589 	 * So as a performance optimization don't flush the TLB when
590 	 * clearing the accessed bit, it will eventually be flushed by
591 	 * a context switch or a VM operation anyway. [ In the rare
592 	 * event of it not getting flushed for a long time the delay
593 	 * shouldn't really matter because there's no real memory
594 	 * pressure for swapout to react to. ]
595 	 */
596 	return ptep_test_and_clear_young(vma, address, ptep);
597 }
598 
599 #define pgprot_nx pgprot_nx
600 static inline pgprot_t pgprot_nx(pgprot_t _prot)
601 {
602 	return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC);
603 }
604 
605 #define pgprot_noncached pgprot_noncached
606 static inline pgprot_t pgprot_noncached(pgprot_t _prot)
607 {
608 	unsigned long prot = pgprot_val(_prot);
609 
610 	prot &= ~_PAGE_MTMASK;
611 	prot |= _PAGE_IO;
612 
613 	return __pgprot(prot);
614 }
615 
616 #define pgprot_writecombine pgprot_writecombine
617 static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
618 {
619 	unsigned long prot = pgprot_val(_prot);
620 
621 	prot &= ~_PAGE_MTMASK;
622 	prot |= _PAGE_NOCACHE;
623 
624 	return __pgprot(prot);
625 }
626 
627 /*
628  * THP functions
629  */
630 static inline pmd_t pte_pmd(pte_t pte)
631 {
632 	return __pmd(pte_val(pte));
633 }
634 
635 static inline pmd_t pmd_mkhuge(pmd_t pmd)
636 {
637 	return pmd;
638 }
639 
640 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
641 {
642 	return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
643 }
644 
645 #define __pmd_to_phys(pmd)  (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
646 
647 static inline unsigned long pmd_pfn(pmd_t pmd)
648 {
649 	return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
650 }
651 
652 #define __pud_to_phys(pud)  (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
653 
654 #define pud_pfn pud_pfn
655 static inline unsigned long pud_pfn(pud_t pud)
656 {
657 	return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
658 }
659 
660 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
661 {
662 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
663 }
664 
665 #define pmd_write pmd_write
666 static inline int pmd_write(pmd_t pmd)
667 {
668 	return pte_write(pmd_pte(pmd));
669 }
670 
671 #define pud_write pud_write
672 static inline int pud_write(pud_t pud)
673 {
674 	return pte_write(pud_pte(pud));
675 }
676 
677 #define pmd_dirty pmd_dirty
678 static inline int pmd_dirty(pmd_t pmd)
679 {
680 	return pte_dirty(pmd_pte(pmd));
681 }
682 
683 #define pmd_young pmd_young
684 static inline int pmd_young(pmd_t pmd)
685 {
686 	return pte_young(pmd_pte(pmd));
687 }
688 
689 static inline int pmd_user(pmd_t pmd)
690 {
691 	return pte_user(pmd_pte(pmd));
692 }
693 
694 static inline pmd_t pmd_mkold(pmd_t pmd)
695 {
696 	return pte_pmd(pte_mkold(pmd_pte(pmd)));
697 }
698 
699 static inline pmd_t pmd_mkyoung(pmd_t pmd)
700 {
701 	return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
702 }
703 
704 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
705 {
706 	return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
707 }
708 
709 static inline pmd_t pmd_wrprotect(pmd_t pmd)
710 {
711 	return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
712 }
713 
714 static inline pmd_t pmd_mkclean(pmd_t pmd)
715 {
716 	return pte_pmd(pte_mkclean(pmd_pte(pmd)));
717 }
718 
719 static inline pmd_t pmd_mkdirty(pmd_t pmd)
720 {
721 	return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
722 }
723 
724 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
725 				pmd_t *pmdp, pmd_t pmd)
726 {
727 	page_table_check_pmd_set(mm, pmdp, pmd);
728 	return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd));
729 }
730 
731 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
732 				pud_t *pudp, pud_t pud)
733 {
734 	page_table_check_pud_set(mm, pudp, pud);
735 	return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud));
736 }
737 
738 #ifdef CONFIG_PAGE_TABLE_CHECK
739 static inline bool pte_user_accessible_page(pte_t pte)
740 {
741 	return pte_present(pte) && pte_user(pte);
742 }
743 
744 static inline bool pmd_user_accessible_page(pmd_t pmd)
745 {
746 	return pmd_leaf(pmd) && pmd_user(pmd);
747 }
748 
749 static inline bool pud_user_accessible_page(pud_t pud)
750 {
751 	return pud_leaf(pud) && pud_user(pud);
752 }
753 #endif
754 
755 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
756 static inline int pmd_trans_huge(pmd_t pmd)
757 {
758 	return pmd_leaf(pmd);
759 }
760 
761 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
762 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
763 					unsigned long address, pmd_t *pmdp,
764 					pmd_t entry, int dirty)
765 {
766 	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
767 }
768 
769 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
770 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
771 					unsigned long address, pmd_t *pmdp)
772 {
773 	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
774 }
775 
776 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
777 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
778 					unsigned long address, pmd_t *pmdp)
779 {
780 	pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
781 
782 	page_table_check_pmd_clear(mm, pmd);
783 
784 	return pmd;
785 }
786 
787 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
788 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
789 					unsigned long address, pmd_t *pmdp)
790 {
791 	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
792 }
793 
794 #define pmdp_establish pmdp_establish
795 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
796 				unsigned long address, pmd_t *pmdp, pmd_t pmd)
797 {
798 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
799 	return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
800 }
801 
802 #define pmdp_collapse_flush pmdp_collapse_flush
803 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
804 				 unsigned long address, pmd_t *pmdp);
805 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
806 
807 /*
808  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
809  * are !pte_none() && !pte_present().
810  *
811  * Format of swap PTE:
812  *	bit            0:	_PAGE_PRESENT (zero)
813  *	bit       1 to 3:       _PAGE_LEAF (zero)
814  *	bit            5:	_PAGE_PROT_NONE (zero)
815  *	bit            6:	exclusive marker
816  *	bits      7 to 11:	swap type
817  *	bits 12 to XLEN-1:	swap offset
818  */
819 #define __SWP_TYPE_SHIFT	7
820 #define __SWP_TYPE_BITS		5
821 #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
822 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
823 
824 #define MAX_SWAPFILES_CHECK()	\
825 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
826 
827 #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
828 #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
829 #define __swp_entry(type, offset) ((swp_entry_t) \
830 	{ (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
831 	  ((offset) << __SWP_OFFSET_SHIFT) })
832 
833 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
834 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
835 
836 static inline int pte_swp_exclusive(pte_t pte)
837 {
838 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
839 }
840 
841 static inline pte_t pte_swp_mkexclusive(pte_t pte)
842 {
843 	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
844 }
845 
846 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
847 {
848 	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
849 }
850 
851 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
852 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
853 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
854 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
855 
856 /*
857  * In the RV64 Linux scheme, we give the user half of the virtual-address space
858  * and give the kernel the other (upper) half.
859  */
860 #ifdef CONFIG_64BIT
861 #define KERN_VIRT_START	(-(BIT(VA_BITS)) + TASK_SIZE)
862 #else
863 #define KERN_VIRT_START	FIXADDR_START
864 #endif
865 
866 /*
867  * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
868  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
869  * Task size is:
870  * -        0x9fc00000	(~2.5GB) for RV32.
871  * -      0x4000000000	( 256GB) for RV64 using SV39 mmu
872  * -    0x800000000000	( 128TB) for RV64 using SV48 mmu
873  * - 0x100000000000000	(  64PB) for RV64 using SV57 mmu
874  *
875  * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
876  * Instruction Set Manual Volume II: Privileged Architecture" states that
877  * "load and store effective addresses, which are 64bits, must have bits
878  * 63–48 all equal to bit 47, or else a page-fault exception will occur."
879  * Similarly for SV57, bits 63–57 must be equal to bit 56.
880  */
881 #ifdef CONFIG_64BIT
882 #define TASK_SIZE_64	(PGDIR_SIZE * PTRS_PER_PGD / 2)
883 #define TASK_SIZE_MIN	(PGDIR_SIZE_L3 * PTRS_PER_PGD / 2)
884 
885 #ifdef CONFIG_COMPAT
886 #define TASK_SIZE_32	(_AC(0x80000000, UL) - PAGE_SIZE)
887 #define TASK_SIZE	(is_compat_task() ? \
888 			 TASK_SIZE_32 : TASK_SIZE_64)
889 #else
890 #define TASK_SIZE	TASK_SIZE_64
891 #endif
892 
893 #else
894 #define TASK_SIZE	FIXADDR_START
895 #define TASK_SIZE_MIN	TASK_SIZE
896 #endif
897 
898 #else /* CONFIG_MMU */
899 
900 #define PAGE_SHARED		__pgprot(0)
901 #define PAGE_KERNEL		__pgprot(0)
902 #define swapper_pg_dir		NULL
903 #define TASK_SIZE		_AC(-1, UL)
904 #define VMALLOC_START		_AC(0, UL)
905 #define VMALLOC_END		TASK_SIZE
906 
907 #endif /* !CONFIG_MMU */
908 
909 extern char _start[];
910 extern void *_dtb_early_va;
911 extern uintptr_t _dtb_early_pa;
912 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
913 #define dtb_early_va	(*(void **)XIP_FIXUP(&_dtb_early_va))
914 #define dtb_early_pa	(*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
915 #else
916 #define dtb_early_va	_dtb_early_va
917 #define dtb_early_pa	_dtb_early_pa
918 #endif /* CONFIG_XIP_KERNEL */
919 extern u64 satp_mode;
920 
921 void paging_init(void);
922 void misc_mem_init(void);
923 
924 /*
925  * ZERO_PAGE is a global shared page that is always zero,
926  * used for zero-mapped memory areas, etc.
927  */
928 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
929 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
930 
931 #endif /* !__ASSEMBLY__ */
932 
933 #endif /* _ASM_RISCV_PGTABLE_H */
934