xref: /linux/arch/riscv/include/asm/pgtable.h (revision 2f2419502f6957b110dbc7d4b75e764e5f370ec2)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5 
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8 
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11 
12 #include <asm/pgtable-bits.h>
13 
14 #ifndef CONFIG_MMU
15 #define KERNEL_LINK_ADDR	PAGE_OFFSET
16 #define KERN_VIRT_SIZE		(UL(-1))
17 #else
18 
19 #define ADDRESS_SPACE_END	(UL(-1))
20 
21 #ifdef CONFIG_64BIT
22 /* Leave 2GB for kernel and BPF at the end of the address space */
23 #define KERNEL_LINK_ADDR	(ADDRESS_SPACE_END - SZ_2G + 1)
24 #else
25 #define KERNEL_LINK_ADDR	PAGE_OFFSET
26 #endif
27 
28 /* Number of entries in the page global directory */
29 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
30 /* Number of entries in the page table */
31 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
32 
33 /*
34  * Half of the kernel address space (1/4 of the entries of the page global
35  * directory) is for the direct mapping.
36  */
37 #define KERN_VIRT_SIZE          ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
38 
39 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
40 #define VMALLOC_END      PAGE_OFFSET
41 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
42 
43 #define BPF_JIT_REGION_SIZE	(SZ_128M)
44 #ifdef CONFIG_64BIT
45 #define BPF_JIT_REGION_START	(BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
46 #define BPF_JIT_REGION_END	(MODULES_END)
47 #else
48 #define BPF_JIT_REGION_START	(PAGE_OFFSET - BPF_JIT_REGION_SIZE)
49 #define BPF_JIT_REGION_END	(VMALLOC_END)
50 #endif
51 
52 /* Modules always live before the kernel */
53 #ifdef CONFIG_64BIT
54 /* This is used to define the end of the KASAN shadow region */
55 #define MODULES_LOWEST_VADDR	(KERNEL_LINK_ADDR - SZ_2G)
56 #define MODULES_VADDR		(PFN_ALIGN((unsigned long)&_end) - SZ_2G)
57 #define MODULES_END		(PFN_ALIGN((unsigned long)&_start))
58 #endif
59 
60 /*
61  * Roughly size the vmemmap space to be large enough to fit enough
62  * struct pages to map half the virtual address space. Then
63  * position vmemmap directly below the VMALLOC region.
64  */
65 #define VA_BITS_SV32 32
66 #ifdef CONFIG_64BIT
67 #define VA_BITS_SV39 39
68 #define VA_BITS_SV48 48
69 #define VA_BITS_SV57 57
70 
71 #define VA_BITS		(pgtable_l5_enabled ? \
72 				VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
73 #else
74 #define VA_BITS		VA_BITS_SV32
75 #endif
76 
77 #define VMEMMAP_SHIFT \
78 	(VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
79 #define VMEMMAP_SIZE	BIT(VMEMMAP_SHIFT)
80 #define VMEMMAP_END	VMALLOC_START
81 #define VMEMMAP_START	(VMALLOC_START - VMEMMAP_SIZE)
82 
83 /*
84  * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
85  * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
86  */
87 #define vmemmap		((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT))
88 
89 #define PCI_IO_SIZE      SZ_16M
90 #define PCI_IO_END       VMEMMAP_START
91 #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
92 
93 #define FIXADDR_TOP      PCI_IO_START
94 #ifdef CONFIG_64BIT
95 #define MAX_FDT_SIZE	 PMD_SIZE
96 #define FIX_FDT_SIZE	 (MAX_FDT_SIZE + SZ_2M)
97 #define FIXADDR_SIZE     (PMD_SIZE + FIX_FDT_SIZE)
98 #else
99 #define MAX_FDT_SIZE	 PGDIR_SIZE
100 #define FIX_FDT_SIZE	 MAX_FDT_SIZE
101 #define FIXADDR_SIZE     (PGDIR_SIZE + FIX_FDT_SIZE)
102 #endif
103 #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
104 
105 #endif
106 
107 #ifdef CONFIG_XIP_KERNEL
108 #define XIP_OFFSET		SZ_32M
109 #define XIP_OFFSET_MASK		(SZ_32M - 1)
110 #else
111 #define XIP_OFFSET		0
112 #endif
113 
114 #ifndef __ASSEMBLY__
115 
116 #include <asm/page.h>
117 #include <asm/tlbflush.h>
118 #include <linux/mm_types.h>
119 #include <asm/compat.h>
120 
121 #define __page_val_to_pfn(_val)  (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
122 
123 #ifdef CONFIG_64BIT
124 #include <asm/pgtable-64.h>
125 
126 #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
127 #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
128 #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
129 
130 #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
131 #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
132 #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
133 #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
134 #else
135 #include <asm/pgtable-32.h>
136 #endif /* CONFIG_64BIT */
137 
138 #include <linux/page_table_check.h>
139 
140 #ifdef CONFIG_XIP_KERNEL
141 #define XIP_FIXUP(addr) ({							\
142 	uintptr_t __a = (uintptr_t)(addr);					\
143 	(__a >= CONFIG_XIP_PHYS_ADDR && \
144 	 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ?	\
145 		__a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
146 		__a;								\
147 	})
148 #else
149 #define XIP_FIXUP(addr)		(addr)
150 #endif /* CONFIG_XIP_KERNEL */
151 
152 struct pt_alloc_ops {
153 	pte_t *(*get_pte_virt)(phys_addr_t pa);
154 	phys_addr_t (*alloc_pte)(uintptr_t va);
155 #ifndef __PAGETABLE_PMD_FOLDED
156 	pmd_t *(*get_pmd_virt)(phys_addr_t pa);
157 	phys_addr_t (*alloc_pmd)(uintptr_t va);
158 	pud_t *(*get_pud_virt)(phys_addr_t pa);
159 	phys_addr_t (*alloc_pud)(uintptr_t va);
160 	p4d_t *(*get_p4d_virt)(phys_addr_t pa);
161 	phys_addr_t (*alloc_p4d)(uintptr_t va);
162 #endif
163 };
164 
165 extern struct pt_alloc_ops pt_ops __initdata;
166 
167 #ifdef CONFIG_MMU
168 /* Number of PGD entries that a user-mode program can use */
169 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
170 
171 /* Page protection bits */
172 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
173 
174 #define PAGE_NONE		__pgprot(_PAGE_PROT_NONE | _PAGE_READ)
175 #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
176 #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
177 #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
178 #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
179 #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
180 					 _PAGE_EXEC | _PAGE_WRITE)
181 
182 #define PAGE_COPY		PAGE_READ
183 #define PAGE_COPY_EXEC		PAGE_READ_EXEC
184 #define PAGE_SHARED		PAGE_WRITE
185 #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
186 
187 #define _PAGE_KERNEL		(_PAGE_READ \
188 				| _PAGE_WRITE \
189 				| _PAGE_PRESENT \
190 				| _PAGE_ACCESSED \
191 				| _PAGE_DIRTY \
192 				| _PAGE_GLOBAL)
193 
194 #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
195 #define PAGE_KERNEL_READ	__pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
196 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
197 #define PAGE_KERNEL_READ_EXEC	__pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
198 					 | _PAGE_EXEC)
199 
200 #define PAGE_TABLE		__pgprot(_PAGE_TABLE)
201 
202 #define _PAGE_IOREMAP	((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
203 #define PAGE_KERNEL_IO		__pgprot(_PAGE_IOREMAP)
204 
205 extern pgd_t swapper_pg_dir[];
206 extern pgd_t trampoline_pg_dir[];
207 extern pgd_t early_pg_dir[];
208 
209 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
210 static inline int pmd_present(pmd_t pmd)
211 {
212 	/*
213 	 * Checking for _PAGE_LEAF is needed too because:
214 	 * When splitting a THP, split_huge_page() will temporarily clear
215 	 * the present bit, in this situation, pmd_present() and
216 	 * pmd_trans_huge() still needs to return true.
217 	 */
218 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
219 }
220 #else
221 static inline int pmd_present(pmd_t pmd)
222 {
223 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
224 }
225 #endif
226 
227 static inline int pmd_none(pmd_t pmd)
228 {
229 	return (pmd_val(pmd) == 0);
230 }
231 
232 static inline int pmd_bad(pmd_t pmd)
233 {
234 	return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
235 }
236 
237 #define pmd_leaf	pmd_leaf
238 static inline bool pmd_leaf(pmd_t pmd)
239 {
240 	return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
241 }
242 
243 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
244 {
245 	WRITE_ONCE(*pmdp, pmd);
246 }
247 
248 static inline void pmd_clear(pmd_t *pmdp)
249 {
250 	set_pmd(pmdp, __pmd(0));
251 }
252 
253 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
254 {
255 	unsigned long prot_val = pgprot_val(prot);
256 
257 	ALT_THEAD_PMA(prot_val);
258 
259 	return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
260 }
261 
262 static inline unsigned long _pgd_pfn(pgd_t pgd)
263 {
264 	return __page_val_to_pfn(pgd_val(pgd));
265 }
266 
267 static inline struct page *pmd_page(pmd_t pmd)
268 {
269 	return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
270 }
271 
272 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
273 {
274 	return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
275 }
276 
277 static inline pte_t pmd_pte(pmd_t pmd)
278 {
279 	return __pte(pmd_val(pmd));
280 }
281 
282 static inline pte_t pud_pte(pud_t pud)
283 {
284 	return __pte(pud_val(pud));
285 }
286 
287 #ifdef CONFIG_RISCV_ISA_SVNAPOT
288 #include <asm/cpufeature.h>
289 
290 static __always_inline bool has_svnapot(void)
291 {
292 	return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
293 }
294 
295 static inline unsigned long pte_napot(pte_t pte)
296 {
297 	return pte_val(pte) & _PAGE_NAPOT;
298 }
299 
300 static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
301 {
302 	int pos = order - 1 + _PAGE_PFN_SHIFT;
303 	unsigned long napot_bit = BIT(pos);
304 	unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
305 
306 	return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
307 }
308 
309 #else
310 
311 static __always_inline bool has_svnapot(void) { return false; }
312 
313 static inline unsigned long pte_napot(pte_t pte)
314 {
315 	return 0;
316 }
317 
318 #endif /* CONFIG_RISCV_ISA_SVNAPOT */
319 
320 /* Yields the page frame number (PFN) of a page table entry */
321 static inline unsigned long pte_pfn(pte_t pte)
322 {
323 	unsigned long res  = __page_val_to_pfn(pte_val(pte));
324 
325 	if (has_svnapot() && pte_napot(pte))
326 		res = res & (res - 1UL);
327 
328 	return res;
329 }
330 
331 #define pte_page(x)     pfn_to_page(pte_pfn(x))
332 
333 /* Constructs a page table entry */
334 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
335 {
336 	unsigned long prot_val = pgprot_val(prot);
337 
338 	ALT_THEAD_PMA(prot_val);
339 
340 	return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
341 }
342 
343 #define mk_pte(page, prot)       pfn_pte(page_to_pfn(page), prot)
344 
345 static inline int pte_present(pte_t pte)
346 {
347 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
348 }
349 
350 static inline int pte_none(pte_t pte)
351 {
352 	return (pte_val(pte) == 0);
353 }
354 
355 static inline int pte_write(pte_t pte)
356 {
357 	return pte_val(pte) & _PAGE_WRITE;
358 }
359 
360 static inline int pte_exec(pte_t pte)
361 {
362 	return pte_val(pte) & _PAGE_EXEC;
363 }
364 
365 static inline int pte_user(pte_t pte)
366 {
367 	return pte_val(pte) & _PAGE_USER;
368 }
369 
370 static inline int pte_huge(pte_t pte)
371 {
372 	return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
373 }
374 
375 static inline int pte_dirty(pte_t pte)
376 {
377 	return pte_val(pte) & _PAGE_DIRTY;
378 }
379 
380 static inline int pte_young(pte_t pte)
381 {
382 	return pte_val(pte) & _PAGE_ACCESSED;
383 }
384 
385 static inline int pte_special(pte_t pte)
386 {
387 	return pte_val(pte) & _PAGE_SPECIAL;
388 }
389 
390 /* static inline pte_t pte_rdprotect(pte_t pte) */
391 
392 static inline pte_t pte_wrprotect(pte_t pte)
393 {
394 	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
395 }
396 
397 /* static inline pte_t pte_mkread(pte_t pte) */
398 
399 static inline pte_t pte_mkwrite_novma(pte_t pte)
400 {
401 	return __pte(pte_val(pte) | _PAGE_WRITE);
402 }
403 
404 /* static inline pte_t pte_mkexec(pte_t pte) */
405 
406 static inline pte_t pte_mkdirty(pte_t pte)
407 {
408 	return __pte(pte_val(pte) | _PAGE_DIRTY);
409 }
410 
411 static inline pte_t pte_mkclean(pte_t pte)
412 {
413 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
414 }
415 
416 static inline pte_t pte_mkyoung(pte_t pte)
417 {
418 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
419 }
420 
421 static inline pte_t pte_mkold(pte_t pte)
422 {
423 	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
424 }
425 
426 static inline pte_t pte_mkspecial(pte_t pte)
427 {
428 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
429 }
430 
431 static inline pte_t pte_mkhuge(pte_t pte)
432 {
433 	return pte;
434 }
435 
436 #ifdef CONFIG_RISCV_ISA_SVNAPOT
437 #define pte_leaf_size(pte)	(pte_napot(pte) ?				\
438 					napot_cont_size(napot_cont_order(pte)) :\
439 					PAGE_SIZE)
440 #endif
441 
442 #ifdef CONFIG_NUMA_BALANCING
443 /*
444  * See the comment in include/asm-generic/pgtable.h
445  */
446 static inline int pte_protnone(pte_t pte)
447 {
448 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
449 }
450 
451 static inline int pmd_protnone(pmd_t pmd)
452 {
453 	return pte_protnone(pmd_pte(pmd));
454 }
455 #endif
456 
457 /* Modify page protection bits */
458 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
459 {
460 	unsigned long newprot_val = pgprot_val(newprot);
461 
462 	ALT_THEAD_PMA(newprot_val);
463 
464 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
465 }
466 
467 #define pgd_ERROR(e) \
468 	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
469 
470 
471 /* Commit new configuration to MMU hardware */
472 static inline void update_mmu_cache_range(struct vm_fault *vmf,
473 		struct vm_area_struct *vma, unsigned long address,
474 		pte_t *ptep, unsigned int nr)
475 {
476 	/*
477 	 * The kernel assumes that TLBs don't cache invalid entries, but
478 	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
479 	 * cache flush; it is necessary even after writing invalid entries.
480 	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
481 	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
482 	 */
483 	while (nr--)
484 		local_flush_tlb_page(address + nr * PAGE_SIZE);
485 }
486 #define update_mmu_cache(vma, addr, ptep) \
487 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
488 
489 #define __HAVE_ARCH_UPDATE_MMU_TLB
490 #define update_mmu_tlb update_mmu_cache
491 
492 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
493 		unsigned long address, pmd_t *pmdp)
494 {
495 	pte_t *ptep = (pte_t *)pmdp;
496 
497 	update_mmu_cache(vma, address, ptep);
498 }
499 
500 #define __HAVE_ARCH_PTE_SAME
501 static inline int pte_same(pte_t pte_a, pte_t pte_b)
502 {
503 	return pte_val(pte_a) == pte_val(pte_b);
504 }
505 
506 /*
507  * Certain architectures need to do special things when PTEs within
508  * a page table are directly modified.  Thus, the following hook is
509  * made available.
510  */
511 static inline void set_pte(pte_t *ptep, pte_t pteval)
512 {
513 	WRITE_ONCE(*ptep, pteval);
514 }
515 
516 void flush_icache_pte(struct mm_struct *mm, pte_t pte);
517 
518 static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval)
519 {
520 	if (pte_present(pteval) && pte_exec(pteval))
521 		flush_icache_pte(mm, pteval);
522 
523 	set_pte(ptep, pteval);
524 }
525 
526 #define PFN_PTE_SHIFT		_PAGE_PFN_SHIFT
527 
528 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
529 		pte_t *ptep, pte_t pteval, unsigned int nr)
530 {
531 	page_table_check_ptes_set(mm, ptep, pteval, nr);
532 
533 	for (;;) {
534 		__set_pte_at(mm, ptep, pteval);
535 		if (--nr == 0)
536 			break;
537 		ptep++;
538 		pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
539 	}
540 }
541 #define set_ptes set_ptes
542 
543 static inline void pte_clear(struct mm_struct *mm,
544 	unsigned long addr, pte_t *ptep)
545 {
546 	__set_pte_at(mm, ptep, __pte(0));
547 }
548 
549 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS	/* defined in mm/pgtable.c */
550 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
551 				 pte_t *ptep, pte_t entry, int dirty);
552 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG	/* defined in mm/pgtable.c */
553 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
554 				     pte_t *ptep);
555 
556 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
557 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
558 				       unsigned long address, pte_t *ptep)
559 {
560 	pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
561 
562 	page_table_check_pte_clear(mm, pte);
563 
564 	return pte;
565 }
566 
567 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
568 static inline void ptep_set_wrprotect(struct mm_struct *mm,
569 				      unsigned long address, pte_t *ptep)
570 {
571 	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
572 }
573 
574 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
575 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
576 					 unsigned long address, pte_t *ptep)
577 {
578 	/*
579 	 * This comment is borrowed from x86, but applies equally to RISC-V:
580 	 *
581 	 * Clearing the accessed bit without a TLB flush
582 	 * doesn't cause data corruption. [ It could cause incorrect
583 	 * page aging and the (mistaken) reclaim of hot pages, but the
584 	 * chance of that should be relatively low. ]
585 	 *
586 	 * So as a performance optimization don't flush the TLB when
587 	 * clearing the accessed bit, it will eventually be flushed by
588 	 * a context switch or a VM operation anyway. [ In the rare
589 	 * event of it not getting flushed for a long time the delay
590 	 * shouldn't really matter because there's no real memory
591 	 * pressure for swapout to react to. ]
592 	 */
593 	return ptep_test_and_clear_young(vma, address, ptep);
594 }
595 
596 #define pgprot_noncached pgprot_noncached
597 static inline pgprot_t pgprot_noncached(pgprot_t _prot)
598 {
599 	unsigned long prot = pgprot_val(_prot);
600 
601 	prot &= ~_PAGE_MTMASK;
602 	prot |= _PAGE_IO;
603 
604 	return __pgprot(prot);
605 }
606 
607 #define pgprot_writecombine pgprot_writecombine
608 static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
609 {
610 	unsigned long prot = pgprot_val(_prot);
611 
612 	prot &= ~_PAGE_MTMASK;
613 	prot |= _PAGE_NOCACHE;
614 
615 	return __pgprot(prot);
616 }
617 
618 /*
619  * THP functions
620  */
621 static inline pmd_t pte_pmd(pte_t pte)
622 {
623 	return __pmd(pte_val(pte));
624 }
625 
626 static inline pmd_t pmd_mkhuge(pmd_t pmd)
627 {
628 	return pmd;
629 }
630 
631 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
632 {
633 	return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
634 }
635 
636 #define __pmd_to_phys(pmd)  (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
637 
638 static inline unsigned long pmd_pfn(pmd_t pmd)
639 {
640 	return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
641 }
642 
643 #define __pud_to_phys(pud)  (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
644 
645 static inline unsigned long pud_pfn(pud_t pud)
646 {
647 	return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
648 }
649 
650 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
651 {
652 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
653 }
654 
655 #define pmd_write pmd_write
656 static inline int pmd_write(pmd_t pmd)
657 {
658 	return pte_write(pmd_pte(pmd));
659 }
660 
661 #define pud_write pud_write
662 static inline int pud_write(pud_t pud)
663 {
664 	return pte_write(pud_pte(pud));
665 }
666 
667 #define pmd_dirty pmd_dirty
668 static inline int pmd_dirty(pmd_t pmd)
669 {
670 	return pte_dirty(pmd_pte(pmd));
671 }
672 
673 #define pmd_young pmd_young
674 static inline int pmd_young(pmd_t pmd)
675 {
676 	return pte_young(pmd_pte(pmd));
677 }
678 
679 static inline int pmd_user(pmd_t pmd)
680 {
681 	return pte_user(pmd_pte(pmd));
682 }
683 
684 static inline pmd_t pmd_mkold(pmd_t pmd)
685 {
686 	return pte_pmd(pte_mkold(pmd_pte(pmd)));
687 }
688 
689 static inline pmd_t pmd_mkyoung(pmd_t pmd)
690 {
691 	return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
692 }
693 
694 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
695 {
696 	return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
697 }
698 
699 static inline pmd_t pmd_wrprotect(pmd_t pmd)
700 {
701 	return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
702 }
703 
704 static inline pmd_t pmd_mkclean(pmd_t pmd)
705 {
706 	return pte_pmd(pte_mkclean(pmd_pte(pmd)));
707 }
708 
709 static inline pmd_t pmd_mkdirty(pmd_t pmd)
710 {
711 	return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
712 }
713 
714 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
715 				pmd_t *pmdp, pmd_t pmd)
716 {
717 	page_table_check_pmd_set(mm, pmdp, pmd);
718 	return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd));
719 }
720 
721 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
722 				pud_t *pudp, pud_t pud)
723 {
724 	page_table_check_pud_set(mm, pudp, pud);
725 	return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud));
726 }
727 
728 #ifdef CONFIG_PAGE_TABLE_CHECK
729 static inline bool pte_user_accessible_page(pte_t pte)
730 {
731 	return pte_present(pte) && pte_user(pte);
732 }
733 
734 static inline bool pmd_user_accessible_page(pmd_t pmd)
735 {
736 	return pmd_leaf(pmd) && pmd_user(pmd);
737 }
738 
739 static inline bool pud_user_accessible_page(pud_t pud)
740 {
741 	return pud_leaf(pud) && pud_user(pud);
742 }
743 #endif
744 
745 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
746 static inline int pmd_trans_huge(pmd_t pmd)
747 {
748 	return pmd_leaf(pmd);
749 }
750 
751 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
752 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
753 					unsigned long address, pmd_t *pmdp,
754 					pmd_t entry, int dirty)
755 {
756 	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
757 }
758 
759 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
760 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
761 					unsigned long address, pmd_t *pmdp)
762 {
763 	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
764 }
765 
766 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
767 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
768 					unsigned long address, pmd_t *pmdp)
769 {
770 	pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
771 
772 	page_table_check_pmd_clear(mm, pmd);
773 
774 	return pmd;
775 }
776 
777 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
778 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
779 					unsigned long address, pmd_t *pmdp)
780 {
781 	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
782 }
783 
784 #define pmdp_establish pmdp_establish
785 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
786 				unsigned long address, pmd_t *pmdp, pmd_t pmd)
787 {
788 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
789 	return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
790 }
791 
792 #define pmdp_collapse_flush pmdp_collapse_flush
793 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
794 				 unsigned long address, pmd_t *pmdp);
795 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
796 
797 /*
798  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
799  * are !pte_none() && !pte_present().
800  *
801  * Format of swap PTE:
802  *	bit            0:	_PAGE_PRESENT (zero)
803  *	bit       1 to 3:       _PAGE_LEAF (zero)
804  *	bit            5:	_PAGE_PROT_NONE (zero)
805  *	bit            6:	exclusive marker
806  *	bits      7 to 11:	swap type
807  *	bits 12 to XLEN-1:	swap offset
808  */
809 #define __SWP_TYPE_SHIFT	7
810 #define __SWP_TYPE_BITS		5
811 #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
812 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
813 
814 #define MAX_SWAPFILES_CHECK()	\
815 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
816 
817 #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
818 #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
819 #define __swp_entry(type, offset) ((swp_entry_t) \
820 	{ (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
821 	  ((offset) << __SWP_OFFSET_SHIFT) })
822 
823 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
824 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
825 
826 static inline int pte_swp_exclusive(pte_t pte)
827 {
828 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
829 }
830 
831 static inline pte_t pte_swp_mkexclusive(pte_t pte)
832 {
833 	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
834 }
835 
836 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
837 {
838 	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
839 }
840 
841 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
842 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
843 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
844 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
845 
846 /*
847  * In the RV64 Linux scheme, we give the user half of the virtual-address space
848  * and give the kernel the other (upper) half.
849  */
850 #ifdef CONFIG_64BIT
851 #define KERN_VIRT_START	(-(BIT(VA_BITS)) + TASK_SIZE)
852 #else
853 #define KERN_VIRT_START	FIXADDR_START
854 #endif
855 
856 /*
857  * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
858  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
859  * Task size is:
860  * -        0x9fc00000	(~2.5GB) for RV32.
861  * -      0x4000000000	( 256GB) for RV64 using SV39 mmu
862  * -    0x800000000000	( 128TB) for RV64 using SV48 mmu
863  * - 0x100000000000000	(  64PB) for RV64 using SV57 mmu
864  *
865  * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
866  * Instruction Set Manual Volume II: Privileged Architecture" states that
867  * "load and store effective addresses, which are 64bits, must have bits
868  * 63–48 all equal to bit 47, or else a page-fault exception will occur."
869  * Similarly for SV57, bits 63–57 must be equal to bit 56.
870  */
871 #ifdef CONFIG_64BIT
872 #define TASK_SIZE_64	(PGDIR_SIZE * PTRS_PER_PGD / 2)
873 #define TASK_SIZE_MIN	(PGDIR_SIZE_L3 * PTRS_PER_PGD / 2)
874 
875 #ifdef CONFIG_COMPAT
876 #define TASK_SIZE_32	(_AC(0x80000000, UL) - PAGE_SIZE)
877 #define TASK_SIZE	(is_compat_task() ? \
878 			 TASK_SIZE_32 : TASK_SIZE_64)
879 #else
880 #define TASK_SIZE	TASK_SIZE_64
881 #endif
882 
883 #else
884 #define TASK_SIZE	FIXADDR_START
885 #define TASK_SIZE_MIN	TASK_SIZE
886 #endif
887 
888 #else /* CONFIG_MMU */
889 
890 #define PAGE_SHARED		__pgprot(0)
891 #define PAGE_KERNEL		__pgprot(0)
892 #define swapper_pg_dir		NULL
893 #define TASK_SIZE		0xffffffffUL
894 #define VMALLOC_START		_AC(0, UL)
895 #define VMALLOC_END		TASK_SIZE
896 
897 #endif /* !CONFIG_MMU */
898 
899 extern char _start[];
900 extern void *_dtb_early_va;
901 extern uintptr_t _dtb_early_pa;
902 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
903 #define dtb_early_va	(*(void **)XIP_FIXUP(&_dtb_early_va))
904 #define dtb_early_pa	(*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
905 #else
906 #define dtb_early_va	_dtb_early_va
907 #define dtb_early_pa	_dtb_early_pa
908 #endif /* CONFIG_XIP_KERNEL */
909 extern u64 satp_mode;
910 
911 void paging_init(void);
912 void misc_mem_init(void);
913 
914 /*
915  * ZERO_PAGE is a global shared page that is always zero,
916  * used for zero-mapped memory areas, etc.
917  */
918 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
919 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
920 
921 #endif /* !__ASSEMBLY__ */
922 
923 #endif /* _ASM_RISCV_PGTABLE_H */
924