1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 */ 5 6 #ifndef _ASM_RISCV_PGTABLE_H 7 #define _ASM_RISCV_PGTABLE_H 8 9 #include <linux/mmzone.h> 10 #include <linux/sizes.h> 11 12 #include <asm/pgtable-bits.h> 13 14 #ifndef CONFIG_MMU 15 #define KERNEL_LINK_ADDR PAGE_OFFSET 16 #define KERN_VIRT_SIZE (UL(-1)) 17 #else 18 19 #define ADDRESS_SPACE_END (UL(-1)) 20 21 #ifdef CONFIG_64BIT 22 /* Leave 2GB for kernel and BPF at the end of the address space */ 23 #define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1) 24 #else 25 #define KERNEL_LINK_ADDR PAGE_OFFSET 26 #endif 27 28 /* Number of entries in the page global directory */ 29 #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) 30 /* Number of entries in the page table */ 31 #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 32 33 /* 34 * Half of the kernel address space (1/4 of the entries of the page global 35 * directory) is for the direct mapping. 36 */ 37 #define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2) 38 39 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) 40 #define VMALLOC_END PAGE_OFFSET 41 #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) 42 43 #define BPF_JIT_REGION_SIZE (SZ_128M) 44 #ifdef CONFIG_64BIT 45 #define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE) 46 #define BPF_JIT_REGION_END (MODULES_END) 47 #else 48 #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) 49 #define BPF_JIT_REGION_END (VMALLOC_END) 50 #endif 51 52 /* Modules always live before the kernel */ 53 #ifdef CONFIG_64BIT 54 /* This is used to define the end of the KASAN shadow region */ 55 #define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G) 56 #define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G) 57 #define MODULES_END (PFN_ALIGN((unsigned long)&_start)) 58 #endif 59 60 /* 61 * Roughly size the vmemmap space to be large enough to fit enough 62 * struct pages to map half the virtual address space. Then 63 * position vmemmap directly below the VMALLOC region. 64 */ 65 #define VA_BITS_SV32 32 66 #ifdef CONFIG_64BIT 67 #define VA_BITS_SV39 39 68 #define VA_BITS_SV48 48 69 #define VA_BITS_SV57 57 70 71 #define VA_BITS (pgtable_l5_enabled ? \ 72 VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39)) 73 #else 74 #define VA_BITS VA_BITS_SV32 75 #endif 76 77 #define VMEMMAP_SHIFT \ 78 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) 79 #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) 80 #define VMEMMAP_END VMALLOC_START 81 #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) 82 83 /* 84 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel 85 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. 86 */ 87 #define vmemmap ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT)) 88 89 #define PCI_IO_SIZE SZ_16M 90 #define PCI_IO_END VMEMMAP_START 91 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 92 93 #define FIXADDR_TOP PCI_IO_START 94 #ifdef CONFIG_64BIT 95 #define MAX_FDT_SIZE PMD_SIZE 96 #define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M) 97 #define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE) 98 #else 99 #define MAX_FDT_SIZE PGDIR_SIZE 100 #define FIX_FDT_SIZE MAX_FDT_SIZE 101 #define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE) 102 #endif 103 #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) 104 105 #endif 106 107 #ifdef CONFIG_XIP_KERNEL 108 #define XIP_OFFSET SZ_32M 109 #define XIP_OFFSET_MASK (SZ_32M - 1) 110 #else 111 #define XIP_OFFSET 0 112 #endif 113 114 #ifndef __ASSEMBLY__ 115 116 #include <asm/page.h> 117 #include <asm/tlbflush.h> 118 #include <linux/mm_types.h> 119 #include <asm/compat.h> 120 121 #define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT) 122 123 #ifdef CONFIG_64BIT 124 #include <asm/pgtable-64.h> 125 126 #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1)) 127 #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1)) 128 #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1)) 129 130 #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS) 131 #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39) 132 #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64) 133 #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64) 134 #else 135 #include <asm/pgtable-32.h> 136 #endif /* CONFIG_64BIT */ 137 138 #include <linux/page_table_check.h> 139 140 #ifdef CONFIG_XIP_KERNEL 141 #define XIP_FIXUP(addr) ({ \ 142 uintptr_t __a = (uintptr_t)(addr); \ 143 (__a >= CONFIG_XIP_PHYS_ADDR && \ 144 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \ 145 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\ 146 __a; \ 147 }) 148 #else 149 #define XIP_FIXUP(addr) (addr) 150 #endif /* CONFIG_XIP_KERNEL */ 151 152 struct pt_alloc_ops { 153 pte_t *(*get_pte_virt)(phys_addr_t pa); 154 phys_addr_t (*alloc_pte)(uintptr_t va); 155 #ifndef __PAGETABLE_PMD_FOLDED 156 pmd_t *(*get_pmd_virt)(phys_addr_t pa); 157 phys_addr_t (*alloc_pmd)(uintptr_t va); 158 pud_t *(*get_pud_virt)(phys_addr_t pa); 159 phys_addr_t (*alloc_pud)(uintptr_t va); 160 p4d_t *(*get_p4d_virt)(phys_addr_t pa); 161 phys_addr_t (*alloc_p4d)(uintptr_t va); 162 #endif 163 }; 164 165 extern struct pt_alloc_ops pt_ops __initdata; 166 167 #ifdef CONFIG_MMU 168 /* Number of PGD entries that a user-mode program can use */ 169 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 170 171 /* Page protection bits */ 172 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) 173 174 #define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ) 175 #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) 176 #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) 177 #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) 178 #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 179 #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ 180 _PAGE_EXEC | _PAGE_WRITE) 181 182 #define PAGE_COPY PAGE_READ 183 #define PAGE_COPY_EXEC PAGE_READ_EXEC 184 #define PAGE_SHARED PAGE_WRITE 185 #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC 186 187 #define _PAGE_KERNEL (_PAGE_READ \ 188 | _PAGE_WRITE \ 189 | _PAGE_PRESENT \ 190 | _PAGE_ACCESSED \ 191 | _PAGE_DIRTY \ 192 | _PAGE_GLOBAL) 193 194 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 195 #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) 196 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) 197 #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \ 198 | _PAGE_EXEC) 199 200 #define PAGE_TABLE __pgprot(_PAGE_TABLE) 201 202 #define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO) 203 #define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP) 204 205 extern pgd_t swapper_pg_dir[]; 206 extern pgd_t trampoline_pg_dir[]; 207 extern pgd_t early_pg_dir[]; 208 209 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 210 static inline int pmd_present(pmd_t pmd) 211 { 212 /* 213 * Checking for _PAGE_LEAF is needed too because: 214 * When splitting a THP, split_huge_page() will temporarily clear 215 * the present bit, in this situation, pmd_present() and 216 * pmd_trans_huge() still needs to return true. 217 */ 218 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF)); 219 } 220 #else 221 static inline int pmd_present(pmd_t pmd) 222 { 223 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 224 } 225 #endif 226 227 static inline int pmd_none(pmd_t pmd) 228 { 229 return (pmd_val(pmd) == 0); 230 } 231 232 static inline int pmd_bad(pmd_t pmd) 233 { 234 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF); 235 } 236 237 #define pmd_leaf pmd_leaf 238 static inline bool pmd_leaf(pmd_t pmd) 239 { 240 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF); 241 } 242 243 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 244 { 245 WRITE_ONCE(*pmdp, pmd); 246 } 247 248 static inline void pmd_clear(pmd_t *pmdp) 249 { 250 set_pmd(pmdp, __pmd(0)); 251 } 252 253 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) 254 { 255 unsigned long prot_val = pgprot_val(prot); 256 257 ALT_THEAD_PMA(prot_val); 258 259 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val); 260 } 261 262 static inline unsigned long _pgd_pfn(pgd_t pgd) 263 { 264 return __page_val_to_pfn(pgd_val(pgd)); 265 } 266 267 static inline struct page *pmd_page(pmd_t pmd) 268 { 269 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd))); 270 } 271 272 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 273 { 274 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd))); 275 } 276 277 static inline pte_t pmd_pte(pmd_t pmd) 278 { 279 return __pte(pmd_val(pmd)); 280 } 281 282 static inline pte_t pud_pte(pud_t pud) 283 { 284 return __pte(pud_val(pud)); 285 } 286 287 #ifdef CONFIG_RISCV_ISA_SVNAPOT 288 #include <asm/cpufeature.h> 289 290 static __always_inline bool has_svnapot(void) 291 { 292 return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT); 293 } 294 295 static inline unsigned long pte_napot(pte_t pte) 296 { 297 return pte_val(pte) & _PAGE_NAPOT; 298 } 299 300 static inline pte_t pte_mknapot(pte_t pte, unsigned int order) 301 { 302 int pos = order - 1 + _PAGE_PFN_SHIFT; 303 unsigned long napot_bit = BIT(pos); 304 unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT); 305 306 return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT); 307 } 308 309 #else 310 311 static __always_inline bool has_svnapot(void) { return false; } 312 313 static inline unsigned long pte_napot(pte_t pte) 314 { 315 return 0; 316 } 317 318 #endif /* CONFIG_RISCV_ISA_SVNAPOT */ 319 320 /* Yields the page frame number (PFN) of a page table entry */ 321 static inline unsigned long pte_pfn(pte_t pte) 322 { 323 unsigned long res = __page_val_to_pfn(pte_val(pte)); 324 325 if (has_svnapot() && pte_napot(pte)) 326 res = res & (res - 1UL); 327 328 return res; 329 } 330 331 #define pte_page(x) pfn_to_page(pte_pfn(x)) 332 333 /* Constructs a page table entry */ 334 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 335 { 336 unsigned long prot_val = pgprot_val(prot); 337 338 ALT_THEAD_PMA(prot_val); 339 340 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val); 341 } 342 343 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 344 345 static inline int pte_present(pte_t pte) 346 { 347 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 348 } 349 350 static inline int pte_none(pte_t pte) 351 { 352 return (pte_val(pte) == 0); 353 } 354 355 static inline int pte_write(pte_t pte) 356 { 357 return pte_val(pte) & _PAGE_WRITE; 358 } 359 360 static inline int pte_exec(pte_t pte) 361 { 362 return pte_val(pte) & _PAGE_EXEC; 363 } 364 365 static inline int pte_user(pte_t pte) 366 { 367 return pte_val(pte) & _PAGE_USER; 368 } 369 370 static inline int pte_huge(pte_t pte) 371 { 372 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF); 373 } 374 375 static inline int pte_dirty(pte_t pte) 376 { 377 return pte_val(pte) & _PAGE_DIRTY; 378 } 379 380 static inline int pte_young(pte_t pte) 381 { 382 return pte_val(pte) & _PAGE_ACCESSED; 383 } 384 385 static inline int pte_special(pte_t pte) 386 { 387 return pte_val(pte) & _PAGE_SPECIAL; 388 } 389 390 /* static inline pte_t pte_rdprotect(pte_t pte) */ 391 392 static inline pte_t pte_wrprotect(pte_t pte) 393 { 394 return __pte(pte_val(pte) & ~(_PAGE_WRITE)); 395 } 396 397 /* static inline pte_t pte_mkread(pte_t pte) */ 398 399 static inline pte_t pte_mkwrite_novma(pte_t pte) 400 { 401 return __pte(pte_val(pte) | _PAGE_WRITE); 402 } 403 404 /* static inline pte_t pte_mkexec(pte_t pte) */ 405 406 static inline pte_t pte_mkdirty(pte_t pte) 407 { 408 return __pte(pte_val(pte) | _PAGE_DIRTY); 409 } 410 411 static inline pte_t pte_mkclean(pte_t pte) 412 { 413 return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); 414 } 415 416 static inline pte_t pte_mkyoung(pte_t pte) 417 { 418 return __pte(pte_val(pte) | _PAGE_ACCESSED); 419 } 420 421 static inline pte_t pte_mkold(pte_t pte) 422 { 423 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); 424 } 425 426 static inline pte_t pte_mkspecial(pte_t pte) 427 { 428 return __pte(pte_val(pte) | _PAGE_SPECIAL); 429 } 430 431 static inline pte_t pte_mkhuge(pte_t pte) 432 { 433 return pte; 434 } 435 436 #ifdef CONFIG_RISCV_ISA_SVNAPOT 437 #define pte_leaf_size(pte) (pte_napot(pte) ? \ 438 napot_cont_size(napot_cont_order(pte)) :\ 439 PAGE_SIZE) 440 #endif 441 442 #ifdef CONFIG_NUMA_BALANCING 443 /* 444 * See the comment in include/asm-generic/pgtable.h 445 */ 446 static inline int pte_protnone(pte_t pte) 447 { 448 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE; 449 } 450 451 static inline int pmd_protnone(pmd_t pmd) 452 { 453 return pte_protnone(pmd_pte(pmd)); 454 } 455 #endif 456 457 /* Modify page protection bits */ 458 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 459 { 460 unsigned long newprot_val = pgprot_val(newprot); 461 462 ALT_THEAD_PMA(newprot_val); 463 464 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val); 465 } 466 467 #define pgd_ERROR(e) \ 468 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) 469 470 471 /* Commit new configuration to MMU hardware */ 472 static inline void update_mmu_cache_range(struct vm_fault *vmf, 473 struct vm_area_struct *vma, unsigned long address, 474 pte_t *ptep, unsigned int nr) 475 { 476 /* 477 * The kernel assumes that TLBs don't cache invalid entries, but 478 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a 479 * cache flush; it is necessary even after writing invalid entries. 480 * Relying on flush_tlb_fix_spurious_fault would suffice, but 481 * the extra traps reduce performance. So, eagerly SFENCE.VMA. 482 */ 483 while (nr--) 484 local_flush_tlb_page(address + nr * PAGE_SIZE); 485 } 486 #define update_mmu_cache(vma, addr, ptep) \ 487 update_mmu_cache_range(NULL, vma, addr, ptep, 1) 488 489 #define __HAVE_ARCH_UPDATE_MMU_TLB 490 #define update_mmu_tlb update_mmu_cache 491 492 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 493 unsigned long address, pmd_t *pmdp) 494 { 495 pte_t *ptep = (pte_t *)pmdp; 496 497 update_mmu_cache(vma, address, ptep); 498 } 499 500 #define __HAVE_ARCH_PTE_SAME 501 static inline int pte_same(pte_t pte_a, pte_t pte_b) 502 { 503 return pte_val(pte_a) == pte_val(pte_b); 504 } 505 506 /* 507 * Certain architectures need to do special things when PTEs within 508 * a page table are directly modified. Thus, the following hook is 509 * made available. 510 */ 511 static inline void set_pte(pte_t *ptep, pte_t pteval) 512 { 513 WRITE_ONCE(*ptep, pteval); 514 } 515 516 void flush_icache_pte(struct mm_struct *mm, pte_t pte); 517 518 static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval) 519 { 520 if (pte_present(pteval) && pte_exec(pteval)) 521 flush_icache_pte(mm, pteval); 522 523 set_pte(ptep, pteval); 524 } 525 526 #define PFN_PTE_SHIFT _PAGE_PFN_SHIFT 527 528 static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 529 pte_t *ptep, pte_t pteval, unsigned int nr) 530 { 531 page_table_check_ptes_set(mm, ptep, pteval, nr); 532 533 for (;;) { 534 __set_pte_at(mm, ptep, pteval); 535 if (--nr == 0) 536 break; 537 ptep++; 538 pte_val(pteval) += 1 << _PAGE_PFN_SHIFT; 539 } 540 } 541 #define set_ptes set_ptes 542 543 static inline void pte_clear(struct mm_struct *mm, 544 unsigned long addr, pte_t *ptep) 545 { 546 __set_pte_at(mm, ptep, __pte(0)); 547 } 548 549 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* defined in mm/pgtable.c */ 550 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, 551 pte_t *ptep, pte_t entry, int dirty); 552 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG /* defined in mm/pgtable.c */ 553 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, 554 pte_t *ptep); 555 556 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 557 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 558 unsigned long address, pte_t *ptep) 559 { 560 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); 561 562 page_table_check_pte_clear(mm, pte); 563 564 return pte; 565 } 566 567 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 568 static inline void ptep_set_wrprotect(struct mm_struct *mm, 569 unsigned long address, pte_t *ptep) 570 { 571 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); 572 } 573 574 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 575 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 576 unsigned long address, pte_t *ptep) 577 { 578 /* 579 * This comment is borrowed from x86, but applies equally to RISC-V: 580 * 581 * Clearing the accessed bit without a TLB flush 582 * doesn't cause data corruption. [ It could cause incorrect 583 * page aging and the (mistaken) reclaim of hot pages, but the 584 * chance of that should be relatively low. ] 585 * 586 * So as a performance optimization don't flush the TLB when 587 * clearing the accessed bit, it will eventually be flushed by 588 * a context switch or a VM operation anyway. [ In the rare 589 * event of it not getting flushed for a long time the delay 590 * shouldn't really matter because there's no real memory 591 * pressure for swapout to react to. ] 592 */ 593 return ptep_test_and_clear_young(vma, address, ptep); 594 } 595 596 #define pgprot_nx pgprot_nx 597 static inline pgprot_t pgprot_nx(pgprot_t _prot) 598 { 599 return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC); 600 } 601 602 #define pgprot_noncached pgprot_noncached 603 static inline pgprot_t pgprot_noncached(pgprot_t _prot) 604 { 605 unsigned long prot = pgprot_val(_prot); 606 607 prot &= ~_PAGE_MTMASK; 608 prot |= _PAGE_IO; 609 610 return __pgprot(prot); 611 } 612 613 #define pgprot_writecombine pgprot_writecombine 614 static inline pgprot_t pgprot_writecombine(pgprot_t _prot) 615 { 616 unsigned long prot = pgprot_val(_prot); 617 618 prot &= ~_PAGE_MTMASK; 619 prot |= _PAGE_NOCACHE; 620 621 return __pgprot(prot); 622 } 623 624 /* 625 * THP functions 626 */ 627 static inline pmd_t pte_pmd(pte_t pte) 628 { 629 return __pmd(pte_val(pte)); 630 } 631 632 static inline pmd_t pmd_mkhuge(pmd_t pmd) 633 { 634 return pmd; 635 } 636 637 static inline pmd_t pmd_mkinvalid(pmd_t pmd) 638 { 639 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE)); 640 } 641 642 #define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT) 643 644 static inline unsigned long pmd_pfn(pmd_t pmd) 645 { 646 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT); 647 } 648 649 #define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT) 650 651 static inline unsigned long pud_pfn(pud_t pud) 652 { 653 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT); 654 } 655 656 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 657 { 658 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 659 } 660 661 #define pmd_write pmd_write 662 static inline int pmd_write(pmd_t pmd) 663 { 664 return pte_write(pmd_pte(pmd)); 665 } 666 667 #define pud_write pud_write 668 static inline int pud_write(pud_t pud) 669 { 670 return pte_write(pud_pte(pud)); 671 } 672 673 #define pmd_dirty pmd_dirty 674 static inline int pmd_dirty(pmd_t pmd) 675 { 676 return pte_dirty(pmd_pte(pmd)); 677 } 678 679 #define pmd_young pmd_young 680 static inline int pmd_young(pmd_t pmd) 681 { 682 return pte_young(pmd_pte(pmd)); 683 } 684 685 static inline int pmd_user(pmd_t pmd) 686 { 687 return pte_user(pmd_pte(pmd)); 688 } 689 690 static inline pmd_t pmd_mkold(pmd_t pmd) 691 { 692 return pte_pmd(pte_mkold(pmd_pte(pmd))); 693 } 694 695 static inline pmd_t pmd_mkyoung(pmd_t pmd) 696 { 697 return pte_pmd(pte_mkyoung(pmd_pte(pmd))); 698 } 699 700 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) 701 { 702 return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))); 703 } 704 705 static inline pmd_t pmd_wrprotect(pmd_t pmd) 706 { 707 return pte_pmd(pte_wrprotect(pmd_pte(pmd))); 708 } 709 710 static inline pmd_t pmd_mkclean(pmd_t pmd) 711 { 712 return pte_pmd(pte_mkclean(pmd_pte(pmd))); 713 } 714 715 static inline pmd_t pmd_mkdirty(pmd_t pmd) 716 { 717 return pte_pmd(pte_mkdirty(pmd_pte(pmd))); 718 } 719 720 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 721 pmd_t *pmdp, pmd_t pmd) 722 { 723 page_table_check_pmd_set(mm, pmdp, pmd); 724 return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd)); 725 } 726 727 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 728 pud_t *pudp, pud_t pud) 729 { 730 page_table_check_pud_set(mm, pudp, pud); 731 return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud)); 732 } 733 734 #ifdef CONFIG_PAGE_TABLE_CHECK 735 static inline bool pte_user_accessible_page(pte_t pte) 736 { 737 return pte_present(pte) && pte_user(pte); 738 } 739 740 static inline bool pmd_user_accessible_page(pmd_t pmd) 741 { 742 return pmd_leaf(pmd) && pmd_user(pmd); 743 } 744 745 static inline bool pud_user_accessible_page(pud_t pud) 746 { 747 return pud_leaf(pud) && pud_user(pud); 748 } 749 #endif 750 751 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 752 static inline int pmd_trans_huge(pmd_t pmd) 753 { 754 return pmd_leaf(pmd); 755 } 756 757 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 758 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 759 unsigned long address, pmd_t *pmdp, 760 pmd_t entry, int dirty) 761 { 762 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 763 } 764 765 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 766 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 767 unsigned long address, pmd_t *pmdp) 768 { 769 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 770 } 771 772 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 773 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 774 unsigned long address, pmd_t *pmdp) 775 { 776 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0)); 777 778 page_table_check_pmd_clear(mm, pmd); 779 780 return pmd; 781 } 782 783 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 784 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 785 unsigned long address, pmd_t *pmdp) 786 { 787 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 788 } 789 790 #define pmdp_establish pmdp_establish 791 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 792 unsigned long address, pmd_t *pmdp, pmd_t pmd) 793 { 794 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); 795 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd))); 796 } 797 798 #define pmdp_collapse_flush pmdp_collapse_flush 799 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 800 unsigned long address, pmd_t *pmdp); 801 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 802 803 /* 804 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 805 * are !pte_none() && !pte_present(). 806 * 807 * Format of swap PTE: 808 * bit 0: _PAGE_PRESENT (zero) 809 * bit 1 to 3: _PAGE_LEAF (zero) 810 * bit 5: _PAGE_PROT_NONE (zero) 811 * bit 6: exclusive marker 812 * bits 7 to 11: swap type 813 * bits 12 to XLEN-1: swap offset 814 */ 815 #define __SWP_TYPE_SHIFT 7 816 #define __SWP_TYPE_BITS 5 817 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) 818 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 819 820 #define MAX_SWAPFILES_CHECK() \ 821 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 822 823 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 824 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 825 #define __swp_entry(type, offset) ((swp_entry_t) \ 826 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \ 827 ((offset) << __SWP_OFFSET_SHIFT) }) 828 829 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 830 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 831 832 static inline int pte_swp_exclusive(pte_t pte) 833 { 834 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 835 } 836 837 static inline pte_t pte_swp_mkexclusive(pte_t pte) 838 { 839 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE); 840 } 841 842 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 843 { 844 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE); 845 } 846 847 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 848 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 849 #define __swp_entry_to_pmd(swp) __pmd((swp).val) 850 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 851 852 /* 853 * In the RV64 Linux scheme, we give the user half of the virtual-address space 854 * and give the kernel the other (upper) half. 855 */ 856 #ifdef CONFIG_64BIT 857 #define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE) 858 #else 859 #define KERN_VIRT_START FIXADDR_START 860 #endif 861 862 /* 863 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. 864 * Note that PGDIR_SIZE must evenly divide TASK_SIZE. 865 * Task size is: 866 * - 0x9fc00000 (~2.5GB) for RV32. 867 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu 868 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu 869 * - 0x100000000000000 ( 64PB) for RV64 using SV57 mmu 870 * 871 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V 872 * Instruction Set Manual Volume II: Privileged Architecture" states that 873 * "load and store effective addresses, which are 64bits, must have bits 874 * 63–48 all equal to bit 47, or else a page-fault exception will occur." 875 * Similarly for SV57, bits 63–57 must be equal to bit 56. 876 */ 877 #ifdef CONFIG_64BIT 878 #define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2) 879 #define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2) 880 881 #ifdef CONFIG_COMPAT 882 #define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE) 883 #define TASK_SIZE (is_compat_task() ? \ 884 TASK_SIZE_32 : TASK_SIZE_64) 885 #else 886 #define TASK_SIZE TASK_SIZE_64 887 #endif 888 889 #else 890 #define TASK_SIZE FIXADDR_START 891 #define TASK_SIZE_MIN TASK_SIZE 892 #endif 893 894 #else /* CONFIG_MMU */ 895 896 #define PAGE_SHARED __pgprot(0) 897 #define PAGE_KERNEL __pgprot(0) 898 #define swapper_pg_dir NULL 899 #define TASK_SIZE 0xffffffffUL 900 #define VMALLOC_START _AC(0, UL) 901 #define VMALLOC_END TASK_SIZE 902 903 #endif /* !CONFIG_MMU */ 904 905 extern char _start[]; 906 extern void *_dtb_early_va; 907 extern uintptr_t _dtb_early_pa; 908 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU) 909 #define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va)) 910 #define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa)) 911 #else 912 #define dtb_early_va _dtb_early_va 913 #define dtb_early_pa _dtb_early_pa 914 #endif /* CONFIG_XIP_KERNEL */ 915 extern u64 satp_mode; 916 917 void paging_init(void); 918 void misc_mem_init(void); 919 920 /* 921 * ZERO_PAGE is a global shared page that is always zero, 922 * used for zero-mapped memory areas, etc. 923 */ 924 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 925 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 926 927 #endif /* !__ASSEMBLY__ */ 928 929 #endif /* _ASM_RISCV_PGTABLE_H */ 930