1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 */ 5 6 #ifndef _ASM_RISCV_PGTABLE_H 7 #define _ASM_RISCV_PGTABLE_H 8 9 #include <linux/mmzone.h> 10 #include <linux/sizes.h> 11 12 #include <asm/pgtable-bits.h> 13 14 #ifndef CONFIG_MMU 15 #define KERNEL_LINK_ADDR PAGE_OFFSET 16 #define KERN_VIRT_SIZE (UL(-1)) 17 #else 18 19 #define ADDRESS_SPACE_END (UL(-1)) 20 21 #ifdef CONFIG_64BIT 22 /* Leave 2GB for kernel and BPF at the end of the address space */ 23 #define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1) 24 #else 25 #define KERNEL_LINK_ADDR PAGE_OFFSET 26 #endif 27 28 /* Number of entries in the page global directory */ 29 #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) 30 /* Number of entries in the page table */ 31 #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 32 33 /* 34 * Half of the kernel address space (1/4 of the entries of the page global 35 * directory) is for the direct mapping. 36 */ 37 #define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2) 38 39 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) 40 #define VMALLOC_END PAGE_OFFSET 41 #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) 42 43 #define BPF_JIT_REGION_SIZE (SZ_128M) 44 #ifdef CONFIG_64BIT 45 #define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE) 46 #define BPF_JIT_REGION_END (MODULES_END) 47 #else 48 #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) 49 #define BPF_JIT_REGION_END (VMALLOC_END) 50 #endif 51 52 /* Modules always live before the kernel */ 53 #ifdef CONFIG_64BIT 54 /* This is used to define the end of the KASAN shadow region */ 55 #define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G) 56 #define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G) 57 #define MODULES_END (PFN_ALIGN((unsigned long)&_start)) 58 #else 59 #define MODULES_VADDR VMALLOC_START 60 #define MODULES_END VMALLOC_END 61 #endif 62 63 /* 64 * Roughly size the vmemmap space to be large enough to fit enough 65 * struct pages to map half the virtual address space. Then 66 * position vmemmap directly below the VMALLOC region. 67 */ 68 #define VA_BITS_SV32 32 69 #ifdef CONFIG_64BIT 70 #define VA_BITS_SV39 39 71 #define VA_BITS_SV48 48 72 #define VA_BITS_SV57 57 73 74 #define VA_BITS (pgtable_l5_enabled ? \ 75 VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39)) 76 #else 77 #define VA_BITS VA_BITS_SV32 78 #endif 79 80 #define VMEMMAP_SHIFT \ 81 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) 82 #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) 83 #define VMEMMAP_END VMALLOC_START 84 #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) 85 86 /* 87 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel 88 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. 89 */ 90 #define vmemmap ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT)) 91 92 #define PCI_IO_SIZE SZ_16M 93 #define PCI_IO_END VMEMMAP_START 94 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 95 96 #define FIXADDR_TOP PCI_IO_START 97 #ifdef CONFIG_64BIT 98 #define MAX_FDT_SIZE PMD_SIZE 99 #define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M) 100 #define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE) 101 #else 102 #define MAX_FDT_SIZE PGDIR_SIZE 103 #define FIX_FDT_SIZE MAX_FDT_SIZE 104 #define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE) 105 #endif 106 #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) 107 108 #endif 109 110 #ifndef __ASSEMBLY__ 111 112 #include <asm/page.h> 113 #include <asm/tlbflush.h> 114 #include <linux/mm_types.h> 115 #include <asm/compat.h> 116 117 #define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT) 118 119 #ifdef CONFIG_64BIT 120 #include <asm/pgtable-64.h> 121 122 #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1)) 123 #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1)) 124 #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1)) 125 126 #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS) 127 #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39) 128 #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64) 129 #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64) 130 #else 131 #include <asm/pgtable-32.h> 132 #endif /* CONFIG_64BIT */ 133 134 #include <linux/page_table_check.h> 135 136 #ifdef CONFIG_XIP_KERNEL 137 #define XIP_FIXUP(addr) ({ \ 138 extern char _sdata[], _start[], _end[]; \ 139 uintptr_t __rom_start_data = CONFIG_XIP_PHYS_ADDR \ 140 + (uintptr_t)&_sdata - (uintptr_t)&_start; \ 141 uintptr_t __rom_end_data = CONFIG_XIP_PHYS_ADDR \ 142 + (uintptr_t)&_end - (uintptr_t)&_start; \ 143 uintptr_t __a = (uintptr_t)(addr); \ 144 (__a >= __rom_start_data && __a < __rom_end_data) ? \ 145 __a - __rom_start_data + CONFIG_PHYS_RAM_BASE : __a; \ 146 }) 147 #else 148 #define XIP_FIXUP(addr) (addr) 149 #endif /* CONFIG_XIP_KERNEL */ 150 151 struct pt_alloc_ops { 152 pte_t *(*get_pte_virt)(phys_addr_t pa); 153 phys_addr_t (*alloc_pte)(uintptr_t va); 154 #ifndef __PAGETABLE_PMD_FOLDED 155 pmd_t *(*get_pmd_virt)(phys_addr_t pa); 156 phys_addr_t (*alloc_pmd)(uintptr_t va); 157 pud_t *(*get_pud_virt)(phys_addr_t pa); 158 phys_addr_t (*alloc_pud)(uintptr_t va); 159 p4d_t *(*get_p4d_virt)(phys_addr_t pa); 160 phys_addr_t (*alloc_p4d)(uintptr_t va); 161 #endif 162 }; 163 164 extern struct pt_alloc_ops pt_ops __meminitdata; 165 166 #ifdef CONFIG_MMU 167 /* Number of PGD entries that a user-mode program can use */ 168 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 169 170 /* Page protection bits */ 171 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) 172 173 #define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ) 174 #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) 175 #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) 176 #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) 177 #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 178 #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ 179 _PAGE_EXEC | _PAGE_WRITE) 180 181 #define PAGE_COPY PAGE_READ 182 #define PAGE_COPY_EXEC PAGE_READ_EXEC 183 #define PAGE_SHARED PAGE_WRITE 184 #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC 185 186 #define _PAGE_KERNEL (_PAGE_READ \ 187 | _PAGE_WRITE \ 188 | _PAGE_PRESENT \ 189 | _PAGE_ACCESSED \ 190 | _PAGE_DIRTY \ 191 | _PAGE_GLOBAL) 192 193 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 194 #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) 195 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) 196 #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \ 197 | _PAGE_EXEC) 198 199 #define PAGE_TABLE __pgprot(_PAGE_TABLE) 200 201 #define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO) 202 #define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP) 203 204 extern pgd_t swapper_pg_dir[]; 205 extern pgd_t trampoline_pg_dir[]; 206 extern pgd_t early_pg_dir[]; 207 208 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 209 static inline int pmd_present(pmd_t pmd) 210 { 211 /* 212 * Checking for _PAGE_LEAF is needed too because: 213 * When splitting a THP, split_huge_page() will temporarily clear 214 * the present bit, in this situation, pmd_present() and 215 * pmd_trans_huge() still needs to return true. 216 */ 217 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF)); 218 } 219 #else 220 static inline int pmd_present(pmd_t pmd) 221 { 222 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 223 } 224 #endif 225 226 static inline int pmd_none(pmd_t pmd) 227 { 228 return (pmd_val(pmd) == 0); 229 } 230 231 static inline int pmd_bad(pmd_t pmd) 232 { 233 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF); 234 } 235 236 #define pmd_leaf pmd_leaf 237 static inline bool pmd_leaf(pmd_t pmd) 238 { 239 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF); 240 } 241 242 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 243 { 244 WRITE_ONCE(*pmdp, pmd); 245 } 246 247 static inline void pmd_clear(pmd_t *pmdp) 248 { 249 set_pmd(pmdp, __pmd(0)); 250 } 251 252 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) 253 { 254 unsigned long prot_val = pgprot_val(prot); 255 256 ALT_THEAD_PMA(prot_val); 257 258 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val); 259 } 260 261 static inline unsigned long _pgd_pfn(pgd_t pgd) 262 { 263 return __page_val_to_pfn(pgd_val(pgd)); 264 } 265 266 static inline struct page *pmd_page(pmd_t pmd) 267 { 268 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd))); 269 } 270 271 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 272 { 273 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd))); 274 } 275 276 static inline pte_t pmd_pte(pmd_t pmd) 277 { 278 return __pte(pmd_val(pmd)); 279 } 280 281 static inline pte_t pud_pte(pud_t pud) 282 { 283 return __pte(pud_val(pud)); 284 } 285 286 #ifdef CONFIG_RISCV_ISA_SVNAPOT 287 #include <asm/cpufeature.h> 288 289 static __always_inline bool has_svnapot(void) 290 { 291 return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT); 292 } 293 294 static inline unsigned long pte_napot(pte_t pte) 295 { 296 return pte_val(pte) & _PAGE_NAPOT; 297 } 298 299 static inline pte_t pte_mknapot(pte_t pte, unsigned int order) 300 { 301 int pos = order - 1 + _PAGE_PFN_SHIFT; 302 unsigned long napot_bit = BIT(pos); 303 unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT); 304 305 return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT); 306 } 307 308 #else 309 310 static __always_inline bool has_svnapot(void) { return false; } 311 312 static inline unsigned long pte_napot(pte_t pte) 313 { 314 return 0; 315 } 316 317 #endif /* CONFIG_RISCV_ISA_SVNAPOT */ 318 319 /* Yields the page frame number (PFN) of a page table entry */ 320 static inline unsigned long pte_pfn(pte_t pte) 321 { 322 unsigned long res = __page_val_to_pfn(pte_val(pte)); 323 324 if (has_svnapot() && pte_napot(pte)) 325 res = res & (res - 1UL); 326 327 return res; 328 } 329 330 #define pte_page(x) pfn_to_page(pte_pfn(x)) 331 332 /* Constructs a page table entry */ 333 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 334 { 335 unsigned long prot_val = pgprot_val(prot); 336 337 ALT_THEAD_PMA(prot_val); 338 339 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val); 340 } 341 342 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 343 344 static inline int pte_present(pte_t pte) 345 { 346 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 347 } 348 349 #define pte_accessible pte_accessible 350 static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a) 351 { 352 if (pte_val(a) & _PAGE_PRESENT) 353 return true; 354 355 if ((pte_val(a) & _PAGE_PROT_NONE) && 356 atomic_read(&mm->tlb_flush_pending)) 357 return true; 358 359 return false; 360 } 361 362 static inline int pte_none(pte_t pte) 363 { 364 return (pte_val(pte) == 0); 365 } 366 367 static inline int pte_write(pte_t pte) 368 { 369 return pte_val(pte) & _PAGE_WRITE; 370 } 371 372 static inline int pte_exec(pte_t pte) 373 { 374 return pte_val(pte) & _PAGE_EXEC; 375 } 376 377 static inline int pte_user(pte_t pte) 378 { 379 return pte_val(pte) & _PAGE_USER; 380 } 381 382 static inline int pte_huge(pte_t pte) 383 { 384 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF); 385 } 386 387 static inline int pte_dirty(pte_t pte) 388 { 389 return pte_val(pte) & _PAGE_DIRTY; 390 } 391 392 static inline int pte_young(pte_t pte) 393 { 394 return pte_val(pte) & _PAGE_ACCESSED; 395 } 396 397 static inline int pte_special(pte_t pte) 398 { 399 return pte_val(pte) & _PAGE_SPECIAL; 400 } 401 402 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 403 static inline int pte_devmap(pte_t pte) 404 { 405 return pte_val(pte) & _PAGE_DEVMAP; 406 } 407 #endif 408 409 /* static inline pte_t pte_rdprotect(pte_t pte) */ 410 411 static inline pte_t pte_wrprotect(pte_t pte) 412 { 413 return __pte(pte_val(pte) & ~(_PAGE_WRITE)); 414 } 415 416 /* static inline pte_t pte_mkread(pte_t pte) */ 417 418 static inline pte_t pte_mkwrite_novma(pte_t pte) 419 { 420 return __pte(pte_val(pte) | _PAGE_WRITE); 421 } 422 423 /* static inline pte_t pte_mkexec(pte_t pte) */ 424 425 static inline pte_t pte_mkdirty(pte_t pte) 426 { 427 return __pte(pte_val(pte) | _PAGE_DIRTY); 428 } 429 430 static inline pte_t pte_mkclean(pte_t pte) 431 { 432 return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); 433 } 434 435 static inline pte_t pte_mkyoung(pte_t pte) 436 { 437 return __pte(pte_val(pte) | _PAGE_ACCESSED); 438 } 439 440 static inline pte_t pte_mkold(pte_t pte) 441 { 442 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); 443 } 444 445 static inline pte_t pte_mkspecial(pte_t pte) 446 { 447 return __pte(pte_val(pte) | _PAGE_SPECIAL); 448 } 449 450 static inline pte_t pte_mkdevmap(pte_t pte) 451 { 452 return __pte(pte_val(pte) | _PAGE_DEVMAP); 453 } 454 455 static inline pte_t pte_mkhuge(pte_t pte) 456 { 457 return pte; 458 } 459 460 #ifdef CONFIG_RISCV_ISA_SVNAPOT 461 #define pte_leaf_size(pte) (pte_napot(pte) ? \ 462 napot_cont_size(napot_cont_order(pte)) :\ 463 PAGE_SIZE) 464 #endif 465 466 #ifdef CONFIG_NUMA_BALANCING 467 /* 468 * See the comment in include/asm-generic/pgtable.h 469 */ 470 static inline int pte_protnone(pte_t pte) 471 { 472 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE; 473 } 474 475 static inline int pmd_protnone(pmd_t pmd) 476 { 477 return pte_protnone(pmd_pte(pmd)); 478 } 479 #endif 480 481 /* Modify page protection bits */ 482 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 483 { 484 unsigned long newprot_val = pgprot_val(newprot); 485 486 ALT_THEAD_PMA(newprot_val); 487 488 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val); 489 } 490 491 #define pgd_ERROR(e) \ 492 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) 493 494 495 /* Commit new configuration to MMU hardware */ 496 static inline void update_mmu_cache_range(struct vm_fault *vmf, 497 struct vm_area_struct *vma, unsigned long address, 498 pte_t *ptep, unsigned int nr) 499 { 500 asm goto(ALTERNATIVE("nop", "j %l[svvptc]", 0, RISCV_ISA_EXT_SVVPTC, 1) 501 : : : : svvptc); 502 503 /* 504 * The kernel assumes that TLBs don't cache invalid entries, but 505 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a 506 * cache flush; it is necessary even after writing invalid entries. 507 * Relying on flush_tlb_fix_spurious_fault would suffice, but 508 * the extra traps reduce performance. So, eagerly SFENCE.VMA. 509 */ 510 while (nr--) 511 local_flush_tlb_page(address + nr * PAGE_SIZE); 512 513 svvptc:; 514 /* 515 * Svvptc guarantees that the new valid pte will be visible within 516 * a bounded timeframe, so when the uarch does not cache invalid 517 * entries, we don't have to do anything. 518 */ 519 } 520 #define update_mmu_cache(vma, addr, ptep) \ 521 update_mmu_cache_range(NULL, vma, addr, ptep, 1) 522 523 #define update_mmu_tlb_range(vma, addr, ptep, nr) \ 524 update_mmu_cache_range(NULL, vma, addr, ptep, nr) 525 526 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 527 unsigned long address, pmd_t *pmdp) 528 { 529 pte_t *ptep = (pte_t *)pmdp; 530 531 update_mmu_cache(vma, address, ptep); 532 } 533 534 #define __HAVE_ARCH_PTE_SAME 535 static inline int pte_same(pte_t pte_a, pte_t pte_b) 536 { 537 return pte_val(pte_a) == pte_val(pte_b); 538 } 539 540 /* 541 * Certain architectures need to do special things when PTEs within 542 * a page table are directly modified. Thus, the following hook is 543 * made available. 544 */ 545 static inline void set_pte(pte_t *ptep, pte_t pteval) 546 { 547 WRITE_ONCE(*ptep, pteval); 548 } 549 550 void flush_icache_pte(struct mm_struct *mm, pte_t pte); 551 552 static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval) 553 { 554 if (pte_present(pteval) && pte_exec(pteval)) 555 flush_icache_pte(mm, pteval); 556 557 set_pte(ptep, pteval); 558 } 559 560 #define PFN_PTE_SHIFT _PAGE_PFN_SHIFT 561 562 static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 563 pte_t *ptep, pte_t pteval, unsigned int nr) 564 { 565 page_table_check_ptes_set(mm, ptep, pteval, nr); 566 567 for (;;) { 568 __set_pte_at(mm, ptep, pteval); 569 if (--nr == 0) 570 break; 571 ptep++; 572 pte_val(pteval) += 1 << _PAGE_PFN_SHIFT; 573 } 574 } 575 #define set_ptes set_ptes 576 577 static inline void pte_clear(struct mm_struct *mm, 578 unsigned long addr, pte_t *ptep) 579 { 580 __set_pte_at(mm, ptep, __pte(0)); 581 } 582 583 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* defined in mm/pgtable.c */ 584 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, 585 pte_t *ptep, pte_t entry, int dirty); 586 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG /* defined in mm/pgtable.c */ 587 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, 588 pte_t *ptep); 589 590 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 591 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 592 unsigned long address, pte_t *ptep) 593 { 594 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); 595 596 page_table_check_pte_clear(mm, pte); 597 598 return pte; 599 } 600 601 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 602 static inline void ptep_set_wrprotect(struct mm_struct *mm, 603 unsigned long address, pte_t *ptep) 604 { 605 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); 606 } 607 608 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 609 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 610 unsigned long address, pte_t *ptep) 611 { 612 /* 613 * This comment is borrowed from x86, but applies equally to RISC-V: 614 * 615 * Clearing the accessed bit without a TLB flush 616 * doesn't cause data corruption. [ It could cause incorrect 617 * page aging and the (mistaken) reclaim of hot pages, but the 618 * chance of that should be relatively low. ] 619 * 620 * So as a performance optimization don't flush the TLB when 621 * clearing the accessed bit, it will eventually be flushed by 622 * a context switch or a VM operation anyway. [ In the rare 623 * event of it not getting flushed for a long time the delay 624 * shouldn't really matter because there's no real memory 625 * pressure for swapout to react to. ] 626 */ 627 return ptep_test_and_clear_young(vma, address, ptep); 628 } 629 630 #define pgprot_nx pgprot_nx 631 static inline pgprot_t pgprot_nx(pgprot_t _prot) 632 { 633 return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC); 634 } 635 636 #define pgprot_noncached pgprot_noncached 637 static inline pgprot_t pgprot_noncached(pgprot_t _prot) 638 { 639 unsigned long prot = pgprot_val(_prot); 640 641 prot &= ~_PAGE_MTMASK; 642 prot |= _PAGE_IO; 643 644 return __pgprot(prot); 645 } 646 647 #define pgprot_writecombine pgprot_writecombine 648 static inline pgprot_t pgprot_writecombine(pgprot_t _prot) 649 { 650 unsigned long prot = pgprot_val(_prot); 651 652 prot &= ~_PAGE_MTMASK; 653 prot |= _PAGE_NOCACHE; 654 655 return __pgprot(prot); 656 } 657 658 /* 659 * THP functions 660 */ 661 static inline pmd_t pte_pmd(pte_t pte) 662 { 663 return __pmd(pte_val(pte)); 664 } 665 666 static inline pmd_t pmd_mkhuge(pmd_t pmd) 667 { 668 return pmd; 669 } 670 671 static inline pmd_t pmd_mkinvalid(pmd_t pmd) 672 { 673 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE)); 674 } 675 676 #define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT) 677 678 static inline unsigned long pmd_pfn(pmd_t pmd) 679 { 680 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT); 681 } 682 683 #define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT) 684 685 #define pud_pfn pud_pfn 686 static inline unsigned long pud_pfn(pud_t pud) 687 { 688 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT); 689 } 690 691 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 692 { 693 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 694 } 695 696 #define pmd_write pmd_write 697 static inline int pmd_write(pmd_t pmd) 698 { 699 return pte_write(pmd_pte(pmd)); 700 } 701 702 #define pud_write pud_write 703 static inline int pud_write(pud_t pud) 704 { 705 return pte_write(pud_pte(pud)); 706 } 707 708 #define pmd_dirty pmd_dirty 709 static inline int pmd_dirty(pmd_t pmd) 710 { 711 return pte_dirty(pmd_pte(pmd)); 712 } 713 714 #define pmd_young pmd_young 715 static inline int pmd_young(pmd_t pmd) 716 { 717 return pte_young(pmd_pte(pmd)); 718 } 719 720 static inline int pmd_user(pmd_t pmd) 721 { 722 return pte_user(pmd_pte(pmd)); 723 } 724 725 static inline pmd_t pmd_mkold(pmd_t pmd) 726 { 727 return pte_pmd(pte_mkold(pmd_pte(pmd))); 728 } 729 730 static inline pmd_t pmd_mkyoung(pmd_t pmd) 731 { 732 return pte_pmd(pte_mkyoung(pmd_pte(pmd))); 733 } 734 735 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) 736 { 737 return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))); 738 } 739 740 static inline pmd_t pmd_wrprotect(pmd_t pmd) 741 { 742 return pte_pmd(pte_wrprotect(pmd_pte(pmd))); 743 } 744 745 static inline pmd_t pmd_mkclean(pmd_t pmd) 746 { 747 return pte_pmd(pte_mkclean(pmd_pte(pmd))); 748 } 749 750 static inline pmd_t pmd_mkdirty(pmd_t pmd) 751 { 752 return pte_pmd(pte_mkdirty(pmd_pte(pmd))); 753 } 754 755 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 756 { 757 return pte_pmd(pte_mkdevmap(pmd_pte(pmd))); 758 } 759 760 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 761 pmd_t *pmdp, pmd_t pmd) 762 { 763 page_table_check_pmd_set(mm, pmdp, pmd); 764 return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd)); 765 } 766 767 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 768 pud_t *pudp, pud_t pud) 769 { 770 page_table_check_pud_set(mm, pudp, pud); 771 return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud)); 772 } 773 774 #ifdef CONFIG_PAGE_TABLE_CHECK 775 static inline bool pte_user_accessible_page(pte_t pte) 776 { 777 return pte_present(pte) && pte_user(pte); 778 } 779 780 static inline bool pmd_user_accessible_page(pmd_t pmd) 781 { 782 return pmd_leaf(pmd) && pmd_user(pmd); 783 } 784 785 static inline bool pud_user_accessible_page(pud_t pud) 786 { 787 return pud_leaf(pud) && pud_user(pud); 788 } 789 #endif 790 791 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 792 static inline int pmd_trans_huge(pmd_t pmd) 793 { 794 return pmd_leaf(pmd); 795 } 796 797 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 798 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 799 unsigned long address, pmd_t *pmdp, 800 pmd_t entry, int dirty) 801 { 802 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 803 } 804 805 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 806 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 807 unsigned long address, pmd_t *pmdp) 808 { 809 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 810 } 811 812 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 813 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 814 unsigned long address, pmd_t *pmdp) 815 { 816 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0)); 817 818 page_table_check_pmd_clear(mm, pmd); 819 820 return pmd; 821 } 822 823 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 824 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 825 unsigned long address, pmd_t *pmdp) 826 { 827 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 828 } 829 830 #define pmdp_establish pmdp_establish 831 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 832 unsigned long address, pmd_t *pmdp, pmd_t pmd) 833 { 834 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); 835 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd))); 836 } 837 838 #define pmdp_collapse_flush pmdp_collapse_flush 839 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 840 unsigned long address, pmd_t *pmdp); 841 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 842 843 /* 844 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 845 * are !pte_none() && !pte_present(). 846 * 847 * Format of swap PTE: 848 * bit 0: _PAGE_PRESENT (zero) 849 * bit 1 to 3: _PAGE_LEAF (zero) 850 * bit 5: _PAGE_PROT_NONE (zero) 851 * bit 6: exclusive marker 852 * bits 7 to 11: swap type 853 * bits 12 to XLEN-1: swap offset 854 */ 855 #define __SWP_TYPE_SHIFT 7 856 #define __SWP_TYPE_BITS 5 857 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) 858 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 859 860 #define MAX_SWAPFILES_CHECK() \ 861 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 862 863 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 864 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 865 #define __swp_entry(type, offset) ((swp_entry_t) \ 866 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \ 867 ((offset) << __SWP_OFFSET_SHIFT) }) 868 869 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 870 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 871 872 static inline int pte_swp_exclusive(pte_t pte) 873 { 874 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 875 } 876 877 static inline pte_t pte_swp_mkexclusive(pte_t pte) 878 { 879 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE); 880 } 881 882 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 883 { 884 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE); 885 } 886 887 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 888 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 889 #define __swp_entry_to_pmd(swp) __pmd((swp).val) 890 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 891 892 /* 893 * In the RV64 Linux scheme, we give the user half of the virtual-address space 894 * and give the kernel the other (upper) half. 895 */ 896 #ifdef CONFIG_64BIT 897 #define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE) 898 #else 899 #define KERN_VIRT_START FIXADDR_START 900 #endif 901 902 /* 903 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. 904 * Note that PGDIR_SIZE must evenly divide TASK_SIZE. 905 * Task size is: 906 * - 0x9fc00000 (~2.5GB) for RV32. 907 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu 908 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu 909 * - 0x100000000000000 ( 64PB) for RV64 using SV57 mmu 910 * 911 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V 912 * Instruction Set Manual Volume II: Privileged Architecture" states that 913 * "load and store effective addresses, which are 64bits, must have bits 914 * 63–48 all equal to bit 47, or else a page-fault exception will occur." 915 * Similarly for SV57, bits 63–57 must be equal to bit 56. 916 */ 917 #ifdef CONFIG_64BIT 918 #define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2) 919 #define TASK_SIZE_MAX LONG_MAX 920 921 #ifdef CONFIG_COMPAT 922 #define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE) 923 #define TASK_SIZE (is_compat_task() ? \ 924 TASK_SIZE_32 : TASK_SIZE_64) 925 #else 926 #define TASK_SIZE TASK_SIZE_64 927 #endif 928 929 #else 930 #define TASK_SIZE FIXADDR_START 931 #endif 932 933 #else /* CONFIG_MMU */ 934 935 #define PAGE_SHARED __pgprot(0) 936 #define PAGE_KERNEL __pgprot(0) 937 #define swapper_pg_dir NULL 938 #define TASK_SIZE _AC(-1, UL) 939 #define VMALLOC_START _AC(0, UL) 940 #define VMALLOC_END TASK_SIZE 941 942 #endif /* !CONFIG_MMU */ 943 944 extern char _start[]; 945 extern void *_dtb_early_va; 946 extern uintptr_t _dtb_early_pa; 947 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU) 948 #define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va)) 949 #define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa)) 950 #else 951 #define dtb_early_va _dtb_early_va 952 #define dtb_early_pa _dtb_early_pa 953 #endif /* CONFIG_XIP_KERNEL */ 954 extern u64 satp_mode; 955 956 void paging_init(void); 957 void misc_mem_init(void); 958 959 /* 960 * ZERO_PAGE is a global shared page that is always zero, 961 * used for zero-mapped memory areas, etc. 962 */ 963 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 964 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 965 966 #endif /* !__ASSEMBLY__ */ 967 968 #endif /* _ASM_RISCV_PGTABLE_H */ 969