xref: /linux/arch/riscv/include/asm/pgtable.h (revision a9ce09b15761e0f3a413a4a79097d17e19bd3ec1)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5 
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8 
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11 
12 #include <asm/pgtable-bits.h>
13 
14 #ifndef CONFIG_MMU
15 #ifdef CONFIG_RELOCATABLE
16 #define KERNEL_LINK_ADDR	UL(0)
17 #else
18 #define KERNEL_LINK_ADDR	_AC(CONFIG_PHYS_RAM_BASE, UL)
19 #endif
20 #define KERN_VIRT_SIZE		(UL(-1))
21 #else
22 
23 #define ADDRESS_SPACE_END	(UL(-1))
24 
25 #ifdef CONFIG_64BIT
26 /* Leave 2GB for kernel and BPF at the end of the address space */
27 #define KERNEL_LINK_ADDR	(ADDRESS_SPACE_END - SZ_2G + 1)
28 #else
29 #define KERNEL_LINK_ADDR	PAGE_OFFSET
30 #endif
31 
32 /* Number of entries in the page global directory */
33 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
34 /* Number of entries in the page table */
35 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
36 
37 /*
38  * Half of the kernel address space (1/4 of the entries of the page global
39  * directory) is for the direct mapping.
40  */
41 #define KERN_VIRT_SIZE          ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
42 
43 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
44 #define VMALLOC_END      PAGE_OFFSET
45 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
46 
47 #define BPF_JIT_REGION_SIZE	(SZ_128M)
48 #ifdef CONFIG_64BIT
49 #define BPF_JIT_REGION_START	(BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
50 #define BPF_JIT_REGION_END	(MODULES_END)
51 #else
52 #define BPF_JIT_REGION_START	(PAGE_OFFSET - BPF_JIT_REGION_SIZE)
53 #define BPF_JIT_REGION_END	(VMALLOC_END)
54 #endif
55 
56 /* Modules always live before the kernel */
57 #ifdef CONFIG_64BIT
58 /* This is used to define the end of the KASAN shadow region */
59 #define MODULES_LOWEST_VADDR	(KERNEL_LINK_ADDR - SZ_2G)
60 #define MODULES_VADDR		(PFN_ALIGN((unsigned long)&_end) - SZ_2G)
61 #define MODULES_END		(PFN_ALIGN((unsigned long)&_start))
62 #else
63 #define MODULES_VADDR		VMALLOC_START
64 #define MODULES_END		VMALLOC_END
65 #endif
66 
67 /*
68  * Roughly size the vmemmap space to be large enough to fit enough
69  * struct pages to map half the virtual address space. Then
70  * position vmemmap directly below the VMALLOC region.
71  */
72 #define VA_BITS_SV32 32
73 #ifdef CONFIG_64BIT
74 #define VA_BITS_SV39 39
75 #define VA_BITS_SV48 48
76 #define VA_BITS_SV57 57
77 
78 #define VA_BITS		(pgtable_l5_enabled ? \
79 				VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
80 #else
81 #define VA_BITS		VA_BITS_SV32
82 #endif
83 
84 #define VMEMMAP_SHIFT \
85 	(VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
86 #define VMEMMAP_SIZE	BIT(VMEMMAP_SHIFT)
87 #define VMEMMAP_END	VMALLOC_START
88 #define VMEMMAP_START	(VMALLOC_START - VMEMMAP_SIZE)
89 
90 /*
91  * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
92  * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
93  */
94 #define vmemmap		((struct page *)VMEMMAP_START - vmemmap_start_pfn)
95 
96 #define PCI_IO_SIZE      SZ_16M
97 #define PCI_IO_END       VMEMMAP_START
98 #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
99 
100 #define FIXADDR_TOP      PCI_IO_START
101 #ifdef CONFIG_64BIT
102 #define MAX_FDT_SIZE	 PMD_SIZE
103 #define FIX_FDT_SIZE	 (MAX_FDT_SIZE + SZ_2M)
104 #define FIXADDR_SIZE     (PMD_SIZE + FIX_FDT_SIZE)
105 #else
106 #define MAX_FDT_SIZE	 PGDIR_SIZE
107 #define FIX_FDT_SIZE	 MAX_FDT_SIZE
108 #define FIXADDR_SIZE     (PGDIR_SIZE + FIX_FDT_SIZE)
109 #endif
110 #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
111 
112 #endif
113 
114 #ifndef __ASSEMBLER__
115 
116 #include <asm/page.h>
117 #include <asm/tlbflush.h>
118 #include <linux/mm_types.h>
119 #include <asm/compat.h>
120 #include <asm/cpufeature.h>
121 
122 #define __page_val_to_pfn(_val)  (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
123 
124 #ifdef CONFIG_64BIT
125 #include <asm/pgtable-64.h>
126 
127 #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
128 #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
129 #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
130 
131 #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
132 #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
133 #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
134 #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
135 #else
136 #include <asm/pgtable-32.h>
137 #endif /* CONFIG_64BIT */
138 
139 #include <linux/page_table_check.h>
140 
141 #ifdef CONFIG_XIP_KERNEL
142 #define XIP_FIXUP(addr) ({							\
143 	extern char _sdata[], _start[], _end[];					\
144 	uintptr_t __rom_start_data = CONFIG_XIP_PHYS_ADDR			\
145 				+ (uintptr_t)&_sdata - (uintptr_t)&_start;	\
146 	uintptr_t __rom_end_data = CONFIG_XIP_PHYS_ADDR				\
147 				+ (uintptr_t)&_end - (uintptr_t)&_start;	\
148 	uintptr_t __a = (uintptr_t)(addr);					\
149 	(__a >= __rom_start_data && __a < __rom_end_data) ?			\
150 		__a - __rom_start_data + CONFIG_PHYS_RAM_BASE :	__a;		\
151 	})
152 #else
153 #define XIP_FIXUP(addr)		(addr)
154 #endif /* CONFIG_XIP_KERNEL */
155 
156 struct pt_alloc_ops {
157 	pte_t *(*get_pte_virt)(phys_addr_t pa);
158 	phys_addr_t (*alloc_pte)(uintptr_t va);
159 #ifndef __PAGETABLE_PMD_FOLDED
160 	pmd_t *(*get_pmd_virt)(phys_addr_t pa);
161 	phys_addr_t (*alloc_pmd)(uintptr_t va);
162 	pud_t *(*get_pud_virt)(phys_addr_t pa);
163 	phys_addr_t (*alloc_pud)(uintptr_t va);
164 	p4d_t *(*get_p4d_virt)(phys_addr_t pa);
165 	phys_addr_t (*alloc_p4d)(uintptr_t va);
166 #endif
167 };
168 
169 extern struct pt_alloc_ops pt_ops __meminitdata;
170 
171 #ifdef CONFIG_MMU
172 /* Number of PGD entries that a user-mode program can use */
173 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
174 
175 /* Page protection bits */
176 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
177 
178 #define PAGE_NONE		__pgprot(_PAGE_PROT_NONE | _PAGE_READ)
179 #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
180 #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
181 #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
182 #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
183 #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
184 					 _PAGE_EXEC | _PAGE_WRITE)
185 
186 #define PAGE_COPY		PAGE_READ
187 #define PAGE_COPY_EXEC		PAGE_READ_EXEC
188 #define PAGE_SHARED		PAGE_WRITE
189 #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
190 
191 #define _PAGE_KERNEL		(_PAGE_READ \
192 				| _PAGE_WRITE \
193 				| _PAGE_PRESENT \
194 				| _PAGE_ACCESSED \
195 				| _PAGE_DIRTY \
196 				| _PAGE_GLOBAL)
197 
198 #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
199 #define PAGE_KERNEL_READ	__pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
200 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
201 #define PAGE_KERNEL_READ_EXEC	__pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
202 					 | _PAGE_EXEC)
203 
204 #define PAGE_TABLE		__pgprot(_PAGE_TABLE)
205 
206 #define _PAGE_KERNEL_NC ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_NOCACHE)
207 #define _PAGE_IOREMAP	((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
208 #define PAGE_KERNEL_IO		__pgprot(_PAGE_IOREMAP)
209 
210 extern pgd_t swapper_pg_dir[];
211 extern pgd_t trampoline_pg_dir[];
212 extern pgd_t early_pg_dir[];
213 
214 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
215 static inline int pmd_present(pmd_t pmd)
216 {
217 	/*
218 	 * Checking for _PAGE_LEAF is needed too because:
219 	 * When splitting a THP, split_huge_page() will temporarily clear
220 	 * the present bit, in this situation, pmd_present() and
221 	 * pmd_trans_huge() still needs to return true.
222 	 */
223 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
224 }
225 #else
226 static inline int pmd_present(pmd_t pmd)
227 {
228 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
229 }
230 #endif
231 
232 static inline int pmd_none(pmd_t pmd)
233 {
234 	return (pmd_val(pmd) == 0);
235 }
236 
237 static inline int pmd_bad(pmd_t pmd)
238 {
239 	return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
240 }
241 
242 #define pmd_leaf	pmd_leaf
243 static inline bool pmd_leaf(pmd_t pmd)
244 {
245 	return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
246 }
247 
248 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
249 {
250 	WRITE_ONCE(*pmdp, pmd);
251 }
252 
253 static inline void pmd_clear(pmd_t *pmdp)
254 {
255 	set_pmd(pmdp, __pmd(0));
256 }
257 
258 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
259 {
260 	unsigned long prot_val = pgprot_val(prot);
261 
262 	ALT_THEAD_PMA(prot_val);
263 
264 	return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
265 }
266 
267 static inline unsigned long _pgd_pfn(pgd_t pgd)
268 {
269 	return __page_val_to_pfn(pgd_val(pgd));
270 }
271 
272 static inline struct page *pmd_page(pmd_t pmd)
273 {
274 	return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
275 }
276 
277 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
278 {
279 	return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
280 }
281 
282 static inline pte_t pmd_pte(pmd_t pmd)
283 {
284 	return __pte(pmd_val(pmd));
285 }
286 
287 static inline pte_t pud_pte(pud_t pud)
288 {
289 	return __pte(pud_val(pud));
290 }
291 
292 #ifdef CONFIG_RISCV_ISA_SVNAPOT
293 
294 static __always_inline bool has_svnapot(void)
295 {
296 	return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
297 }
298 
299 static inline unsigned long pte_napot(pte_t pte)
300 {
301 	return pte_val(pte) & _PAGE_NAPOT;
302 }
303 
304 static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
305 {
306 	int pos = order - 1 + _PAGE_PFN_SHIFT;
307 	unsigned long napot_bit = BIT(pos);
308 	unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
309 
310 	return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
311 }
312 
313 #else
314 
315 static __always_inline bool has_svnapot(void) { return false; }
316 
317 static inline unsigned long pte_napot(pte_t pte)
318 {
319 	return 0;
320 }
321 
322 #endif /* CONFIG_RISCV_ISA_SVNAPOT */
323 
324 /* Yields the page frame number (PFN) of a page table entry */
325 static inline unsigned long pte_pfn(pte_t pte)
326 {
327 	unsigned long res  = __page_val_to_pfn(pte_val(pte));
328 
329 	if (has_svnapot() && pte_napot(pte))
330 		res = res & (res - 1UL);
331 
332 	return res;
333 }
334 
335 #define pte_page(x)     pfn_to_page(pte_pfn(x))
336 
337 /* Constructs a page table entry */
338 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
339 {
340 	unsigned long prot_val = pgprot_val(prot);
341 
342 	ALT_THEAD_PMA(prot_val);
343 
344 	return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
345 }
346 
347 #define pte_pgprot pte_pgprot
348 static inline pgprot_t pte_pgprot(pte_t pte)
349 {
350 	unsigned long pfn = pte_pfn(pte);
351 
352 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
353 }
354 
355 static inline int pte_present(pte_t pte)
356 {
357 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
358 }
359 
360 #define pte_accessible pte_accessible
361 static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a)
362 {
363 	if (pte_val(a) & _PAGE_PRESENT)
364 		return true;
365 
366 	if ((pte_val(a) & _PAGE_PROT_NONE) &&
367 	    atomic_read(&mm->tlb_flush_pending))
368 		return true;
369 
370 	return false;
371 }
372 
373 static inline int pte_none(pte_t pte)
374 {
375 	return (pte_val(pte) == 0);
376 }
377 
378 static inline int pte_write(pte_t pte)
379 {
380 	return pte_val(pte) & _PAGE_WRITE;
381 }
382 
383 static inline int pte_exec(pte_t pte)
384 {
385 	return pte_val(pte) & _PAGE_EXEC;
386 }
387 
388 static inline int pte_user(pte_t pte)
389 {
390 	return pte_val(pte) & _PAGE_USER;
391 }
392 
393 static inline int pte_huge(pte_t pte)
394 {
395 	return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
396 }
397 
398 static inline int pte_dirty(pte_t pte)
399 {
400 	return pte_val(pte) & _PAGE_DIRTY;
401 }
402 
403 static inline int pte_young(pte_t pte)
404 {
405 	return pte_val(pte) & _PAGE_ACCESSED;
406 }
407 
408 static inline int pte_special(pte_t pte)
409 {
410 	return pte_val(pte) & _PAGE_SPECIAL;
411 }
412 
413 /* static inline pte_t pte_rdprotect(pte_t pte) */
414 
415 static inline pte_t pte_wrprotect(pte_t pte)
416 {
417 	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
418 }
419 
420 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
421 #define pgtable_supports_uffd_wp()	\
422 	riscv_has_extension_unlikely(RISCV_ISA_EXT_SVRSW60T59B)
423 
424 static inline bool pte_uffd_wp(pte_t pte)
425 {
426 	return !!(pte_val(pte) & _PAGE_UFFD_WP);
427 }
428 
429 static inline pte_t pte_mkuffd_wp(pte_t pte)
430 {
431 	return pte_wrprotect(__pte(pte_val(pte) | _PAGE_UFFD_WP));
432 }
433 
434 static inline pte_t pte_clear_uffd_wp(pte_t pte)
435 {
436 	return __pte(pte_val(pte) & ~(_PAGE_UFFD_WP));
437 }
438 
439 static inline bool pte_swp_uffd_wp(pte_t pte)
440 {
441 	return !!(pte_val(pte) & _PAGE_SWP_UFFD_WP);
442 }
443 
444 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
445 {
446 	return __pte(pte_val(pte) | _PAGE_SWP_UFFD_WP);
447 }
448 
449 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
450 {
451 	return __pte(pte_val(pte) & ~(_PAGE_SWP_UFFD_WP));
452 }
453 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
454 
455 /* static inline pte_t pte_mkread(pte_t pte) */
456 
457 static inline pte_t pte_mkwrite_novma(pte_t pte)
458 {
459 	return __pte(pte_val(pte) | _PAGE_WRITE);
460 }
461 
462 /* static inline pte_t pte_mkexec(pte_t pte) */
463 
464 static inline pte_t pte_mkdirty(pte_t pte)
465 {
466 	return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
467 }
468 
469 static inline pte_t pte_mkclean(pte_t pte)
470 {
471 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
472 }
473 
474 static inline pte_t pte_mkyoung(pte_t pte)
475 {
476 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
477 }
478 
479 static inline pte_t pte_mkold(pte_t pte)
480 {
481 	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
482 }
483 
484 static inline pte_t pte_mkspecial(pte_t pte)
485 {
486 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
487 }
488 
489 static inline pte_t pte_mkhuge(pte_t pte)
490 {
491 	return pte;
492 }
493 
494 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
495 #define pgtable_supports_soft_dirty()				\
496 	(IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) &&			\
497 	 riscv_has_extension_unlikely(RISCV_ISA_EXT_SVRSW60T59B))
498 
499 static inline bool pte_soft_dirty(pte_t pte)
500 {
501 	return !!(pte_val(pte) & _PAGE_SOFT_DIRTY);
502 }
503 
504 static inline pte_t pte_mksoft_dirty(pte_t pte)
505 {
506 	return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
507 }
508 
509 static inline pte_t pte_clear_soft_dirty(pte_t pte)
510 {
511 	return __pte(pte_val(pte) & ~(_PAGE_SOFT_DIRTY));
512 }
513 
514 static inline bool pte_swp_soft_dirty(pte_t pte)
515 {
516 	return !!(pte_val(pte) & _PAGE_SWP_SOFT_DIRTY);
517 }
518 
519 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
520 {
521 	return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
522 }
523 
524 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
525 {
526 	return __pte(pte_val(pte) & ~(_PAGE_SWP_SOFT_DIRTY));
527 }
528 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
529 
530 #ifdef CONFIG_RISCV_ISA_SVNAPOT
531 #define pte_leaf_size(pte)	(pte_napot(pte) ?				\
532 					napot_cont_size(napot_cont_order(pte)) :\
533 					PAGE_SIZE)
534 #endif
535 
536 #ifdef CONFIG_NUMA_BALANCING
537 /*
538  * See the comment in include/asm-generic/pgtable.h
539  */
540 static inline int pte_protnone(pte_t pte)
541 {
542 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
543 }
544 
545 static inline int pmd_protnone(pmd_t pmd)
546 {
547 	return pte_protnone(pmd_pte(pmd));
548 }
549 #endif
550 
551 /* Modify page protection bits */
552 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
553 {
554 	unsigned long newprot_val = pgprot_val(newprot);
555 
556 	ALT_THEAD_PMA(newprot_val);
557 
558 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
559 }
560 
561 #define pgd_ERROR(e) \
562 	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
563 
564 
565 /* Commit new configuration to MMU hardware */
566 static inline void update_mmu_cache_range(struct vm_fault *vmf,
567 		struct vm_area_struct *vma, unsigned long address,
568 		pte_t *ptep, unsigned int nr)
569 {
570 	asm goto(ALTERNATIVE("nop", "j %l[svvptc]", 0, RISCV_ISA_EXT_SVVPTC, 1)
571 		 : : : : svvptc);
572 
573 	/*
574 	 * The kernel assumes that TLBs don't cache invalid entries, but
575 	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
576 	 * cache flush; it is necessary even after writing invalid entries.
577 	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
578 	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
579 	 */
580 	while (nr--)
581 		local_flush_tlb_page(address + nr * PAGE_SIZE);
582 
583 svvptc:;
584 	/*
585 	 * Svvptc guarantees that the new valid pte will be visible within
586 	 * a bounded timeframe, so when the uarch does not cache invalid
587 	 * entries, we don't have to do anything.
588 	 */
589 }
590 #define update_mmu_cache(vma, addr, ptep) \
591 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
592 
593 #define update_mmu_tlb_range(vma, addr, ptep, nr) \
594 	update_mmu_cache_range(NULL, vma, addr, ptep, nr)
595 
596 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
597 		unsigned long address, pmd_t *pmdp)
598 {
599 	pte_t *ptep = (pte_t *)pmdp;
600 
601 	update_mmu_cache(vma, address, ptep);
602 }
603 
604 #define __HAVE_ARCH_PTE_SAME
605 static inline int pte_same(pte_t pte_a, pte_t pte_b)
606 {
607 	return pte_val(pte_a) == pte_val(pte_b);
608 }
609 
610 /*
611  * Certain architectures need to do special things when PTEs within
612  * a page table are directly modified.  Thus, the following hook is
613  * made available.
614  */
615 static inline void set_pte(pte_t *ptep, pte_t pteval)
616 {
617 	WRITE_ONCE(*ptep, pteval);
618 }
619 
620 void flush_icache_pte(struct mm_struct *mm, pte_t pte);
621 
622 static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval)
623 {
624 	if (pte_present(pteval) && pte_exec(pteval))
625 		flush_icache_pte(mm, pteval);
626 
627 	set_pte(ptep, pteval);
628 }
629 
630 #define PFN_PTE_SHIFT		_PAGE_PFN_SHIFT
631 
632 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
633 		pte_t *ptep, pte_t pteval, unsigned int nr)
634 {
635 	page_table_check_ptes_set(mm, ptep, pteval, nr);
636 
637 	for (;;) {
638 		__set_pte_at(mm, ptep, pteval);
639 		if (--nr == 0)
640 			break;
641 		ptep++;
642 		pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
643 	}
644 }
645 #define set_ptes set_ptes
646 
647 static inline void pte_clear(struct mm_struct *mm,
648 	unsigned long addr, pte_t *ptep)
649 {
650 	__set_pte_at(mm, ptep, __pte(0));
651 }
652 
653 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS	/* defined in mm/pgtable.c */
654 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
655 				 pte_t *ptep, pte_t entry, int dirty);
656 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG	/* defined in mm/pgtable.c */
657 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
658 				     pte_t *ptep);
659 
660 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
661 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
662 				       unsigned long address, pte_t *ptep)
663 {
664 	pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
665 
666 	page_table_check_pte_clear(mm, pte);
667 
668 	return pte;
669 }
670 
671 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
672 static inline void ptep_set_wrprotect(struct mm_struct *mm,
673 				      unsigned long address, pte_t *ptep)
674 {
675 	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
676 }
677 
678 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
679 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
680 					 unsigned long address, pte_t *ptep)
681 {
682 	/*
683 	 * This comment is borrowed from x86, but applies equally to RISC-V:
684 	 *
685 	 * Clearing the accessed bit without a TLB flush
686 	 * doesn't cause data corruption. [ It could cause incorrect
687 	 * page aging and the (mistaken) reclaim of hot pages, but the
688 	 * chance of that should be relatively low. ]
689 	 *
690 	 * So as a performance optimization don't flush the TLB when
691 	 * clearing the accessed bit, it will eventually be flushed by
692 	 * a context switch or a VM operation anyway. [ In the rare
693 	 * event of it not getting flushed for a long time the delay
694 	 * shouldn't really matter because there's no real memory
695 	 * pressure for swapout to react to. ]
696 	 */
697 	return ptep_test_and_clear_young(vma, address, ptep);
698 }
699 
700 #define pgprot_nx pgprot_nx
701 static inline pgprot_t pgprot_nx(pgprot_t _prot)
702 {
703 	return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC);
704 }
705 
706 #define pgprot_noncached pgprot_noncached
707 static inline pgprot_t pgprot_noncached(pgprot_t _prot)
708 {
709 	unsigned long prot = pgprot_val(_prot);
710 
711 	prot &= ~_PAGE_MTMASK;
712 	prot |= _PAGE_IO;
713 
714 	return __pgprot(prot);
715 }
716 
717 #define pgprot_writecombine pgprot_writecombine
718 static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
719 {
720 	unsigned long prot = pgprot_val(_prot);
721 
722 	prot &= ~_PAGE_MTMASK;
723 	prot |= _PAGE_NOCACHE;
724 
725 	return __pgprot(prot);
726 }
727 
728 #define pgprot_dmacoherent pgprot_writecombine
729 
730 /*
731  * Both Svade and Svadu control the hardware behavior when the PTE A/D bits need to be set. By
732  * default the M-mode firmware enables the hardware updating scheme when only Svadu is present in
733  * DT.
734  */
735 #define arch_has_hw_pte_young arch_has_hw_pte_young
736 static inline bool arch_has_hw_pte_young(void)
737 {
738 	return riscv_has_extension_unlikely(RISCV_ISA_EXT_SVADU);
739 }
740 
741 /*
742  * THP functions
743  */
744 static inline pmd_t pte_pmd(pte_t pte)
745 {
746 	return __pmd(pte_val(pte));
747 }
748 
749 static inline pud_t pte_pud(pte_t pte)
750 {
751 	return __pud(pte_val(pte));
752 }
753 
754 static inline pmd_t pmd_mkhuge(pmd_t pmd)
755 {
756 	return pmd;
757 }
758 
759 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
760 {
761 	return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
762 }
763 
764 #define __pmd_to_phys(pmd)  (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
765 
766 static inline unsigned long pmd_pfn(pmd_t pmd)
767 {
768 	return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
769 }
770 
771 #define __pud_to_phys(pud)  (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
772 
773 #define pud_pfn pud_pfn
774 static inline unsigned long pud_pfn(pud_t pud)
775 {
776 	return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
777 }
778 
779 #define pmd_pgprot pmd_pgprot
780 static inline pgprot_t pmd_pgprot(pmd_t pmd)
781 {
782 	return pte_pgprot(pmd_pte(pmd));
783 }
784 
785 #define pud_pgprot pud_pgprot
786 static inline pgprot_t pud_pgprot(pud_t pud)
787 {
788 	return pte_pgprot(pud_pte(pud));
789 }
790 
791 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
792 {
793 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
794 }
795 
796 #define pmd_write pmd_write
797 static inline int pmd_write(pmd_t pmd)
798 {
799 	return pte_write(pmd_pte(pmd));
800 }
801 
802 #define pud_write pud_write
803 static inline int pud_write(pud_t pud)
804 {
805 	return pte_write(pud_pte(pud));
806 }
807 
808 #define pmd_dirty pmd_dirty
809 static inline int pmd_dirty(pmd_t pmd)
810 {
811 	return pte_dirty(pmd_pte(pmd));
812 }
813 
814 #define pmd_young pmd_young
815 static inline int pmd_young(pmd_t pmd)
816 {
817 	return pte_young(pmd_pte(pmd));
818 }
819 
820 static inline int pmd_user(pmd_t pmd)
821 {
822 	return pte_user(pmd_pte(pmd));
823 }
824 
825 static inline pmd_t pmd_mkold(pmd_t pmd)
826 {
827 	return pte_pmd(pte_mkold(pmd_pte(pmd)));
828 }
829 
830 static inline pmd_t pmd_mkyoung(pmd_t pmd)
831 {
832 	return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
833 }
834 
835 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
836 {
837 	return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
838 }
839 
840 static inline pmd_t pmd_wrprotect(pmd_t pmd)
841 {
842 	return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
843 }
844 
845 static inline pmd_t pmd_mkclean(pmd_t pmd)
846 {
847 	return pte_pmd(pte_mkclean(pmd_pte(pmd)));
848 }
849 
850 static inline pmd_t pmd_mkdirty(pmd_t pmd)
851 {
852 	return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
853 }
854 
855 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
856 static inline bool pmd_special(pmd_t pmd)
857 {
858 	return pte_special(pmd_pte(pmd));
859 }
860 
861 static inline pmd_t pmd_mkspecial(pmd_t pmd)
862 {
863 	return pte_pmd(pte_mkspecial(pmd_pte(pmd)));
864 }
865 #endif
866 
867 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
868 static inline bool pud_special(pud_t pud)
869 {
870 	return pte_special(pud_pte(pud));
871 }
872 
873 static inline pud_t pud_mkspecial(pud_t pud)
874 {
875 	return pte_pud(pte_mkspecial(pud_pte(pud)));
876 }
877 #endif
878 
879 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
880 static inline bool pmd_uffd_wp(pmd_t pmd)
881 {
882 	return pte_uffd_wp(pmd_pte(pmd));
883 }
884 
885 static inline pmd_t pmd_mkuffd_wp(pmd_t pmd)
886 {
887 	return pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)));
888 }
889 
890 static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd)
891 {
892 	return pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)));
893 }
894 
895 static inline bool pmd_swp_uffd_wp(pmd_t pmd)
896 {
897 	return pte_swp_uffd_wp(pmd_pte(pmd));
898 }
899 
900 static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd)
901 {
902 	return pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)));
903 }
904 
905 static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd)
906 {
907 	return pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)));
908 }
909 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
910 
911 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
912 static inline bool pmd_soft_dirty(pmd_t pmd)
913 {
914 	return pte_soft_dirty(pmd_pte(pmd));
915 }
916 
917 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
918 {
919 	return pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)));
920 }
921 
922 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
923 {
924 	return pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)));
925 }
926 
927 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
928 static inline bool pmd_swp_soft_dirty(pmd_t pmd)
929 {
930 	return pte_swp_soft_dirty(pmd_pte(pmd));
931 }
932 
933 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
934 {
935 	return pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)));
936 }
937 
938 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
939 {
940 	return pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)));
941 }
942 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
943 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
944 
945 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
946 				pmd_t *pmdp, pmd_t pmd)
947 {
948 	page_table_check_pmd_set(mm, pmdp, pmd);
949 	return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd));
950 }
951 
952 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
953 				pud_t *pudp, pud_t pud)
954 {
955 	page_table_check_pud_set(mm, pudp, pud);
956 	return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud));
957 }
958 
959 #ifdef CONFIG_PAGE_TABLE_CHECK
960 static inline bool pte_user_accessible_page(pte_t pte)
961 {
962 	return pte_present(pte) && pte_user(pte);
963 }
964 
965 static inline bool pmd_user_accessible_page(pmd_t pmd)
966 {
967 	return pmd_leaf(pmd) && pmd_user(pmd);
968 }
969 
970 static inline bool pud_user_accessible_page(pud_t pud)
971 {
972 	return pud_leaf(pud) && pud_user(pud);
973 }
974 #endif
975 
976 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
977 static inline int pmd_trans_huge(pmd_t pmd)
978 {
979 	return pmd_leaf(pmd);
980 }
981 
982 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
983 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
984 					unsigned long address, pmd_t *pmdp,
985 					pmd_t entry, int dirty)
986 {
987 	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
988 }
989 
990 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
991 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
992 					unsigned long address, pmd_t *pmdp)
993 {
994 	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
995 }
996 
997 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
998 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
999 					unsigned long address, pmd_t *pmdp)
1000 {
1001 	pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
1002 
1003 	page_table_check_pmd_clear(mm, pmd);
1004 
1005 	return pmd;
1006 }
1007 
1008 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1009 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1010 					unsigned long address, pmd_t *pmdp)
1011 {
1012 	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1013 }
1014 
1015 #define pmdp_establish pmdp_establish
1016 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1017 				unsigned long address, pmd_t *pmdp, pmd_t pmd)
1018 {
1019 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1020 	return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
1021 }
1022 
1023 #define pmdp_collapse_flush pmdp_collapse_flush
1024 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1025 				 unsigned long address, pmd_t *pmdp);
1026 
1027 static inline pud_t pud_wrprotect(pud_t pud)
1028 {
1029 	return pte_pud(pte_wrprotect(pud_pte(pud)));
1030 }
1031 
1032 static inline int pud_trans_huge(pud_t pud)
1033 {
1034 	return pud_leaf(pud);
1035 }
1036 
1037 static inline int pud_dirty(pud_t pud)
1038 {
1039 	return pte_dirty(pud_pte(pud));
1040 }
1041 
1042 static inline pud_t pud_mkyoung(pud_t pud)
1043 {
1044 	return pte_pud(pte_mkyoung(pud_pte(pud)));
1045 }
1046 
1047 static inline pud_t pud_mkold(pud_t pud)
1048 {
1049 	return pte_pud(pte_mkold(pud_pte(pud)));
1050 }
1051 
1052 static inline pud_t pud_mkdirty(pud_t pud)
1053 {
1054 	return pte_pud(pte_mkdirty(pud_pte(pud)));
1055 }
1056 
1057 static inline pud_t pud_mkclean(pud_t pud)
1058 {
1059 	return pte_pud(pte_mkclean(pud_pte(pud)));
1060 }
1061 
1062 static inline pud_t pud_mkwrite(pud_t pud)
1063 {
1064 	return pte_pud(pte_mkwrite_novma(pud_pte(pud)));
1065 }
1066 
1067 static inline pud_t pud_mkhuge(pud_t pud)
1068 {
1069 	return pud;
1070 }
1071 
1072 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
1073 					unsigned long address, pud_t *pudp,
1074 					pud_t entry, int dirty)
1075 {
1076 	return ptep_set_access_flags(vma, address, (pte_t *)pudp, pud_pte(entry), dirty);
1077 }
1078 
1079 static inline int pudp_test_and_clear_young(struct vm_area_struct *vma,
1080 					    unsigned long address, pud_t *pudp)
1081 {
1082 	return ptep_test_and_clear_young(vma, address, (pte_t *)pudp);
1083 }
1084 
1085 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1086 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1087 					    unsigned long address,  pud_t *pudp)
1088 {
1089 #ifdef CONFIG_SMP
1090 	pud_t pud = __pud(xchg(&pudp->pud, 0));
1091 #else
1092 	pud_t pud = *pudp;
1093 
1094 	pud_clear(pudp);
1095 #endif
1096 
1097 	page_table_check_pud_clear(mm, pud);
1098 
1099 	return pud;
1100 }
1101 
1102 static inline int pud_young(pud_t pud)
1103 {
1104 	return pte_young(pud_pte(pud));
1105 }
1106 
1107 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1108 					unsigned long address, pud_t *pudp)
1109 {
1110 	pte_t *ptep = (pte_t *)pudp;
1111 
1112 	update_mmu_cache(vma, address, ptep);
1113 }
1114 
1115 static inline pud_t pudp_establish(struct vm_area_struct *vma,
1116 				   unsigned long address, pud_t *pudp, pud_t pud)
1117 {
1118 	page_table_check_pud_set(vma->vm_mm, pudp, pud);
1119 	return __pud(atomic_long_xchg((atomic_long_t *)pudp, pud_val(pud)));
1120 }
1121 
1122 static inline pud_t pud_mkinvalid(pud_t pud)
1123 {
1124 	return __pud(pud_val(pud) & ~(_PAGE_PRESENT | _PAGE_PROT_NONE));
1125 }
1126 
1127 extern pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
1128 			     pud_t *pudp);
1129 
1130 static inline pud_t pud_modify(pud_t pud, pgprot_t newprot)
1131 {
1132 	return pte_pud(pte_modify(pud_pte(pud), newprot));
1133 }
1134 
1135 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1136 
1137 /*
1138  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
1139  * are !pte_none() && !pte_present().
1140  *
1141  * Format of swap PTE:
1142  *	bit            0:	_PAGE_PRESENT (zero)
1143  *	bit       1 to 2:	(zero)
1144  *	bit            3:	_PAGE_SWP_SOFT_DIRTY
1145  *	bit            4:	_PAGE_SWP_UFFD_WP
1146  *	bit            5:	_PAGE_PROT_NONE (zero)
1147  *	bit            6:	exclusive marker
1148  *	bits      7 to 11:	swap type
1149  *	bits 12 to XLEN-1:	swap offset
1150  */
1151 #define __SWP_TYPE_SHIFT	7
1152 #define __SWP_TYPE_BITS		5
1153 #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
1154 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
1155 
1156 #define MAX_SWAPFILES_CHECK()	\
1157 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1158 
1159 #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1160 #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
1161 #define __swp_entry(type, offset) ((swp_entry_t) \
1162 	{ (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
1163 	  ((offset) << __SWP_OFFSET_SHIFT) })
1164 
1165 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1166 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1167 
1168 static inline bool pte_swp_exclusive(pte_t pte)
1169 {
1170 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
1171 }
1172 
1173 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1174 {
1175 	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
1176 }
1177 
1178 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1179 {
1180 	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
1181 }
1182 
1183 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1184 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1185 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
1186 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1187 
1188 /*
1189  * In the RV64 Linux scheme, we give the user half of the virtual-address space
1190  * and give the kernel the other (upper) half.
1191  */
1192 #ifdef CONFIG_64BIT
1193 #define KERN_VIRT_START	(-(BIT(VA_BITS)) + TASK_SIZE)
1194 #else
1195 #define KERN_VIRT_START	FIXADDR_START
1196 #endif
1197 
1198 /*
1199  * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
1200  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
1201  * Task size is:
1202  * -        0x9fc00000	(~2.5GB) for RV32.
1203  * -      0x4000000000	( 256GB) for RV64 using SV39 mmu
1204  * -    0x800000000000	( 128TB) for RV64 using SV48 mmu
1205  * - 0x100000000000000	(  64PB) for RV64 using SV57 mmu
1206  *
1207  * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
1208  * Instruction Set Manual Volume II: Privileged Architecture" states that
1209  * "load and store effective addresses, which are 64bits, must have bits
1210  * 63–48 all equal to bit 47, or else a page-fault exception will occur."
1211  * Similarly for SV57, bits 63–57 must be equal to bit 56.
1212  */
1213 #ifdef CONFIG_64BIT
1214 #define TASK_SIZE_64	(PGDIR_SIZE * PTRS_PER_PGD / 2)
1215 
1216 #ifdef CONFIG_COMPAT
1217 #define TASK_SIZE_32	(_AC(0x80000000, UL) - PAGE_SIZE)
1218 #define TASK_SIZE	(is_compat_task() ? \
1219 			 TASK_SIZE_32 : TASK_SIZE_64)
1220 #else
1221 #define TASK_SIZE	TASK_SIZE_64
1222 #endif
1223 
1224 #else
1225 #define TASK_SIZE	FIXADDR_START
1226 #endif
1227 
1228 #else /* CONFIG_MMU */
1229 
1230 #define PAGE_SHARED		__pgprot(0)
1231 #define PAGE_KERNEL		__pgprot(0)
1232 #define swapper_pg_dir		NULL
1233 #define TASK_SIZE		_AC(-1, UL)
1234 #define VMALLOC_START		_AC(0, UL)
1235 #define VMALLOC_END		TASK_SIZE
1236 
1237 #endif /* !CONFIG_MMU */
1238 
1239 extern char _start[];
1240 extern void *_dtb_early_va;
1241 extern uintptr_t _dtb_early_pa;
1242 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
1243 #define dtb_early_va	(*(void **)XIP_FIXUP(&_dtb_early_va))
1244 #define dtb_early_pa	(*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
1245 #else
1246 #define dtb_early_va	_dtb_early_va
1247 #define dtb_early_pa	_dtb_early_pa
1248 #endif /* CONFIG_XIP_KERNEL */
1249 extern u64 satp_mode;
1250 
1251 void paging_init(void);
1252 void misc_mem_init(void);
1253 
1254 /*
1255  * ZERO_PAGE is a global shared page that is always zero,
1256  * used for zero-mapped memory areas, etc.
1257  */
1258 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
1259 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
1260 
1261 /*
1262  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1263  * TLB flush will be required as a result of the "set". For example, use
1264  * in scenarios where it is known ahead of time that the routine is
1265  * setting non-present entries, or re-setting an existing entry to the
1266  * same value. Otherwise, use the typical "set" helpers and flush the
1267  * TLB.
1268  */
1269 #define set_p4d_safe(p4dp, p4d) \
1270 ({ \
1271 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1272 	set_p4d(p4dp, p4d); \
1273 })
1274 
1275 #define set_pgd_safe(pgdp, pgd) \
1276 ({ \
1277 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1278 	set_pgd(pgdp, pgd); \
1279 })
1280 #endif /* !__ASSEMBLER__ */
1281 
1282 #endif /* _ASM_RISCV_PGTABLE_H */
1283