xref: /linux/arch/riscv/include/asm/pgtable.h (revision 6a069876eb1402478900ee0eb7d7fe276bb1f4e3)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5 
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8 
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11 
12 #include <asm/pgtable-bits.h>
13 
14 #ifndef CONFIG_MMU
15 #ifdef CONFIG_RELOCATABLE
16 #define KERNEL_LINK_ADDR	UL(0)
17 #else
18 #define KERNEL_LINK_ADDR	_AC(CONFIG_PHYS_RAM_BASE, UL)
19 #endif
20 #define KERN_VIRT_SIZE		(UL(-1))
21 #else
22 
23 #define ADDRESS_SPACE_END	(UL(-1))
24 
25 #ifdef CONFIG_64BIT
26 /* Leave 2GB for kernel and BPF at the end of the address space */
27 #define KERNEL_LINK_ADDR	(ADDRESS_SPACE_END - SZ_2G + 1)
28 #else
29 #define KERNEL_LINK_ADDR	PAGE_OFFSET
30 #endif
31 
32 /* Number of entries in the page global directory */
33 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
34 /* Number of entries in the page table */
35 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
36 
37 /*
38  * Half of the kernel address space (1/4 of the entries of the page global
39  * directory) is for the direct mapping.
40  */
41 #define KERN_VIRT_SIZE          ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
42 
43 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
44 #define VMALLOC_END      PAGE_OFFSET
45 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
46 
47 #define BPF_JIT_REGION_SIZE	(SZ_128M)
48 #ifdef CONFIG_64BIT
49 #define BPF_JIT_REGION_START	(BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
50 #define BPF_JIT_REGION_END	(MODULES_END)
51 #else
52 #define BPF_JIT_REGION_START	(PAGE_OFFSET - BPF_JIT_REGION_SIZE)
53 #define BPF_JIT_REGION_END	(VMALLOC_END)
54 #endif
55 
56 /* Modules always live before the kernel */
57 #ifdef CONFIG_64BIT
58 /* This is used to define the end of the KASAN shadow region */
59 #define MODULES_LOWEST_VADDR	(KERNEL_LINK_ADDR - SZ_2G)
60 #define MODULES_VADDR		(PFN_ALIGN((unsigned long)&_end) - SZ_2G)
61 #define MODULES_END		(PFN_ALIGN((unsigned long)&_start))
62 #else
63 #define MODULES_VADDR		VMALLOC_START
64 #define MODULES_END		VMALLOC_END
65 #endif
66 
67 /*
68  * Roughly size the vmemmap space to be large enough to fit enough
69  * struct pages to map half the virtual address space. Then
70  * position vmemmap directly below the VMALLOC region.
71  */
72 #define VA_BITS_SV32 32
73 #ifdef CONFIG_64BIT
74 #define VA_BITS_SV39 39
75 #define VA_BITS_SV48 48
76 #define VA_BITS_SV57 57
77 
78 #define VA_BITS		(pgtable_l5_enabled ? \
79 				VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
80 #else
81 #define VA_BITS		VA_BITS_SV32
82 #endif
83 
84 #define VMEMMAP_SHIFT \
85 	(VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
86 #define VMEMMAP_SIZE	BIT(VMEMMAP_SHIFT)
87 #define VMEMMAP_END	VMALLOC_START
88 #define VMEMMAP_START	(VMALLOC_START - VMEMMAP_SIZE)
89 
90 /*
91  * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
92  * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
93  */
94 #define vmemmap		((struct page *)VMEMMAP_START - vmemmap_start_pfn)
95 
96 #define PCI_IO_SIZE      SZ_16M
97 #define PCI_IO_END       VMEMMAP_START
98 #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
99 
100 #define FIXADDR_TOP      PCI_IO_START
101 #ifdef CONFIG_64BIT
102 #define MAX_FDT_SIZE	 PMD_SIZE
103 #define FIX_FDT_SIZE	 (MAX_FDT_SIZE + SZ_2M)
104 #define FIXADDR_SIZE     (PMD_SIZE + FIX_FDT_SIZE)
105 #else
106 #define MAX_FDT_SIZE	 PGDIR_SIZE
107 #define FIX_FDT_SIZE	 MAX_FDT_SIZE
108 #define FIXADDR_SIZE     (PGDIR_SIZE + FIX_FDT_SIZE)
109 #endif
110 #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
111 
112 #endif
113 
114 #ifndef __ASSEMBLER__
115 
116 #include <asm/page.h>
117 #include <asm/tlbflush.h>
118 #include <linux/mm_types.h>
119 #include <asm/compat.h>
120 #include <asm/cpufeature.h>
121 
122 #define __page_val_to_pfn(_val)  (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
123 
124 #ifdef CONFIG_64BIT
125 #include <asm/pgtable-64.h>
126 
127 #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
128 #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
129 #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
130 #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
131 #else
132 #include <asm/pgtable-32.h>
133 #endif /* CONFIG_64BIT */
134 
135 #include <linux/page_table_check.h>
136 
137 #ifdef CONFIG_XIP_KERNEL
138 #define XIP_FIXUP(addr) ({							\
139 	extern char _sdata[], _start[], _end[];					\
140 	uintptr_t __rom_start_data = CONFIG_XIP_PHYS_ADDR			\
141 				+ (uintptr_t)&_sdata - (uintptr_t)&_start;	\
142 	uintptr_t __rom_end_data = CONFIG_XIP_PHYS_ADDR				\
143 				+ (uintptr_t)&_end - (uintptr_t)&_start;	\
144 	uintptr_t __a = (uintptr_t)(addr);					\
145 	(__a >= __rom_start_data && __a < __rom_end_data) ?			\
146 		__a - __rom_start_data + CONFIG_PHYS_RAM_BASE :	__a;		\
147 	})
148 #else
149 #define XIP_FIXUP(addr)		(addr)
150 #endif /* CONFIG_XIP_KERNEL */
151 
152 struct pt_alloc_ops {
153 	pte_t *(*get_pte_virt)(phys_addr_t pa);
154 	phys_addr_t (*alloc_pte)(uintptr_t va);
155 #ifndef __PAGETABLE_PMD_FOLDED
156 	pmd_t *(*get_pmd_virt)(phys_addr_t pa);
157 	phys_addr_t (*alloc_pmd)(uintptr_t va);
158 	pud_t *(*get_pud_virt)(phys_addr_t pa);
159 	phys_addr_t (*alloc_pud)(uintptr_t va);
160 	p4d_t *(*get_p4d_virt)(phys_addr_t pa);
161 	phys_addr_t (*alloc_p4d)(uintptr_t va);
162 #endif
163 };
164 
165 extern struct pt_alloc_ops pt_ops __meminitdata;
166 
167 #ifdef CONFIG_MMU
168 /* Number of PGD entries that a user-mode program can use */
169 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
170 
171 /* Page protection bits */
172 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
173 
174 #define PAGE_NONE		__pgprot(_PAGE_PROT_NONE | _PAGE_READ)
175 #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
176 #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
177 #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
178 #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
179 #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
180 					 _PAGE_EXEC | _PAGE_WRITE)
181 
182 #define PAGE_COPY		PAGE_READ
183 #define PAGE_COPY_EXEC		PAGE_READ_EXEC
184 #define PAGE_SHARED		PAGE_WRITE
185 #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
186 
187 #define _PAGE_KERNEL		(_PAGE_READ \
188 				| _PAGE_WRITE \
189 				| _PAGE_PRESENT \
190 				| _PAGE_ACCESSED \
191 				| _PAGE_DIRTY \
192 				| _PAGE_GLOBAL)
193 
194 #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
195 #define PAGE_KERNEL_READ	__pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
196 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
197 #define PAGE_KERNEL_READ_EXEC	__pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
198 					 | _PAGE_EXEC)
199 
200 #define PAGE_TABLE		__pgprot(_PAGE_TABLE)
201 
202 #define _PAGE_KERNEL_NC ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_NOCACHE)
203 #define _PAGE_IOREMAP	((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
204 #define PAGE_KERNEL_IO		__pgprot(_PAGE_IOREMAP)
205 
206 extern pgd_t swapper_pg_dir[];
207 extern pgd_t trampoline_pg_dir[];
208 extern pgd_t early_pg_dir[];
209 
210 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
211 static inline int pmd_present(pmd_t pmd)
212 {
213 	/*
214 	 * Checking for _PAGE_LEAF is needed too because:
215 	 * When splitting a THP, split_huge_page() will temporarily clear
216 	 * the present bit, in this situation, pmd_present() and
217 	 * pmd_trans_huge() still needs to return true.
218 	 */
219 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
220 }
221 #else
222 static inline int pmd_present(pmd_t pmd)
223 {
224 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
225 }
226 #endif
227 
228 static inline int pmd_none(pmd_t pmd)
229 {
230 	return (pmd_val(pmd) == 0);
231 }
232 
233 static inline int pmd_bad(pmd_t pmd)
234 {
235 	return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
236 }
237 
238 #define pmd_leaf	pmd_leaf
239 static inline bool pmd_leaf(pmd_t pmd)
240 {
241 	return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
242 }
243 
244 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
245 {
246 	WRITE_ONCE(*pmdp, pmd);
247 }
248 
249 static inline void pmd_clear(pmd_t *pmdp)
250 {
251 	set_pmd(pmdp, __pmd(0));
252 }
253 
254 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
255 {
256 	unsigned long prot_val = pgprot_val(prot);
257 
258 	ALT_THEAD_PMA(prot_val);
259 
260 	return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
261 }
262 
263 static inline unsigned long _pgd_pfn(pgd_t pgd)
264 {
265 	return __page_val_to_pfn(pgd_val(pgd));
266 }
267 
268 static inline struct page *pmd_page(pmd_t pmd)
269 {
270 	return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
271 }
272 
273 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
274 {
275 	return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
276 }
277 
278 static inline pte_t pmd_pte(pmd_t pmd)
279 {
280 	return __pte(pmd_val(pmd));
281 }
282 
283 static inline pte_t pud_pte(pud_t pud)
284 {
285 	return __pte(pud_val(pud));
286 }
287 
288 #ifdef CONFIG_RISCV_ISA_SVNAPOT
289 
290 static __always_inline bool has_svnapot(void)
291 {
292 	return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
293 }
294 
295 static inline unsigned long pte_napot(pte_t pte)
296 {
297 	return pte_val(pte) & _PAGE_NAPOT;
298 }
299 
300 static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
301 {
302 	int pos = order - 1 + _PAGE_PFN_SHIFT;
303 	unsigned long napot_bit = BIT(pos);
304 	unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
305 
306 	return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
307 }
308 
309 #else
310 
311 static __always_inline bool has_svnapot(void) { return false; }
312 
313 static inline unsigned long pte_napot(pte_t pte)
314 {
315 	return 0;
316 }
317 
318 #endif /* CONFIG_RISCV_ISA_SVNAPOT */
319 
320 /* Yields the page frame number (PFN) of a page table entry */
321 static inline unsigned long pte_pfn(pte_t pte)
322 {
323 	unsigned long res  = __page_val_to_pfn(pte_val(pte));
324 
325 	if (has_svnapot() && pte_napot(pte))
326 		res = res & (res - 1UL);
327 
328 	return res;
329 }
330 
331 #define pte_page(x)     pfn_to_page(pte_pfn(x))
332 
333 /* Constructs a page table entry */
334 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
335 {
336 	unsigned long prot_val = pgprot_val(prot);
337 
338 	ALT_THEAD_PMA(prot_val);
339 
340 	return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
341 }
342 
343 #define pte_pgprot pte_pgprot
344 static inline pgprot_t pte_pgprot(pte_t pte)
345 {
346 	unsigned long pfn = pte_pfn(pte);
347 
348 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
349 }
350 
351 static inline int pte_present(pte_t pte)
352 {
353 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
354 }
355 
356 #define pte_accessible pte_accessible
357 static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a)
358 {
359 	if (pte_val(a) & _PAGE_PRESENT)
360 		return true;
361 
362 	if ((pte_val(a) & _PAGE_PROT_NONE) &&
363 	    atomic_read(&mm->tlb_flush_pending))
364 		return true;
365 
366 	return false;
367 }
368 
369 static inline int pte_none(pte_t pte)
370 {
371 	return (pte_val(pte) == 0);
372 }
373 
374 static inline int pte_write(pte_t pte)
375 {
376 	return pte_val(pte) & _PAGE_WRITE;
377 }
378 
379 static inline int pte_exec(pte_t pte)
380 {
381 	return pte_val(pte) & _PAGE_EXEC;
382 }
383 
384 static inline int pte_user(pte_t pte)
385 {
386 	return pte_val(pte) & _PAGE_USER;
387 }
388 
389 static inline int pte_huge(pte_t pte)
390 {
391 	return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
392 }
393 
394 static inline int pte_dirty(pte_t pte)
395 {
396 	return pte_val(pte) & _PAGE_DIRTY;
397 }
398 
399 static inline int pte_young(pte_t pte)
400 {
401 	return pte_val(pte) & _PAGE_ACCESSED;
402 }
403 
404 static inline int pte_special(pte_t pte)
405 {
406 	return pte_val(pte) & _PAGE_SPECIAL;
407 }
408 
409 /* static inline pte_t pte_rdprotect(pte_t pte) */
410 
411 static inline pte_t pte_wrprotect(pte_t pte)
412 {
413 	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
414 }
415 
416 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
417 #define pgtable_supports_uffd_wp()	\
418 	riscv_has_extension_unlikely(RISCV_ISA_EXT_SVRSW60T59B)
419 
420 static inline bool pte_uffd_wp(pte_t pte)
421 {
422 	return !!(pte_val(pte) & _PAGE_UFFD_WP);
423 }
424 
425 static inline pte_t pte_mkuffd_wp(pte_t pte)
426 {
427 	return pte_wrprotect(__pte(pte_val(pte) | _PAGE_UFFD_WP));
428 }
429 
430 static inline pte_t pte_clear_uffd_wp(pte_t pte)
431 {
432 	return __pte(pte_val(pte) & ~(_PAGE_UFFD_WP));
433 }
434 
435 static inline bool pte_swp_uffd_wp(pte_t pte)
436 {
437 	return !!(pte_val(pte) & _PAGE_SWP_UFFD_WP);
438 }
439 
440 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
441 {
442 	return __pte(pte_val(pte) | _PAGE_SWP_UFFD_WP);
443 }
444 
445 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
446 {
447 	return __pte(pte_val(pte) & ~(_PAGE_SWP_UFFD_WP));
448 }
449 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
450 
451 /* static inline pte_t pte_mkread(pte_t pte) */
452 
453 static inline pte_t pte_mkwrite_novma(pte_t pte)
454 {
455 	return __pte(pte_val(pte) | _PAGE_WRITE);
456 }
457 
458 /* static inline pte_t pte_mkexec(pte_t pte) */
459 
460 static inline pte_t pte_mkdirty(pte_t pte)
461 {
462 	return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
463 }
464 
465 static inline pte_t pte_mkclean(pte_t pte)
466 {
467 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
468 }
469 
470 static inline pte_t pte_mkyoung(pte_t pte)
471 {
472 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
473 }
474 
475 static inline pte_t pte_mkold(pte_t pte)
476 {
477 	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
478 }
479 
480 static inline pte_t pte_mkspecial(pte_t pte)
481 {
482 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
483 }
484 
485 static inline pte_t pte_mkhuge(pte_t pte)
486 {
487 	return pte;
488 }
489 
490 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
491 #define pgtable_supports_soft_dirty()				\
492 	(IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) &&			\
493 	 riscv_has_extension_unlikely(RISCV_ISA_EXT_SVRSW60T59B))
494 
495 static inline bool pte_soft_dirty(pte_t pte)
496 {
497 	return !!(pte_val(pte) & _PAGE_SOFT_DIRTY);
498 }
499 
500 static inline pte_t pte_mksoft_dirty(pte_t pte)
501 {
502 	return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
503 }
504 
505 static inline pte_t pte_clear_soft_dirty(pte_t pte)
506 {
507 	return __pte(pte_val(pte) & ~(_PAGE_SOFT_DIRTY));
508 }
509 
510 static inline bool pte_swp_soft_dirty(pte_t pte)
511 {
512 	return !!(pte_val(pte) & _PAGE_SWP_SOFT_DIRTY);
513 }
514 
515 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
516 {
517 	return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
518 }
519 
520 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
521 {
522 	return __pte(pte_val(pte) & ~(_PAGE_SWP_SOFT_DIRTY));
523 }
524 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
525 
526 #ifdef CONFIG_RISCV_ISA_SVNAPOT
527 #define pte_leaf_size(pte)	(pte_napot(pte) ?				\
528 					napot_cont_size(napot_cont_order(pte)) :\
529 					PAGE_SIZE)
530 #endif
531 
532 #ifdef CONFIG_NUMA_BALANCING
533 /*
534  * See the comment in include/asm-generic/pgtable.h
535  */
536 static inline int pte_protnone(pte_t pte)
537 {
538 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
539 }
540 
541 static inline int pmd_protnone(pmd_t pmd)
542 {
543 	return pte_protnone(pmd_pte(pmd));
544 }
545 #endif
546 
547 /* Modify page protection bits */
548 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
549 {
550 	unsigned long newprot_val = pgprot_val(newprot);
551 
552 	ALT_THEAD_PMA(newprot_val);
553 
554 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
555 }
556 
557 #define pgd_ERROR(e) \
558 	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
559 
560 
561 /* Commit new configuration to MMU hardware */
562 static inline void update_mmu_cache_range(struct vm_fault *vmf,
563 		struct vm_area_struct *vma, unsigned long address,
564 		pte_t *ptep, unsigned int nr)
565 {
566 	/*
567 	 * Svvptc guarantees that the new valid pte will be visible within
568 	 * a bounded timeframe, so when the uarch does not cache invalid
569 	 * entries, we don't have to do anything.
570 	 */
571 	if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SVVPTC))
572 		return;
573 
574 	/*
575 	 * The kernel assumes that TLBs don't cache invalid entries, but
576 	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
577 	 * cache flush; it is necessary even after writing invalid entries.
578 	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
579 	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
580 	 */
581 	while (nr--)
582 		local_flush_tlb_page(address + nr * PAGE_SIZE);
583 
584 }
585 #define update_mmu_cache(vma, addr, ptep) \
586 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
587 
588 #define update_mmu_tlb_range(vma, addr, ptep, nr) \
589 	update_mmu_cache_range(NULL, vma, addr, ptep, nr)
590 
591 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
592 		unsigned long address, pmd_t *pmdp)
593 {
594 	pte_t *ptep = (pte_t *)pmdp;
595 
596 	update_mmu_cache(vma, address, ptep);
597 }
598 
599 #define __HAVE_ARCH_PTE_SAME
600 static inline int pte_same(pte_t pte_a, pte_t pte_b)
601 {
602 	return pte_val(pte_a) == pte_val(pte_b);
603 }
604 
605 /*
606  * Certain architectures need to do special things when PTEs within
607  * a page table are directly modified.  Thus, the following hook is
608  * made available.
609  */
610 static inline void set_pte(pte_t *ptep, pte_t pteval)
611 {
612 	WRITE_ONCE(*ptep, pteval);
613 }
614 
615 void flush_icache_pte(struct mm_struct *mm, pte_t pte);
616 
617 static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval)
618 {
619 	if (pte_present(pteval) && pte_exec(pteval))
620 		flush_icache_pte(mm, pteval);
621 
622 	set_pte(ptep, pteval);
623 }
624 
625 #define PFN_PTE_SHIFT		_PAGE_PFN_SHIFT
626 
627 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
628 		pte_t *ptep, pte_t pteval, unsigned int nr)
629 {
630 	page_table_check_ptes_set(mm, ptep, pteval, nr);
631 
632 	for (;;) {
633 		__set_pte_at(mm, ptep, pteval);
634 		if (--nr == 0)
635 			break;
636 		ptep++;
637 		pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
638 	}
639 }
640 #define set_ptes set_ptes
641 
642 static inline void pte_clear(struct mm_struct *mm,
643 	unsigned long addr, pte_t *ptep)
644 {
645 	__set_pte_at(mm, ptep, __pte(0));
646 }
647 
648 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS	/* defined in mm/pgtable.c */
649 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
650 				 pte_t *ptep, pte_t entry, int dirty);
651 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG	/* defined in mm/pgtable.c */
652 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
653 				     pte_t *ptep);
654 
655 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
656 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
657 				       unsigned long address, pte_t *ptep)
658 {
659 #ifdef CONFIG_SMP
660 	pte_t pte = __pte(xchg(&ptep->pte, 0));
661 #else
662 	pte_t pte = *ptep;
663 
664 	set_pte(ptep, __pte(0));
665 #endif
666 
667 	page_table_check_pte_clear(mm, pte);
668 
669 	return pte;
670 }
671 
672 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
673 static inline void ptep_set_wrprotect(struct mm_struct *mm,
674 				      unsigned long address, pte_t *ptep)
675 {
676 	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
677 }
678 
679 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
680 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
681 					 unsigned long address, pte_t *ptep)
682 {
683 	/*
684 	 * This comment is borrowed from x86, but applies equally to RISC-V:
685 	 *
686 	 * Clearing the accessed bit without a TLB flush
687 	 * doesn't cause data corruption. [ It could cause incorrect
688 	 * page aging and the (mistaken) reclaim of hot pages, but the
689 	 * chance of that should be relatively low. ]
690 	 *
691 	 * So as a performance optimization don't flush the TLB when
692 	 * clearing the accessed bit, it will eventually be flushed by
693 	 * a context switch or a VM operation anyway. [ In the rare
694 	 * event of it not getting flushed for a long time the delay
695 	 * shouldn't really matter because there's no real memory
696 	 * pressure for swapout to react to. ]
697 	 */
698 	return ptep_test_and_clear_young(vma, address, ptep);
699 }
700 
701 #define pgprot_nx pgprot_nx
702 static inline pgprot_t pgprot_nx(pgprot_t _prot)
703 {
704 	return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC);
705 }
706 
707 #define pgprot_noncached pgprot_noncached
708 static inline pgprot_t pgprot_noncached(pgprot_t _prot)
709 {
710 	unsigned long prot = pgprot_val(_prot);
711 
712 	prot &= ~_PAGE_MTMASK;
713 	prot |= _PAGE_IO;
714 
715 	return __pgprot(prot);
716 }
717 
718 #define pgprot_writecombine pgprot_writecombine
719 static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
720 {
721 	unsigned long prot = pgprot_val(_prot);
722 
723 	prot &= ~_PAGE_MTMASK;
724 	prot |= _PAGE_NOCACHE;
725 
726 	return __pgprot(prot);
727 }
728 
729 #define pgprot_dmacoherent pgprot_writecombine
730 
731 /*
732  * Both Svade and Svadu control the hardware behavior when the PTE A/D bits need to be set. By
733  * default the M-mode firmware enables the hardware updating scheme when only Svadu is present in
734  * DT.
735  */
736 #define arch_has_hw_pte_young arch_has_hw_pte_young
737 static inline bool arch_has_hw_pte_young(void)
738 {
739 	return riscv_has_extension_unlikely(RISCV_ISA_EXT_SVADU);
740 }
741 
742 /*
743  * THP functions
744  */
745 static inline pmd_t pte_pmd(pte_t pte)
746 {
747 	return __pmd(pte_val(pte));
748 }
749 
750 static inline pud_t pte_pud(pte_t pte)
751 {
752 	return __pud(pte_val(pte));
753 }
754 
755 static inline pmd_t pmd_mkhuge(pmd_t pmd)
756 {
757 	return pmd;
758 }
759 
760 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
761 {
762 	return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
763 }
764 
765 #define __pmd_to_phys(pmd)  (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
766 
767 static inline unsigned long pmd_pfn(pmd_t pmd)
768 {
769 	return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
770 }
771 
772 #define __pud_to_phys(pud)  (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
773 
774 #define pud_pfn pud_pfn
775 static inline unsigned long pud_pfn(pud_t pud)
776 {
777 	return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
778 }
779 
780 #define pmd_pgprot pmd_pgprot
781 static inline pgprot_t pmd_pgprot(pmd_t pmd)
782 {
783 	return pte_pgprot(pmd_pte(pmd));
784 }
785 
786 #define pud_pgprot pud_pgprot
787 static inline pgprot_t pud_pgprot(pud_t pud)
788 {
789 	return pte_pgprot(pud_pte(pud));
790 }
791 
792 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
793 {
794 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
795 }
796 
797 #define pmd_write pmd_write
798 static inline int pmd_write(pmd_t pmd)
799 {
800 	return pte_write(pmd_pte(pmd));
801 }
802 
803 #define pud_write pud_write
804 static inline int pud_write(pud_t pud)
805 {
806 	return pte_write(pud_pte(pud));
807 }
808 
809 #define pmd_dirty pmd_dirty
810 static inline int pmd_dirty(pmd_t pmd)
811 {
812 	return pte_dirty(pmd_pte(pmd));
813 }
814 
815 #define pmd_young pmd_young
816 static inline int pmd_young(pmd_t pmd)
817 {
818 	return pte_young(pmd_pte(pmd));
819 }
820 
821 static inline int pmd_user(pmd_t pmd)
822 {
823 	return pte_user(pmd_pte(pmd));
824 }
825 
826 static inline pmd_t pmd_mkold(pmd_t pmd)
827 {
828 	return pte_pmd(pte_mkold(pmd_pte(pmd)));
829 }
830 
831 static inline pmd_t pmd_mkyoung(pmd_t pmd)
832 {
833 	return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
834 }
835 
836 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
837 {
838 	return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
839 }
840 
841 static inline pmd_t pmd_wrprotect(pmd_t pmd)
842 {
843 	return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
844 }
845 
846 static inline pmd_t pmd_mkclean(pmd_t pmd)
847 {
848 	return pte_pmd(pte_mkclean(pmd_pte(pmd)));
849 }
850 
851 static inline pmd_t pmd_mkdirty(pmd_t pmd)
852 {
853 	return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
854 }
855 
856 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
857 static inline bool pmd_special(pmd_t pmd)
858 {
859 	return pte_special(pmd_pte(pmd));
860 }
861 
862 static inline pmd_t pmd_mkspecial(pmd_t pmd)
863 {
864 	return pte_pmd(pte_mkspecial(pmd_pte(pmd)));
865 }
866 #endif
867 
868 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
869 static inline bool pud_special(pud_t pud)
870 {
871 	return pte_special(pud_pte(pud));
872 }
873 
874 static inline pud_t pud_mkspecial(pud_t pud)
875 {
876 	return pte_pud(pte_mkspecial(pud_pte(pud)));
877 }
878 #endif
879 
880 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
881 static inline bool pmd_uffd_wp(pmd_t pmd)
882 {
883 	return pte_uffd_wp(pmd_pte(pmd));
884 }
885 
886 static inline pmd_t pmd_mkuffd_wp(pmd_t pmd)
887 {
888 	return pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)));
889 }
890 
891 static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd)
892 {
893 	return pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)));
894 }
895 
896 static inline bool pmd_swp_uffd_wp(pmd_t pmd)
897 {
898 	return pte_swp_uffd_wp(pmd_pte(pmd));
899 }
900 
901 static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd)
902 {
903 	return pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)));
904 }
905 
906 static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd)
907 {
908 	return pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)));
909 }
910 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
911 
912 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
913 static inline bool pmd_soft_dirty(pmd_t pmd)
914 {
915 	return pte_soft_dirty(pmd_pte(pmd));
916 }
917 
918 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
919 {
920 	return pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)));
921 }
922 
923 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
924 {
925 	return pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)));
926 }
927 
928 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
929 static inline bool pmd_swp_soft_dirty(pmd_t pmd)
930 {
931 	return pte_swp_soft_dirty(pmd_pte(pmd));
932 }
933 
934 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
935 {
936 	return pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)));
937 }
938 
939 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
940 {
941 	return pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)));
942 }
943 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
944 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
945 
946 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
947 				pmd_t *pmdp, pmd_t pmd)
948 {
949 	page_table_check_pmd_set(mm, pmdp, pmd);
950 	return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd));
951 }
952 
953 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
954 				pud_t *pudp, pud_t pud)
955 {
956 	page_table_check_pud_set(mm, pudp, pud);
957 	return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud));
958 }
959 
960 #ifdef CONFIG_PAGE_TABLE_CHECK
961 static inline bool pte_user_accessible_page(pte_t pte)
962 {
963 	return pte_present(pte) && pte_user(pte);
964 }
965 
966 static inline bool pmd_user_accessible_page(pmd_t pmd)
967 {
968 	return pmd_leaf(pmd) && pmd_user(pmd);
969 }
970 
971 static inline bool pud_user_accessible_page(pud_t pud)
972 {
973 	return pud_leaf(pud) && pud_user(pud);
974 }
975 #endif
976 
977 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
978 static inline int pmd_trans_huge(pmd_t pmd)
979 {
980 	return pmd_leaf(pmd);
981 }
982 
983 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
984 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
985 					unsigned long address, pmd_t *pmdp,
986 					pmd_t entry, int dirty)
987 {
988 	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
989 }
990 
991 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
992 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
993 					unsigned long address, pmd_t *pmdp)
994 {
995 	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
996 }
997 
998 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
999 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1000 					unsigned long address, pmd_t *pmdp)
1001 {
1002 #ifdef CONFIG_SMP
1003 	pmd_t pmd = __pmd(xchg(&pmdp->pmd, 0));
1004 #else
1005 	pmd_t pmd = *pmdp;
1006 
1007 	pmd_clear(pmdp);
1008 #endif
1009 
1010 	page_table_check_pmd_clear(mm, pmd);
1011 
1012 	return pmd;
1013 }
1014 
1015 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1016 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1017 					unsigned long address, pmd_t *pmdp)
1018 {
1019 	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1020 }
1021 
1022 #define pmdp_establish pmdp_establish
1023 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1024 				unsigned long address, pmd_t *pmdp, pmd_t pmd)
1025 {
1026 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1027 	return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
1028 }
1029 
1030 #define pmdp_collapse_flush pmdp_collapse_flush
1031 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1032 				 unsigned long address, pmd_t *pmdp);
1033 
1034 static inline pud_t pud_wrprotect(pud_t pud)
1035 {
1036 	return pte_pud(pte_wrprotect(pud_pte(pud)));
1037 }
1038 
1039 static inline int pud_trans_huge(pud_t pud)
1040 {
1041 	return pud_leaf(pud);
1042 }
1043 
1044 static inline int pud_dirty(pud_t pud)
1045 {
1046 	return pte_dirty(pud_pte(pud));
1047 }
1048 
1049 static inline pud_t pud_mkyoung(pud_t pud)
1050 {
1051 	return pte_pud(pte_mkyoung(pud_pte(pud)));
1052 }
1053 
1054 static inline pud_t pud_mkold(pud_t pud)
1055 {
1056 	return pte_pud(pte_mkold(pud_pte(pud)));
1057 }
1058 
1059 static inline pud_t pud_mkdirty(pud_t pud)
1060 {
1061 	return pte_pud(pte_mkdirty(pud_pte(pud)));
1062 }
1063 
1064 static inline pud_t pud_mkclean(pud_t pud)
1065 {
1066 	return pte_pud(pte_mkclean(pud_pte(pud)));
1067 }
1068 
1069 static inline pud_t pud_mkwrite(pud_t pud)
1070 {
1071 	return pte_pud(pte_mkwrite_novma(pud_pte(pud)));
1072 }
1073 
1074 static inline pud_t pud_mkhuge(pud_t pud)
1075 {
1076 	return pud;
1077 }
1078 
1079 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
1080 					unsigned long address, pud_t *pudp,
1081 					pud_t entry, int dirty)
1082 {
1083 	return ptep_set_access_flags(vma, address, (pte_t *)pudp, pud_pte(entry), dirty);
1084 }
1085 
1086 static inline int pudp_test_and_clear_young(struct vm_area_struct *vma,
1087 					    unsigned long address, pud_t *pudp)
1088 {
1089 	return ptep_test_and_clear_young(vma, address, (pte_t *)pudp);
1090 }
1091 
1092 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1093 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1094 					    unsigned long address,  pud_t *pudp)
1095 {
1096 #ifdef CONFIG_SMP
1097 	pud_t pud = __pud(xchg(&pudp->pud, 0));
1098 #else
1099 	pud_t pud = *pudp;
1100 
1101 	pud_clear(pudp);
1102 #endif
1103 
1104 	page_table_check_pud_clear(mm, pud);
1105 
1106 	return pud;
1107 }
1108 
1109 static inline int pud_young(pud_t pud)
1110 {
1111 	return pte_young(pud_pte(pud));
1112 }
1113 
1114 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1115 					unsigned long address, pud_t *pudp)
1116 {
1117 	pte_t *ptep = (pte_t *)pudp;
1118 
1119 	update_mmu_cache(vma, address, ptep);
1120 }
1121 
1122 static inline pud_t pudp_establish(struct vm_area_struct *vma,
1123 				   unsigned long address, pud_t *pudp, pud_t pud)
1124 {
1125 	page_table_check_pud_set(vma->vm_mm, pudp, pud);
1126 	return __pud(atomic_long_xchg((atomic_long_t *)pudp, pud_val(pud)));
1127 }
1128 
1129 static inline pud_t pud_mkinvalid(pud_t pud)
1130 {
1131 	return __pud(pud_val(pud) & ~(_PAGE_PRESENT | _PAGE_PROT_NONE));
1132 }
1133 
1134 extern pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
1135 			     pud_t *pudp);
1136 
1137 static inline pud_t pud_modify(pud_t pud, pgprot_t newprot)
1138 {
1139 	return pte_pud(pte_modify(pud_pte(pud), newprot));
1140 }
1141 
1142 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1143 
1144 /*
1145  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
1146  * are !pte_none() && !pte_present().
1147  *
1148  * Format of swap PTE:
1149  *	bit            0:	_PAGE_PRESENT (zero)
1150  *	bit       1 to 2:	(zero)
1151  *	bit            3:	_PAGE_SWP_SOFT_DIRTY
1152  *	bit            4:	_PAGE_SWP_UFFD_WP
1153  *	bit            5:	_PAGE_PROT_NONE (zero)
1154  *	bit            6:	exclusive marker
1155  *	bits      7 to 11:	swap type
1156  *	bits 12 to XLEN-1:	swap offset
1157  */
1158 #define __SWP_TYPE_SHIFT	7
1159 #define __SWP_TYPE_BITS		5
1160 #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
1161 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
1162 
1163 #define MAX_SWAPFILES_CHECK()	\
1164 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1165 
1166 #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1167 #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
1168 #define __swp_entry(type, offset) ((swp_entry_t) \
1169 	{ (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
1170 	  ((offset) << __SWP_OFFSET_SHIFT) })
1171 
1172 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1173 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1174 
1175 static inline bool pte_swp_exclusive(pte_t pte)
1176 {
1177 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
1178 }
1179 
1180 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1181 {
1182 	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
1183 }
1184 
1185 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1186 {
1187 	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
1188 }
1189 
1190 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1191 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1192 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
1193 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1194 
1195 /*
1196  * In the RV64 Linux scheme, we give the user half of the virtual-address space
1197  * and give the kernel the other (upper) half.
1198  */
1199 #ifdef CONFIG_64BIT
1200 #define KERN_VIRT_START	(-(BIT(VA_BITS)) + TASK_SIZE)
1201 #else
1202 #define KERN_VIRT_START	FIXADDR_START
1203 #endif
1204 
1205 /*
1206  * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
1207  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
1208  * Task size is:
1209  * -        0x9fc00000	(~2.5GB) for RV32.
1210  * -      0x4000000000	( 256GB) for RV64 using SV39 mmu
1211  * -    0x800000000000	( 128TB) for RV64 using SV48 mmu
1212  * - 0x100000000000000	(  64PB) for RV64 using SV57 mmu
1213  *
1214  * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
1215  * Instruction Set Manual Volume II: Privileged Architecture" states that
1216  * "load and store effective addresses, which are 64bits, must have bits
1217  * 63–48 all equal to bit 47, or else a page-fault exception will occur."
1218  * Similarly for SV57, bits 63–57 must be equal to bit 56.
1219  */
1220 #ifdef CONFIG_64BIT
1221 #define TASK_SIZE_64	(PGDIR_SIZE * PTRS_PER_PGD / 2)
1222 
1223 #ifdef CONFIG_COMPAT
1224 #define TASK_SIZE_32	(_AC(0x80000000, UL) - PAGE_SIZE)
1225 #define TASK_SIZE	(is_compat_task() ? \
1226 			 TASK_SIZE_32 : TASK_SIZE_64)
1227 #else
1228 #define TASK_SIZE	TASK_SIZE_64
1229 #endif
1230 
1231 #else
1232 #define TASK_SIZE	FIXADDR_START
1233 #endif
1234 
1235 #else /* CONFIG_MMU */
1236 
1237 #define PAGE_SHARED		__pgprot(0)
1238 #define PAGE_KERNEL		__pgprot(0)
1239 #define swapper_pg_dir		NULL
1240 #define TASK_SIZE		_AC(-1, UL)
1241 #define VMALLOC_START		_AC(0, UL)
1242 #define VMALLOC_END		TASK_SIZE
1243 
1244 #endif /* !CONFIG_MMU */
1245 
1246 extern char _start[];
1247 extern void *_dtb_early_va;
1248 extern uintptr_t _dtb_early_pa;
1249 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
1250 #define dtb_early_va	(*(void **)XIP_FIXUP(&_dtb_early_va))
1251 #define dtb_early_pa	(*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
1252 #else
1253 #define dtb_early_va	_dtb_early_va
1254 #define dtb_early_pa	_dtb_early_pa
1255 #endif /* CONFIG_XIP_KERNEL */
1256 extern u64 satp_mode;
1257 
1258 void paging_init(void);
1259 void misc_mem_init(void);
1260 
1261 /*
1262  * ZERO_PAGE is a global shared page that is always zero,
1263  * used for zero-mapped memory areas, etc.
1264  */
1265 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
1266 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
1267 
1268 /*
1269  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1270  * TLB flush will be required as a result of the "set". For example, use
1271  * in scenarios where it is known ahead of time that the routine is
1272  * setting non-present entries, or re-setting an existing entry to the
1273  * same value. Otherwise, use the typical "set" helpers and flush the
1274  * TLB.
1275  */
1276 #define set_p4d_safe(p4dp, p4d) \
1277 ({ \
1278 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1279 	set_p4d(p4dp, p4d); \
1280 })
1281 
1282 #define set_pgd_safe(pgdp, pgd) \
1283 ({ \
1284 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1285 	set_pgd(pgdp, pgd); \
1286 })
1287 #endif /* !__ASSEMBLER__ */
1288 
1289 #endif /* _ASM_RISCV_PGTABLE_H */
1290